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Abstract— Skin cancer, among the deadliest cancers, poses a 

significant threat when not detected and treated promptly. Sun 

exposure accelerates the proliferation of skin cells, leading to its 

development. Early detection is crucial to prevent its spread to other 

parts of the body. This study proposes a computerized technique for 

skin cancer classification, capitalizing deep convolutional neural 

networks (CNNs) to enhance diagnostic accuracy and efficiency. The 

dataset encompasses nine distinct types of skin cancer: seborrheic 

keratosis, actinic keratosis, benign keratosis, nevus, vascular lesions, 

basal cell carcinoma, dermatofibroma, melanoma, and squamous cell 

carcinoma, the aim is to develop a CNN model capable of accurately 

diagnosing and categorizing skin cancer into these classes. By 

integrating image processing and deep learning techniques, 

augmented with various image augmentation strategies, the dataset's 

diversity is enhanced, thereby improving the model's robustness and 

generalization capability. The eventual aim is to achieve notable 

performance metrics for classification tasks adopting the CNN 

approach. The expected outcomes include a weighted average 

precision of 0.88, a weighted average recall of 0.74, a weighted 

average f1-score of 0.80, and an overall accuracy of 90.51%. These 

metrics serve as benchmarks for evaluating the effectiveness and 

reliability of the suggested CNN methodology in diagnosing skin 

cancer. 
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I. INTRODUCTION  

Skin cancer has materialized as a prevalent global health 

concern, with both non-melanoma and melanoma skin cancer 

showing increased incidence over recent decades. One in three 

cancer cases globally are analogous to skin cancer, according 

to the World Health Organization (WHO), and one in five 

Americans will get skin cancer in their lifetime, according to 

figures from the Skin Cancer Foundation.Regions such as the 

United States, Canada, and Australia have seen a steady rise 

in the profusion of  individuals affected by skin cancer over 

the past few centuries. Skin cancer, significantly impact global 

population health. In 2017, a study revealed that skin cancer 

contributed to 1.79% of the worldwide disease burden, 

measured in disability-adjusted life years. Approximately 7% 

of new cancer cases globally are attributed to skin cancer, with 

associated costs exceeding $8 billion for the US Medicare 

program in 2011. 
Clinical evidence suggests variations in skin cancer outcomes 

based on race: individuals with dark hued tones are generally 

20 to 30 percent less susceptible to melanoma compared with 

lighter hued tones. However, mortality risks for certain types 

of melanoma may vary, with some melanoma types showing 

higher or lower ephemerality rates among divergent racial 

groups. Skin cancer frequency rates fluctuate across countries, 

as proclaimed by the World Cancer Research Foundation. 

Latterly, Convolutional Neural Networks (CNNs) have gained 

widespread use for skin cancer classification. These models 

have often surpassed the diagnostic accuracy of even 

experienced healthcare professionals. Techniques such as 

transfer learning, which involves imposing on large datasets, 

have further improved CNN performance. Well-known CNN 

designs, such as VGG-16 and VGG-19, with 16 and 19 

convolutional layers, respectively, have allowed to catalogue 

skin cancer. These pre-trained networks are capable of 
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recognizing a vast range of objects, from conventional items 

like keyboards and mice to various creatures, across 1000 

object categories. With input data resolution typically set at 

224-by-224 pixels, these networks have accumulated rich 

feature representations from extensive image datasets. 

II. DATA PRE-PROCESSING 

In regulation to boost the persuasiveness of suspected 

sickness diagnoses, we shall use simulation techniques to draw 

attention to significant issues with visual identification.  

A. Dataset 

The dataset, sourced from Kaggle.com, comprises 25,780 

images depicting benign skin lesions and malignant skin 

lesions. Each image is categorized based on descriptions 

prevalent by the International Skin Imaging Collaboration 

(ISIC), with subgroups including, dermatofibroma, seborrheic 

keratosis, squamous cell carcinoma, basal cell carcinoma, 

melanoma, nevus, vascular lesion and actinic keratosis. The 

dataset is publicly available, accompanied by metadata that 

facilitates documentation for each image, allowing for 

comparisons and analysis. To ensure consistency, all images 

have been modified to 224 x 224 pixels as part of the data 

preprocessing stage. Furthermore, the dataset has been 

prorated into three subsets: training, validation, and testing, 

with respective sizes of 19,537, 2,167, and 3,799 samples. 

This division allows for robust model training, validation, and 

evaluation processes. 

