ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A REVIEW ON MAJOR DISEASES OF SUGARCANE (*Saccharum officinarum*) AND THEIR MANAGEMENT IN INDIA

Km. Nilima 1st , Amrita Singh 2nd *

M.Sc. Student 1st, Associate Professor 2nd PG Department of Zoology, BSNV PG College, Lucknow University of Lucknow, India

Abstract

Sugarcane (*Saccharum officinarum* L.), a vital cash crop in India and is the second crop producing of the world, faces substantial losses due to diseases like smut, red rot, and pineapple disease. Effective management strategies are imperative for sustainable cultivation. Breeding resistant varieties remains a cornerstone, complemented by cultural practices like sanitation and crop rotation. Chemical control, primarily fungicides and bactericides, is widely used, albeit with environmental concerns. Biological interventions, including biocontrol agents and beneficial microbes, offer promising eco-friendly alternatives. Integrated disease management approaches, incorporating multiple strategies, emerge as the most effective solution. Continued research and extension efforts are vital for mitigating disease impact and ensuring the longevity of sugarcane production in India.

Index Terms-sugarcane; major diseases; fungal diseases; bacterial diseases; viral diseases; Phytoplasmal disease; management; India.

I. Introduction :

One of the important cash crops in India is sugarcane. India is the world's top producer, user and second largest exporter of sugar. In terms of area (4.91 mha), India is ranked first among the sugarcane growing countries worldwide, with production ranked second (69.5 tonnes/ha), despite the increase in substantial yield per hectare in our country, the productivity of sugarcane is still lower when compared to other countries. Various abiotic problems. such as water shortage, temperature differences, floods, nutritional lag, and alkalinity, are faced by the long duration crop. About fifty five diseases of sugarcane is mostly constrained by diseases of fungal, bacterial and viral and phytoplasmal origin. A reduction in the supply of raw material for sugarcane-

based industries is annually caused by an estimated loss in cane yield of about 10-15 per cent due to biotic stresses in India (Viswanathan and Rao, 2011).

Fungal diseases such as red rot, smut, pineapple, wilt, pokkah boeng, are observed in the most of the Sugarcane growing regions of the country. Red rot, regarded as the cancer of sugarcane, incites enormous damage to the sugarcane crop. Yield and sugar recovery are drastically reduced in susceptible varieties due to red rot (Satyavir, 2003, Sharma and Tamta, 2015). However, occasional outbreaks of red rot in the new genotypes of sugarcane are attributed to the emergence of new pathotypes in *Colletotrichum falcatum*, the red rot pathogen. Smut and wilt are observed as the other major fungal diseases in most of the sugarcane growing regions of the country. The height and girth of the cane, tillering ability of the plant, cane tonnage, total solids and sucrose content in cane juice, and the ratio of sugars to fiber are reduced by the incidence of smut, making sugar extraction difficult (Ramesh Sundar et al., 2012; Sandhu et al., 1969; Xiupeng et al., 2019). Similarly, sett germinability, number of tillers, number of millable cane, cane yield, juice quality, and commercial cane sugar are reduced by wilt infection in susceptible cultivars (Kumar et al., 2015). Pokkah boeng was not much noticeable disease, but from last few years, it is going to be major on basis of their rapid epidemiology is worrisome, From Uttar Pradesh, Sharma et al., 2014 during his survey in 2011-12 recorded Pokkah boeng incidences of 1.4-30%. Chlorosis is the very first symptom towards base of young leaves of Pokkah boeng affected sugarcane crop and due to this disease can be easily recognized.

Pineapple one of the sett borne and soil borne disease of the sugarcane. The symptoms associated with this organism include a smell of matured pineapple fruit, attributed to the production of ethyl acetate by the metabolic activity of the fungus (Coale 1989). The disease mainly affects the germination of the setts at early stages of planting and the most serious losses are through the failure of infected cuttings to germinate (Comstock et al. 1984), although standing cane may also become infected (Manzo 1975; Natarajan and Subba Raja 1976). In India the disease was reported from different varieties of the crop (Singh et al. 1990).

