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Abstract:  By combining multispectral imagery from Sentinel-1 and Sentinel-2 satellites with polarized Synthetic Aperture Radar 

(SAR), this research presents a cascaded deep network model for agricultural field border demarcation. The model uses a cutting-

edge method that combines edge detection and semantic segmentation to improve the accuracy of recognizing agricultural 

boundaries. TensorFlow and PyTorch are used to create models in this study, which covers a wide range of geographical and 

climatic zones. Classification reports and Intersection-over-Union (IoU) scores are examples of evaluation metrics. The results 

demonstrate the usefulness of the model by giving accurate field boundaries that may be used in precision farming. Suggestions 

include integrating topographical data for improved accuracy, improving model design, and enriching datasets even further. 

 

Index Terms - Sentinel-1, Sentinel-2, deep learning, multispectral pictures, agricultural borders, SAR remote sensing, precision 

agriculture, dataset enrichment. 

I. INTRODUCTION 

For statistical analyses of crop yield, accurate information about agricultural field borders is essential. Using fused Sentinel-1 

and Sentinel-2 satellite data, this work explores a novel cascaded technique that combines edge detection and semantic segmentation 

to identify agricultural boundaries. The model uses segmentation to first classify areas as agricultural or non-agricultural, and then it 

superimposes the feature map over the original data to identify edges and define boundaries. The findings of the experiment support 

the efficacy of the proposed method and show that using synthetic aperture radar remote sensing to optimise agricultural border 

extraction is feasible.  

II. BACKGROUND OF STUDY 

Acquiring exact information on farmland borders is essential for statistical analysis of data related to agricultural 

productivity. When neural networks are used directly to predict boundary pixels in remote sensing photos, the intrinsic imbalance 

of categories in tasks linked to field border extraction often results in poor performance. To improve boundary extraction, this work 

investigates the benefits of merging data from many sources and using semantic segmentation.  This paper presents a unique 

cascaded methodology that combines edge detection with semantic segmentation to extract agricultural boundaries. The semantic 

segmentation of both agricultural and non-farmland regions is achieved by the model using fused data from Sentinel-1 and Sentinel-

2 as its initial input. Then, to extract agricultural borders and determine edges, the semantically subdivided feature map is overlaid 

onto the original data. The results show that adding Synthetic Aperture Radar (SAR) data significantly improves the extraction 

efficiency of field borders [1]. Moreover, the extraction accuracy is greater when semantically segmented information is used as a 

supplementary tool for boundary extraction than when neural network models are used directly. The experimental findings 

demonstrate the practicality of using SAR remote sensing data to optimise agricultural boundary extraction and validate the 

effectiveness of the suggested model. The background of this study resonates with the larger context of the emergency management, 

and reaching beyond the agricultural area of study. The need for sophisticated systems that can easily analyse and understand 

enormous volumes of geospatial data is highlighted by the combination of Earth observation (EO) technology, satellite imaging, 

and sensor communications in projects like GEO-PICTURES. By addressing the shortcomings of current approaches and putting 

forth creative ideas, this study contributes to the worldwide effort to use technology to make better decisions, both during and 

outside of crises. 
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III. LITERATURE REVIEW 

 According to Aghaei et al. (2022), because synthetic aperture radar (SAR) images can be acquired day or night and in all 

weather conditions, it is becoming more and more popular for oil spill detection (OSD) in maritime contexts. The use of thresholding 

and clustering approaches for dark spot identification suggestive of oil spills was the main focus of early research. Otsu's 

thresholding was used while a hierarchical clustering approach was also used. However, reliable threshold selection is challenging 

in the changing maritime environment. The effectiveness of using machine/deep learning models to improve classification accuracy 

has been shown in recent research. An Artificial Neural Network (ANN) classifier trained on a mix of textural, histogram, and 

contextual data was suggested by Fiscella et al. Jalinder and colleagues created a CNN-SVM model by using dual-polarimetric 

SAR imagery's multiresolution analysis. However, real-world deployment is limited by the lack of training data and the complexity 

of the algorithms. There are still significant gaps in OSD approaches designed for diverse, noisy maritime settings with diffuse 

boundaries for oil spills. To tackle these issues, this study suggests a unique hierarchical level set model based on semantic 

segmentation that is optimized via multi-objective grey wolf optimization [2]. The goal of the algorithmic advancements and the 

georeferenced library of SAR image characteristics is to propel OSD research in the direction of significant industrial applications. 

 

 
Figure 1: ANN model 

 

According to Mahmoudi Ghara et al. (2022), Deep learning has made it possible to identify oil spills (OSD) using synthetic 

aperture radar (SAR) data in novel ways. Particularly convolutional neural networks (CNNs) have shown great potential because 

of their remarkable ability to learn hierarchical features. Previous deep learning efforts were based on simple CNN architectures 

such as GoogleNet and AlexNet. For example, used AlexNet for OSD to extract textural information from SAR pictures. 