B. Data Augmentation 

Making the most of the amount of data is beneficial as 

well. The data augmentation strategy is crucial for correctly 

training a CNN model. This method keeps the original 

consistency of the input and output data while avoiding 

distortion. Furthermore, this procedure is carried out precisely 

while the model is being trained, allowing for the overfitting 

issue to be resolved and advancing the model's output. In order 

to choose values from different sizes, we have multiple options 

for image augmentation, including rotation range, shear range 

zooming, and horizontal flip. In order to aggrandize the 

model's utility during training, each option has the capacity to 

represent images in a multitude of ways and to supply crucial 

features. 

 

 
Fig. 1.  Images from Dataset 

 

III. METHODOLOGY 

Convolutional Neural Networks (CNNs) draw 

revelation from biological systems, particularly the visual 

cortex's neuron arrangement. CNNs constitute three major 

layers: Convolutional layer, Pooling layer, and Fully-

Connected layers. The key components of a CNN system 

include feature extraction, detection, and classification. The 

process starts with a convolutional layer, followed by 

activation and max-pooling layers to extract features 

concurrently. These characters are then acknowledged through 

parallel layers at the functional level. Next, the flattened 

features are fed into Multi-Layer Perceptron’s (MLPs) with 

two levels, adjusting the number of neurons in each layer to 

prevent overfitting. The final classification is performed by a 

layer containing the SoftMax function. Class activation maps 

are engendered in these layers, serving as a classification guide 

linked to the last convolutional layer. The workflow is divided 

into two sections: extraction and classification/detection. The 

first section focuses on feature extraction, while the latter deals 

with image classification and detection. This division 

enhances the adaptability and incisiveness of the CNN model 

in processing and interpreting visual data. 

A. Feature Extraction Phase 

It is crucial to use filters of different sizes and assess a range 

of performance parameters in order to set up an efficient 

network architecture in each convolution layer. In the initial 

phase, our CNN model comprises five dilated convolutionary 

units, denoted as CBr = iconv (n = 64,128,256,512,512), 

which are alternatively max-pooled. Our model incorporates 

dilated convolution, in which the input picture feeds into two 

simultaneous CBr=iConv blocks with just the dilation amount 

(di = 1, 2, 3,..., N) separating them. By processing data at a 

higher resolution and collecting finer visual details, a dilation 

rate larger than 1 improves the convolution layer's 

performance. The receptive field, which denotes the region of 

the image influenced by the filter without altering its 

magnitude, remains constant across different dilation rates, 

resulting in the markdown of pixels in each input 

corresponding to the dilation rate (di - 1). In simpler terms, 

when the dilation rate is 1, it's akin to a standard convolution 

operation. However, for a dilation rate of 2, in a two-

dimensional input image, every other pixel is skipped. The 

relationship between the dilation rate (di) and the receptive 

field (rf) can be understood by considering the impact of di on 

rf given a kernel size (ks). If the kernel size is ks and it 

undergoes dilation by di, the expression for the receptive field 

can be represented as Equation no. 1, 

rf = di(k1) + 1 (1) 

The amount of output O is shown by Equation No. 2 if the 

input is i× i with a dilation factor of di, padding of pd, and 

stride of st, respectively, and the output is O. 

O = i + 2pdrf st + 1 (2) 

At different scales, important features in the observing region 

are reported using two receptive fields of differing sizes. The 

presently introduced prototype consists of three CBr=iconv 

blocks, the latter two of which contain four convolution layers 

and an activation layer, and the first two of which have two 

convolution layers each. Furthermore, every block in this 

group has a distinct filter (3 × 3), with stride and dilation rates 

of 1 and di, respectively. Filters Fs R1⇥n can be used to define 

the convolution layer; the equation is provided below.  

Fs = fj⇥j 1 fj⇥j 2 ...fj⇥j n=x (3) 

here, j × j is filter size. The suggested convolution network will 

produce Y mf ⇥mf l feature maps from the inputs if layer l's 

dilation rate is di and mf x mf is designated as the input feature 

map. which the following equation can be used to calculate:  

Y o⇥o l = Y mf ⇥mf l1, di=k ⇥ lf + lb (4) 
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 here, lb is the bias of the layer, and lf is filter. Following the 

convolution layer, the generated features undergo activation 

through a chosen nonlinear layer, typically denoted as "a", 

which is commonly merged into CNNs. Because of a number 

of advantages, including the capacity to promote gradient 

propagation and lower the likelihood of gradient vanishing 

during the early phases of CNN computation, ReLU (Rectified 

Linear Unit) is frequently chosen for this function. The 

activation function works element-by-element on the input 

feature map, producing an output map that is the same size as 

the input. This is important to note. In our devised scheme, a 

block of CBr = iconv, paired with a max-pooling layer, is 

incrementally repeated five times in succession. Max-pooling 

serves as an effective method for down sampling the feature 

maps, with a 2x2 filter size and a stride of 2 being utilized at 

each layer. This strategy efficiently reduces the dimensionality 

of the feature maps, enhancing the performance of subsequent 

computational steps. Overlapping max-pooling windows were 

not employed, as their benefits were not deemed significant 

compared to non-overlapping windows. Low-level features 

are produced by a ReLU activation function unit after the last 

convolution layer, which consists of 512 filters with a j x j 

kernel size and runs at a dilation rate of 1. The convolution 

layer's parallel branches yield features that are concatenated. 