The bacterium primarily spreads through infected canes. Leaf-scald occurs in most regions where sugarcane is grown. It was first in South America in the 1940s (Hughes et al., 1964) and in southern Africa in the 1960s (Rott and Davis, 2000). As with ration stunting disease (RSD), disease infection can occur without symptoms being expressed, hence in the past leaf scald was probably often spread inadvertently during the exchange of varieties between countries (Ricaud et al., 1989). The stripes appear as water soaked, long, narrow chlorotic streaks and become reddish brown in few days. The bacterium also survives on sorghum, pearlmillet, maize, fingermillet and other species of *Saccharum*.

A major threat to a vegetatively propagated crop like sugarcane has been posed by viral diseases such as yellow leaf disease, sugarcane mosaic, due to the degeneration of popular sugarcane cultivars (Viswanathan et al., 2007).

Phytoplasmal disease like grassy shoot was found endemic to certain parts of the country and identified as the most important disease of sugarcane in India (Chona, 1958).

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

Sugarcane diseases often originate from either seeds or the soil, making them challenging to control once they have spread in the field, despite efforts with agro-chemicals. Worldwide, sugarcane crops suffer from a multitude of diseases, with approximately 10 of them deemed economically significant for specific countries or regions due to their direct impact. Various control measures can help diminish the incidence of these diseases. However, no single method proves entirely effective in controlling sugarcane diseases. Integrated disease management, which incorporates agronomical, cultural, and chemical and biological control measures, emerges as the most appropriate strategy for handling all the diseases.

II Major Diseases and their management:

Name of	Susceptible	Epidemiology	Symptomology	Management	References
Diseases/	varieties			And Control	
Causal					
organism					
			I	I	I
Fungal Diseases	of sugercane				
1.Red rot	CoS 8436,	Inoculum	Initial symptoms	Limited success	Agnihotri
(Colletotrichum	CoSe95422	transmission	manifest as purple	with fungicides	(1996);
falcatum)	BO138	primarily occurs	coloration on	due to rind	Anonymous
		through, Sett	nodes, later	imperviousness	(1980);
		borne inoculum,	progressing to	an <mark>d pathog</mark> en	Singh et al.
		spread via	reddish-brown	variability.	Bharadwaj and
1 2 .		irrigation, rain,	patches	Techniques like	Sahu (2014);
		wind. (PCR)	Internodes.(Fig. 1)	moist hot air	Viswanathan et
		techniques are		therapy have	al.(2010).
		utilized for	\sim	proven effective	
		accurate		in eliminating	
		detection of C.		sett-borne	
		Falcatum.		infection.	
				Prophylactic	
				Measures focus	
				on reducing	
				pathogen build-	
				up with	
				Integrated	
				disease	
				management	
				(IDM)	
				recommended.	

$\textcircled{\sc c}$ 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

www.ijcrt.org			IJCKI Volume 12, is		
				Species like	
				Trichoderma	
				spp. Particularly	
				T. Harzianum	
				and T. Viride	
				show promise in	
				bilological	
				control by	
				producing	
				chitinase	
				enzymes	
				Essential oils	
				and plant	
				extracts.	
2.Smut	Co 1158,	Favorable	Crown leaves	Resistance	Comstock,
(Ustilago	Co 740	conditions, such	shorten and point,	breeding is	Srinivasan,
scitaminea)		as hot, dry,	forming a fan-like	crucial, with	(1971); Steiner
		weather	structure, while	resistant	and Byther
		,contribute to	affected plants	varieties	(1971).
		increased whip	exhibit thinning	effectively	
		development	with elongated	managing smut	
		frequency. PCR	internodes. Whip-	Screening	
		techniques,	like structures (Fig	methods,	
		especially	2), reaching up to	including spore	
		nested-PCR, are	1m, initially	suspension	
		widely used for	covered with a	dipping, add in	
		rapid, specific	silvery membrane,	selecting	
		and sensitive	emerge.	resistant	
		detection.		varieties.While	
				resistant	
				varieties are	
				developed,	
				fungicides serve	
				as a short-term	
				solution. HWT	
				is a control	
				method, with	
				temperature and	