Nonetheless, a significant obstacle was the paucity of adequate labelled data. To solve this, recent research use unique CNN 

architectures, data augmentation, and transfer learning. Researchers recently suggested a semi-supervised technique employing 

GANs that demonstrated increased performance even with limited labels, and they used rotation-based augmentation and fine-

tuning of VGG16 to obtain a 95% detection accuracy. However, there is still a significant gap in systems designed for noisy maritime 

settings and sparse, complicated oil spill borders. Furthermore, segmentation is needed instead of classification for quantification 

and localization, which are essential for quick cleaning [3]. For precise oil spill delineation, this study applies two cutting-edge 

semantic segmentation models: U-Net and DeepLab v3. We tackle data scarcity issues with customized augmentation methods and 

training processes tailored to the subtleties of SAR data. The comparative analysis on many SAR datasets aims to promote 

algorithmic advances at this segmentation-localization intersection to move OSD research from theoretical breakthroughs to 

significant practical effect. 

According to Wang et al. (2022), Since rice is a vital crop for the world's food security, precise mapping is essential for yield 

estimates and precision farming. Previous research depended on classifying multi-temporal optical images using pixels. Operational 

monitoring is hindered by constant cloud cover and poor geographical resolution. All-weather imaging capabilities are provided by 

Synthetic Aperture Radar (SAR), while complicated backscatter is a drawback. Deep learning is being researched nowadays for 

automated feature extraction from SAR time series. Using temporal and polarimetric SAR data, researchers created an RNN model 

that achieved 82% classification accuracy for rice. Still, the main emphasis remains on pixel-level classification in the absence of 

field-level localization, which is crucial for agricultural decision support systems. Convolutional neural networks (CNNs) and vision 

transformers, two recent advances in machine learning, provide enormous potential for semantic segmentation of agricultural 

parcels using high-resolution satellite data. This study builds on previous advancements by using a fusion model of U-Net and 

decision trees for parcel-level rice extraction. The system uses a phenology-based SAR classifier in conjunction with agricultural 

boundary delineation to produce precise, locally specific field maps for crops. Comparative evaluation of many deep CNN 

backbones would spur advances in customized architectures for fragmentation-resistant SAR analytics-based rice crop monitoring 

[4]. In general, the project aims to close the gap between useful, focused crop mapping applications that satisfy precision agricultural 

requirements and classifiers that are independent of the terrain. 
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IV. METHODOLOGY 

 
Figure 2: Components of Methodology 

 

A. Data and Study Area 

To allow for model generalizability, the research area includes agricultural areas in a variety of geographic and climatic 

zones. Sentinel-1 satellite provides polarized Synthetic Aperture Radar (SAR) data for all the research regions. Sentinel-2 provides 

corresponding multispectral images with a resolution of 10–20 m, including the visible, near-infrared, and shortwave bands [10]. 

Field surveys are used to gather ground truth data with manually labelled field boundaries across the research locations.   

 

B. Application of Software 

Using the TensorFlow 2.3 and PyTorch 1.7 frameworks for deep learning model creation, the system is constructed in Python 

3.7. Preprocessing of SAR and optical data is done using OpenCV and the Geospatial Data Abstraction Library (GDAL). Scikit-

learn helps with preprocessing, augmentation, and dataset balance.   

 

 
Figure 3: Tensor flow model 

 

C. Model Architecture 

Using TensorFlow/Keras APIs, a cascaded deep network model is created for CNN backend feature extraction. There are 

two steps to it:  

1) Classifying regions as farmland or non-farmland using a semantic segmentation methodology, 

2) An edge detection approach that uses segmentation output gradient identification to draw field boundaries. 

 Transfer learning from bootstrap model convergence of pre-trained CNNs.   

 

D. Model Training 

To enlarge the TensorFlow training dataset, batch-wise augmented sample production including rotations, flips, and noise 

injection is made possible by Model Training Data generators based on Keras Sequence API. The cross-entropy loss optimization 

step is used to train the semantic segmentation stage initially. The weights for the next edge detection model trained with border 

annotation loss are initialized using the output feature maps [5]. By optimizing the cascaded architecture from beginning to finish, 

progressive training allows information to flow between phases. 
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E. Post Processing  

Boundary maps are improved by post-processing OpenCV morphological procedures by eliminating noise and smoothing 

edges. Scikit-learn's DBSCAN clustering unites disparate boundaries into continuous sections. Raster outputs are converted to 

polygon shape files using GDAL vectorization so they may be included into GISs. 

 

F. Evaluation 

Segmentation performance is evaluated using the intersection-over-union (IoU) score between the ground truth and predicted 

boundaries, which is calculated using OpenCV contours. Scikit-learn classification reports include F1 metrics, accuracy, and recall 

for quantitative assessment.   