By examining the link between dilated convolution blocks, the 

final convolution layer can identify higher classification 

features credits to the concatenation of unique characteristics 

from various layers, which is captured by each branch. 

Subsequently, in the flattened layer, the model transforms the 

feature maps into a one-dimensional feature vector, essential 

for the classification task. Ultimately, this one-dimensional 

feature vector is employed by the classification phase to carry 

out the classification task, which will be covered, more 

particular in the following section. Two neural layers are used 

in the classification phase. A two-layer MLP, sometimes 

referred to as a completely connected (FC) layer, fed the 

output from the flattened level during that stage in order to 

accomplish the classification process. In addition, a dropout 

layer is linked after each FC layer. To reduce overfitting, these 

dropout layers will randomly remove some FC layer weights 

amid the training process. The dropout range, which spans 

from 0% to 100%, determines the quantity of weight drops 

selected at random. We have selected the dropout range of 0.5 

for analytical reasons. In addition, the sizes of the two fully 

connected layers are 4096 & 4096 FC, respectively. The 

SoftMax activation function has been applied after the fully 

connected layer to help separate skin cancer photos, such as 

those with actinic keratosis, benign keratosis, basal cell 

carcinoma, dermatofibroma, melanoma, seborrheic keratosis, 

vascular lesions, squamous cell carcinoma, and nevus. 
 

 

IV. FLOW CHART OF MODEL 

 
Fig. 2. Flowchart 

 

V. ADVANTAGES 

 Deep learning models can encounter melanoma at 

an early stage, increasing the chances of outstanding 

treatment and reducing mortality rates. 

 

 AI systems can analyses images quickly, allowing 

for faster diagnosis and reducing patient risk. 

 

 AI can process a large number of images, making it 

suitable for population-level screening and early 

detection efforts. 

 

 Early detection can bring about cost savings by 

avoiding the need for extensive treatments at 

advanced stages of melanoma. 

 

 AI can also be habituated to educate patients about 

melanoma risks and promote regular skin checks. 
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VI. APPLICATIONS 

 Digital Photographs: CNN's have been used to classify 

digital photographs of skin lesions as malignant. 

 

 Mobile apps: There have been considerable  mobile apps 

developed that CNNs to analyze images of skin lesion and 

provide a prediction of whether they are malignant and 

non-malignant. 

VII. RESULT 

A Convolutional Neural Network (CNN) approach is 

employed for diagnosing skin cancer and categorizing it into 

various groups, leveraging image recognition and deep 

learning algorithms. Initially, dermoscopic images of skin 

cancer is processed by removing noise and adjusting picture 

resolution. Different image augmentation techniques are 

adapted to increase the diversity of the dataset. Subsequently, 

Transfer Learning is utilized to enhance image recognition 

accuracy further. The CNN model achieves promising 

performance metrics with a weighted average Precision of 

0.88, weighted average Recall of 0.74, and a weighted F1-

score of 0.80. These metrics indicate the model's capacity to 

meticulosly classify skin cancer cases across different 

categories. Furthermore, the Transfer Learning approach, 

specifically utilizing the ResNet model, achieves an 

impressive accuracy rate of 90.51%. Transfer Learning allows 

leveraging pre-trained models trained on vast datasets, thereby 

enhancing the model's capacity to generalize and achieve high 

accuracy even with bounded training data. Overall, this 

method demonstrates the efficacy of CNNs coupled with 

Transfer Learning for accurate and efficient diagnosis of skin 

cancer, offering promising results in words of accuracy and 

performance metrics. 

 

 
Fig. 3. Detection result Of Model 

 

VIII.  CONCLUSION 

This paper presents a powerful model for detecting and 

classifying melanoma, a type of skin cancer. Our model 

leverages cutting-edge technologies such as image processing, 

image augmentation, Internet of Things (IoT), artificial 

intelligence, and deep learning techniques to deliver accurate 

and reliable results. It scans input images and identifies them 

based on nine different skin cancer classifications with utmost 

precision. The outcomes are then uploaded to the cloud or 

other storage using WIFI modules and delivered directly to the 

patient's smartphone. Our model is capable of detecting cancer 

at an early stage, which significantly increases the contingent 

of successful treatment and cure. We strongly emphasize the 

consequence of initial stage detection and classification of skin 

cancer. 
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