$\textcircled{\sc c}$ 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

www.ijcrt.org			IJCRT Volume 12, IS	time	
				combinations	
				used.	
3.Pineapple	Co1285,	Soil moisture,	Setts exhibit red		Singh et al.,
(<i>Ceratocystis</i>	Co1299,	pH, relative	discoloration,	cultivars, site	Adiver (1996);
× •		•			
paradoxa)	Co1310,	humidity, carbon	progressing to	selection, and	Yadahalli et al
	Co13368,	and nitrogen	blackish-brown	seed piece	(2006),(2007).
	Co62101	sources	(Fig.3), with	treatment	
	Co62119	influence fungus	hollow internodes,	recommended.	
		growth. Carbon	rapid pathogen	Increased seed	
		and nitrogen	growth, sett rot,	piece length and	
		sources impact	Association with	proper site	
		biomass and	white leaf disease	drainage help	
		sporulation.	observed.	mitigate disease	
				impact.	
4.Pokkah boeng	Co7219,	Pathogen	Symptoms include	effective control	Patil and Hapse
(Gibberella	CoC671,	spreads in wind-	chlorotic patches	strategies	(1987);
fujikuroi)	CoS767,	blown rain,	on young leaves,	involve	Kamal and
	CoC671,	infected cane	stalk distortion	fungicide	Singh (1979);
	CoC8014	cuttings, pupae	(Fig. 4), and	ap <mark>plication,</mark>	Patil (1995).
		and adults of	rotting of apical	spacing	
		sugarcane stem	part of stalk.	planting, and	k
		borers. PCR	Varia <mark>tions</mark> in	rouging out	
	\sim	based method	symptom	infected canes.	
		offer rapid and	development may	Utilizing	
		accurate	occur under field	resistant	
		detection of	conditions,	varieties and	
		pokkah boeng	ultimately	implementing	
		pathogens.	resulting in	Integrated	
			malformed or	Disease	
			damaged top and	Management	
			stalk.	practices are	
				crucial for	
				disease	
				prevention and	
				control.	

www.ijcrt.org

$\textcircled{\sc c}$ 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

www.ijcrt.org		© 2024	IJCRT Volume 12, Is	ssue 5 May 2024 I	SSN: 2320-2882
5.Wilt	Co527,	Pathogen is	Symptoms such as	Strategies for	Ganguly and
(Fusarium	Co975,	transmitted	yellowing and	managing	Chand, (1963);
sacchari)	Co1007,	through soil,	drying of leaves	sugarcane wilt	Agnihotri
	Co1253,	seed cane, water,	from base to	include sett	(1983),(1990);
	Co1336,	and wind. It can	upwards,	treatment with	Viswanathan
	CoS245,	survive for up to	culminating in	Agallol,	and Rao(2011).
	Cos321.	three years. Wilt	withering of the	application of	
		incidence	top. The affected	boron or	
		increases with	cane is killed in	manganese, and	
		depletion,	severe cases (Fig.	soil amendment	
		particularly in	5).	with boric acid.	
		neutral to		Moisture stress	
		alkaline soils.		exacerbates wilt	
				incidence,	
				especially	
				during hot	
				summers with	
				low humidity,	
				Implementing)
				th <mark>ese measur</mark> es	
				is crucial for	
			/	mitigating the	ŀ
				impact of	
				sugarcane wilt	
				on crop yields	
				and ensuring the	
				sustainability of	
				sugarcane	
				farming.	
6.Eye spot	Co419,	Six to seven-	The susceptible	Chemotherapy	Rabindra and
(Drechslera	Co421,	month-old plants	genotypes exhibit	options include	Kumaraswamy,
sacchari)	Co331,	of sugarcane are	golden-yellow	spraying copper	(1978a, b);
	B 34104,	most vulnerable	streaks that later	oxychloride	Agnihotri,
	B37172	to eye spot,	turn reddish-	(0.2%) or using	(1983).
		especially under	brown, potentially	Bavistin (1 g/l)	
		humid	coalescing to large	followed by	
		conditions. Soil	patches (Fig. 6). In	Hinosan or	
		conditions also	severe cases, the	Blitox. Moist	
	1	1	1	1	1