With the use of a cascaded deep network model, the suggested technique offers a thorough framework for delineating 

agricultural field boundaries while utilizing the advantages of polarized SAR and multispectral data. A strong basis is provided by 

the software implementations, training methods, and assessment measures for the model's development and validation. up order to 

satisfy the objectives of precision agriculture, the project aims to improve the accuracy and reliability of agricultural boundary 

extraction by filling up significant holes in current approaches [6]. The meticulous approach shows a dedication to converting 

computational breakthroughs into practical solutions for real-world problems in land management and crop monitoring. 

 

V.  ANALYSIS 

A. Data Enrichment 

Two thousand agricultural parcels from various geographical locations were included in the gathered dataset, and each one 

had field borders marked on it. Using Keras ImageDataGenerator, data augmentation methods such as random rotation, zoom, 

horizontal/vertical flips, and brightness/contrast modifications were done to increase the dataset for better model generalization. As 

a result, there are now 25,000 distinct training samples. 

B. Model Enhancement 

GPU acceleration was used to perform iterative optimization of the loss functions and hyper parameters over 200 epochs in 

the cascaded model using a Feature Pyramid Network (FPN) backend. For the segmentation step, binary cross-entropy with logit 

loss worked best, and boundary loss reduced edge discontinuities. Feature learning based on contours and regions was combined 

via progressive model freezing. After optimizer and epochs adjustment, the IoU score on the expanded validation set rose from 0.68 

to 0.82. 

C. Assessment of Performance 

Model performance was evaluated using three primary metrics:  

1. Accuracy and Memory 

When assessing the effectiveness of agricultural field boundary delineation, precision and recall are essential criteria to 

consider. Recall computes completeness in relation to the ground truth delineation, while precision assesses the accuracy of 

boundaries that have been discovered. With a precision of 0.84 for this model, most projected parcel bounds match real boundaries 

exactly, with little to no noise or false positives. A somewhat lower recall score of 0.81 indicates room for improvement in border 

completeness, nevertheless [7]. Omitted margins that reduce recall are probably caused by missed borders around dispersed 

smallholder farms. To increase recall, targeted localization and enrichment of training data are necessary. Although there are gaps 

in peripheral detection, the overall accurate extraction capabilities is highlighted by the balance of high accuracy and low recall. 

2. Junction of the Union (IoU) 

The overlap between manually drawn agricultural parcel borders and parsed field boundaries derived from model predictions 

is measured by the IoU metric. For a variety of geographic farm types, an IoU of 0.79 shows significant congruence between 

machine-delineated and real bounds. Still, there is room for improvement by adding other contextual data sources, such as cadastral 

surveys, to increase overlap. The IoU confirms that extracted borders may be used downstream in land registration systems, 

according to analytics experts. However, there would be more practical utility if ongoing efforts were made to improve accuracy 

all the way down to the smallholder farm level. 

3. Assessment of Qualitative Data 

Beyond numerical ratings, visual verification by professionals in remote sensing offers qualitative insights into practical 

practicality. 50 demarcated parcels of varying sizes and crop kinds were analyzed, and the results indicated generally continuous, 

accurate bounds that matched the ground conditions. This attests to the technological robustness in a variety of situations including 

big commercial farms farming a variety of crops and smallholder partitioning [8]. However, irregular shapes were seen for highly 

fragmented holdings. To overcome such restrictions, computational advancements for weak edge detection and the integration of 

extremely high resolution data are presented.  

In general, practical agricultural usefulness is cemented by qualitative assessment. The methodology offers considerable 

field-level mapping value revealing localised insights for precision agriculture, with enhancements to promote small farm 

involvement.  
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VI. RECOMMENDATION 

From multisource remote sensing data, the suggested cascaded deep network model shows a great deal of promise for the 

precise extraction of agricultural field borders. Although the present validation findings of the model are promising, performance 

may be increased by making more improvements to the training dataset and model architecture [8]. Increasing the training sample 

density and geographic variety might enhance generalizability across different kinds of farms. Furthermore, integrating topography 

data with high-resolution aerial photos may improve localization accuracy down to the smallholder level. Recall may be improved 

algorithmically by evaluating ensemble methods using complementary segmentation models and post-processing procedures. For 

widespread acceptance, commercial deployment would need to package the pipelines into user-friendly interfaces [9]. After further 

development, the model should provide significant practical benefits by supporting data-driven decision-making systems for 

focused agronomic treatments that meet the demands of precision agriculture. 

 

VII. CONCLUSION 

For precisely retrieving agricultural field borders from multisource remote sensing data, the cascaded deep network model 

shows potential. Even if the validation results so far are positive, performance may still be improved by diversifying the training 

dataset and testing ensemble approaches that make use of alternative segmentation models and post-processing techniques. With 

further work, the approach ought to provide substantial practical advantages by enabling accurate, localized insights to assist data-

driven systems for precision agricultural decision-making. 
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