© 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

www.ijcrt.org			IJCRT Volume 12, Is		55N. 2320-2002
		play a role, with	pathogen may	hot air treatment	
		low potassium	cause top root in	(MHAT) has	
		and high	the spindle,	also shown	
		phosphorus and	referred to as the	effectiveness in	
		nitrogen levels	acute form of the	managing eye	
		promoting the	disease.	spot.	
		disease.			
Bacterial Diseases	s of sugercane				
7.Red stripe	Co312,	Disease	The red stripe	Prompt removal	
(Pseudomonas	Co449,	incidence was	initially emerges	and burning of	
rubrilineans) (Co527,	higher in the	at the base of	affected plants.	Bhide <i>et al;</i>
	Co419,	month of June	young leaves as	Cultivating	Chona and Rao,
	Co453,	and July when	water-soaked,	resistant	(1963).
C	Co527,	temperature and	narrow chlorotic	varieties and	
	Co617	Humidity was	streaks, typically	using healthy	
		high.	midway and near	setts. Avoiding	
			the midrib (Fig. 7).	collateral hosts	
			In some cases, the	near sugarcane.	
		-	stripes concentrate)
			towards the leaf		
			base, with the		
			lower half of the		la -
			leaf being more		
			affected than the	3	
			upper half.		
			Stripes, 0.5 to 1		
			mm wide 5 - 100		
			mm long.		
8.Leaf scald	Co419,	The bacterium	Leaf scald	Control relies	Agnihotri,
(Xanthomonas	Co114,	enters through	manifests in	on resistant	(1981,1983,
albilineans 0	Co1158,	cut stalk surfaces	chronic and acute	varieties and	1990);
	Co7301,	or contaminated	phases,	careful selection	Satyanarayana
	BO24,BO70,	implements,	characterized by	of parent plants	(1974);
	CoS659	spreading	white stripes on	for crossing.	Persely,(1976);
		through	leaf blades (Fig.	Screening	Hutchinson and
		rainwater,	8) progressing to	programmes	Robertson,
		insects, and	foliar tissue death	assess	(1953).

© 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

www.ijcrt.org			-	ssue 5 May 2024 ISSN: 2320-2882
		survives in soil	collapse Severe	on systemic
		and infects	cases exhibit	infection
		collateral hosts,	reddening of	symptoms.
		with disease	vascular bundles	Disinfecting
		severity	and lysigenous	implements and
		influenced by	cavities in	employing
		weather	susceptible	quarantine
		conditions and	varieties.	measures are
		soil quality.		essential for
				disease
				prevention.
				Additionally,
				treatments like
				hot water and
				streptomycin
		1.11/2		solutions aid in
				reducing
				disease
		_		in <mark>ciderice</mark>
_				du <mark>ring cr</mark> op
				cultivation
9.Ratoon	Q 28,	Transmission	Affected stools	Chemicals tried Agnihotri,
stunting	Q 47,	occurs through	exhibit stunted	, so far, have (1990);
Disease (RSD)	CoL9,	infected seed	growth, reduced	proved Singh, (1973),
(Clavibacter	Co658,	pieces and	tillering and stem	ineffective to Hughes, (1955)
xyli sub sp. xyli	Co975,	contaminated	yellowish foliage.	control RSD.
	Co997,etc.	tools, with	Orange-red to	
		grasses like	pink dots appear	
		Johnson grass	on fibrovascular	
		and maize	bundles (Fig. 9) in	
		serving as	some varieties,	
		carriers. The	while others may	
		disease severity	show salmon pink	
		increases under	coloration on	
		moisture stress,	mature nodes.	
		with potential		
		plant death in		
		severely		
		-		

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

ww.ijcrt.org		1	IJCRT Volume 12, I	ssue 5 May 2024 I	SSN: 2320-2882
		stressed,			
		susceptible			
		varieties.			
Viral Diseases o	f sugercane				
10.Sugercane	Co419,	Primary spread	Infected stalks	Planting	Agnihotri,
Mosaic Virus	Co658,	occurs through	exhibit a	resistant	(1990).
(SCMV)	Co740.	infected seed	distinctive mosaic	varieties is	
		cane, with	pattern of pale	crucial in high-	
		secondary	green to yellow	risk areas, with	
		transmission	streaks (Fig. 10)	S. spontaneum	
		facilitated by	affecting growth	serving as a key	
		aphids. Vector	and reducing	source of	
		aphids transmit	sugar yield.	resistance	
		the virus rapidly,	Symptom severity	genes.	
		feeding on	varies with strain	Screening new	
		various grass	and sugarcane	clones for	
		species, which	variety,	resistance	
		serve as	occasionally	involves	
		reservoirs and	manifesting on	artificial	
		contribute to	leaf sheaths and	in <mark>oculation</mark> or	
		vector	stalks. While it	natural	
		population	does not affect	exposure trials.	h
		growth. Unlike	cane quality, it	GM technology	
		other sugarcane	stunts growth	shows promise	
		pathogens,	significantly.	in developing	
		mosaic viruses		resistant clones,	
		infect multiple		though not yet	
		grass species.		commercially	
				implemented.	
				Additionally,	
				field control	
				practices and	
				ensuring the use	
				of healthy seed	
				cane are	
				essential for	
				effective	
				managemen t.	

www.ijcrt.org © 2024 IJCRT Volume 12, Issue 5 May 2024 ISSN: 2320-2882					
11.Yellow leaf	CoC671,	Both forms	YLS symptoms	Currently,	Viswanathan
Syndrome	Co86032,	spread via	include intense	there's no	and Rao,(2011);
(Sugercane	CoV92101,	infected seed	yellowing of leaf	treatment for	Rao et
Yellow leaf	Co84211.	cane,	midribs (Fig. 11).	SCYP, but	al.,(2000,2001).
Virus and		distinguished	sometimes with	SCYLV can be	
Sugarcane		from similar	sucrose	eradicated	
Yellows		physiological	accumulation.	through	
Phytoplasma)		conditions.	Stress exacerbates	meristem	
		SCYLV spreads	symptoms,	culture,	
		via aphids, while	potentially	Selecting	
		SCYP	causing severe	resistant	
		transmission	stunting and yield	varieties and	
		involves	losses of 2-20%,	studying	
		leafhoppers.	Serological tests	transmission	
			identify SCYLV,	mechanisms are	
		1	while SCYP	crucial for	
			requires precise	managing YLS	
			nested PCR.	and its impact	
				on sugarcane	
				pr <mark>oductivity.</mark>	
Phyt <mark>oplasmal D</mark>	isease				
12.Grassy shoot	Co419,	Transmitted	Affected plants	Control	Chona et.al.,
Disease (GSD)	Co453,	through infected	exhibit profuse	measures	(1960) ;
	Co740.	seed material,	tillering, narrow	include	Verma,et
		GSD spreads via	leaf blades, and	eradication of	al.,(1966) ;
		aphid vectors	stunting.	diseased parts,	Singh and
		like	imparting a grass-	avoidance of	Shukla, (1966).
		Rhopalosiphum	like appearance	setts from	
		<i>maidis</i> and leaf	(Fig.12) Albinism	infected areas,	
		hoppers such as	may occur,	and pre-	
		Proutista	inhibiting	treatment of	
		moesta. Dodder	sproutirng of	healthy setts	
		(Cuscuta	stubble and	with hot water	
		<i>campestris</i>) also	formation of		
		adds in disease	millable canes.	insecticide	
		spread.		spraying and	
		·		antibiotic	
				application	
				TT	

	shov	w remission
	and	potential for
	com	plete cure.

III. Effective Disease Management in Sugarcane

Sugercane susceptibility to pathogen due to its prolonged growth cycle is influenced by various factors such as weather and plant genetics. Combating diseases requires a multifaceted approach rather than a singular strategy. Researchers advocate for a combination of measures to minimize losses. These include legislation to regulate seed cane exchange, development of resistant varieties, and proactive prophylactic practices like clean cultivation. Chemical and thermotherapy methods offer limited success, while a three-tier seed programme ensures disease-free seed production Implemented globally, this integrated disease management system ensures healthy seed production and is vital for sustaining sugarcane crops.

IV. Conclusion

The current study delves into India's sugarcane diversity, emphasizing the impact of major diseases and effective management strategies. Recognizing the pivotal role of disease management in global sugar production and food security, it highlights threats posed by diseases like smut, red rot, and mosaic virus to crop yield. The study advocates for research and innovation to drive sustainable solutions, including the development of disease-resistant sugarcane varieties. By compiling crucial insights, the paper serves as a valuable resource for farmers and research scholars seeking comprehensive understanding of sugarcane disease management and its implications for crop productivity and food security at a global scale.

V. Acknowledgement

Authors, are thankful to the Head of PG Department of Zoology, BSNV PG College, Lucknow for providing necessary lab facilities.

References

- 1. Agnihotri, V. P. 1996. Current sugarcane disease scenario and management strategies. *Indian Phytopathol.* 49:109-26.
- Agnihotri, V. P. 1983. Leaf Scald : A baffling bacterial disorder of sugarcane. In, *Recent advances in plant pathology*. (Ed's., Husain A., Singh, K., Singh, B.P. and Agnihotri, V.P. et al.), pp, 264-273 *Print House (India)*, Lucknow.
- Agnihotri, V.P. 1990. Diseases of sugarcane and sugerbeet. Oxford & IBH Publishing Co., pvt.,Ltd., New Delhi, 483 pp,
- 4. Chona, L.B.1958. Some disease of sugarcane reported from India in recent years. *Indian Phytopathology*. 11:1-9.
- Ganguly, A. and Chand, N.J. 1963. Longevity of *Cepalosphora sacchari* Butler causing wilt disease of sugarcane. *Sci. & Cult.* 29 : 347 – 348.

- Hutchinson, B.P. and Robertson, S.J. 1953. Leaf scald in British Guinea. Proc. Intern. Soc.Sugercane Technol., 13th Congr., : 1087-1089.
- 7. Kumar, S., Chand, G., Mandal, D., Kumar, A. and Kumar, S. 2015. Deterioration in sugarcane due to wilt disease. *Ecology, Environment and Conservation*. 21: 145-148.
- Kumar, N., Jhang, T., Satyavir, Sharma, T. R., 2010. Molecular and pathological characterization of *Colletotrichum falcatum* infecting subtropical Indian sugarcane. *J Phytopathol.* 154:260-7
- 9. Kawther, S., (2008). Genotyping of bovine viral diarrhea virus using multiples PCR with and without RNA extraction. *Afr J Microbiol Res.* 2:316-8.
- Madan, V.K., Bikas, M., Ansari, M., Srivastava, A., Soni, N., et al 2000. Rapd-Per analysis of molecular variability in the red rot pathogen (*Colletotrichum Falcatum*) of sugarcane. *Sugarcane Int*. 3:5-8.
- 11. Panicker, S., Velazhahan, R. 2015. A century of sugarcane red rot research in India, In: Tiwari, A.K., Lal, M., Singh, A.K., editors. Current status of sugarcane research in India. New York: *Nova Publisher* . p. 160-71.
- 12. Patil, S. A., Hapse, G.D. 1987. Studies on *Pokkah boeng* disease in Maharashtra. *Ind Phytopath*. 40:290.
- 13. Parsley, L.G. 1976. Epidemic of leaf scald in the Meroton district of Queensland. Proc. Qld.Soc.Sugercane Technical. 43rd Conf;: 79- 82.
- 14. Rabindra, B. and Kumaraswamy, S. (1978a). Influence of soil fertlity status and pH on the incidence of eye spot disease of sugarcane. *Curr. Sci.* 7-89.
- 15. Rabindra, B. and Kumaraswamy, S. (1978b). Potash and eye spot disease in sugarcane. *Indian Potash Jour.* 33: 15-18.
- 16. Sunder, A. R., Barnabas, E. L., Malathi, P. and Viswanathan, R. 2012. A Mini-review on smut disease of sugarcane caused by *Sporisorium scitamineum*, Botany, Dr. John Mworia(*Ed.*)ISBN: 978-953-51-0355-4.
- 17. Sandhu, S.A., Bhatti, D.S. and Rattan, B.K. 1969. Extent of losses caused by smut (Ustilago scitaminea) S Journal of Research (PAU).6:341-344.
- 18. Satyavir, S. 2003. Red rot of sugarcane Current Scenario. Indian Phytopathology. 56:245-254.
- 19. Sharma, R. and Tamta, S. 2015. A review on red rot. The cancer of sugarcane, *Journal of Plant Pathology and Microbiology S1*: 003, dok 104172/2157-7471
- 20. Singh, R.P., Lal, S. 1996. Air borne propagules of *Colletotrichum falcatum* and their role in the epidemiology of sugarcane red rot. *Ind Phytopathol.* 49:89-91
- 21. Saksena, P., Vishwakarma, S.K., Tiwari, A.K., Singh, A., Kumar, A. 2013. Pathological and molecular variation in *Colletotrichum falcatum* went isolates causing red rot of sugarcane in the Northwest Zone of India, *J Plant Protection Res.* 53:37-41.
- 22. Satyanarayana, Y. 1974. Leaf scald of sugarcane. A new disease in Andhra Pradesh. *Indian Sugar*.24:23-26.

- Vishwakarma, S.K., Kumar, P., Nigam, A., Singh, A. and Kumar, A. 2013. Pokkah boeng: An emerging disease of sugarcane, *Journal of Plant Pathology and Microbiology*. 4: 170 doi: 10.4172/2157-74711000170.
- 24. Viswanathan, R., Karuppaiah, R., Balamuralikrishnan, M. 2010. Detection of three major RNA viruses infecting sugarcane by multiplex reverse transcription-polymerase chain reaction (multiplex-RT-PCR). *Australas Plant Pathol.* 2010:39:1-6.
- Viswanathan, R. and Rao, G.P. 2011. Disease scenario and management of sugarcane diseases in India. Sugar Tech. 13(4): DOI: 10.1007/s12355-011- 0102-4.
- 26. Viswanathan, R., Balamuralikrishnan, M. and Ramar, K. 2007. Sugarcane mosaic in India: A cause of combined infection of sugarcane mosaic virus and sugarcane streak mosaic virus. *Sugar Cane International*. 25:6-14.
- 27. Viswanathan, R., Padmanaban, P. 2008.Hand book on sugarcane diseases and their management. Coimbatore: *Sugarcane Breeding Institute*. 18.
- Xiupeng, S., Fenglian, M., Krishan, K.V., Jinju, W., Xiaoqiu, Z., Litao, Y., Yang, R.L. 2019. Effect of sugarcane smut (*Ustilago scitaminea* Syd.) on ultrastructure and biochemical indices of sugarcane. *Biomedical Journal of Scientific and Technical Research*.17(1): 12546-12550.

Figures showing Fungal Diseases of sugarcane

Fig. 1 Red rot (Colletotrichum falcatum)

 Fig. 2 Smut
 (source Linkdin)

 (Ustilago scitaminea)

Fig. 3 Pineapple (Ceratocystis paradoxa)

Fig. 4 Pokkah boeng (source- Plantix. in) (*Gibberella fujikuroi*)

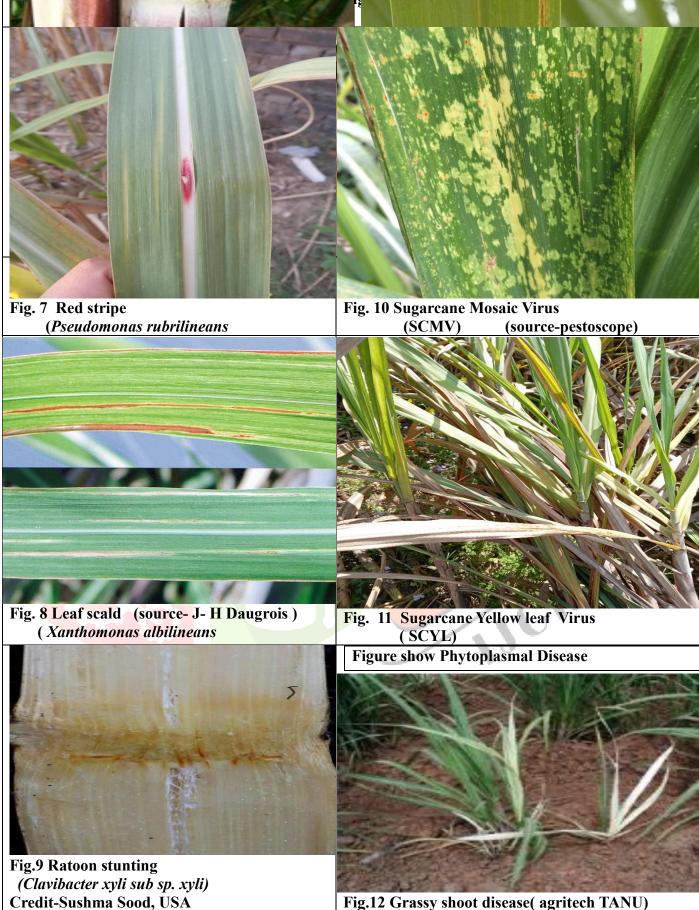


Fig.12 Grassy shoot disease(agritech TANU)