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Abstract: Water is a vital resource for the survival of humans, 

animals, and plants. However, its quality is not always suitable 

for drinking or other uses due to factors like industrialization, 

pollution, and natural occurrences. The World Health 

Organization has guidelines to determine the threshold levels of 

various parameters in water samples. The Water Quality Index 

(WQI) and Irrigation WQI (IWQI) are used to assess overall 

water quality. Collecting and measuring water samples can be 

challenging, but a proposed network architecture uses real-time 

data collection and machine learning tools to automatically 

determine the suitability of water samples for drinking and 

irrigation. The network is based on LoRa and considers the land 

topology. Simulations indicate a partial mesh network topology 

is most suitable. Since there is a lack of large datasets on 

drinking and irrigation water, new datasets were developed for 

training machine learning models. Three models (Random 

Forest, Logistic Regression, and Support Vector Machine) were 

evaluated, with Logistic Regression performing best for 

drinking water and Support Vector Machine for irrigation water. 

Recursive feature elimination was used to identify the water 

parameters with the greatest influence on 

classification accuracies. 
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I. Introduction 

          The project focuses on developing a machine learning-

based water quality detection system for both irrigation and 

drinking purposes. Recognizing the critical impact of poor 

water quality on crops, livestock, and human health, the 

system will utilize input data from various water 

parameters. Machine learning models, including Support 

Vector Machines, Naive Bayes, Logistic Regression, SGD 

Classifier, K-Nearest Neighbors, and Decision Trees, will 

be employed to analyze and predict key water quality 

parameters such as pH, temperature, turbidity, and 

dissolved oxygen. The goal is to create an accurate and 

efficient system capable of handling large volumes of data, 

identifying patterns that may be challenging for humans to 

discern, and providing reliable predictions for ensuring 

water safety. The primary objective of the project is to 

contribute to the safety of irrigation and drinking water. By 

accurately predicting water quality parameters, the system 

aims to detect potential issues or anomalies promptly, 

enabling timely interventions to prevent adverse impacts 

on agriculture, livestock, and human health. Successful 

implementation may necessitate interdisciplinary 

collaboration, involving experts in water quality, machine 

learning, and data analysis to ensure a holistic approach to 

system development. Ultimately, the project aspires to 

provide a robust and efficient solution to address critical 

concerns related to water quality in both agricultural and 

drinking water contexts. 

 

II. Literature Survey 

 A water monitoring network was established in a metal-

producing city in Brazil with twelve stations measuring 

physio-chemical water parameters. The collected data was 

analyzed using principal component analysis. The 

WaterNet project aims to collect water parameter data from 

city dams and proposes the use of machine learning models 

to automatically determine water potability or fitness for 

agricultural use, reducing costs and complexities 

associated with traditional water sample collection and 

analysis. This innovative approach not only streamlines the 

assessment process but also offers a cost-effective and 

efficient solution to water quality monitoring in the city. 

The WaterNet network addresses challenges related to 

sparse data transmission in water monitoring networks by 

emphasizing the significance of lightweight 

communication protocols capable of efficiently 

transmitting small data over long distances. This network 

specifically concentrates on collecting data from dams 

throughout the city, with the primary goal of assessing 

water quality for both drinking and irrigation purposes. 
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III. Existing System 

Water monitoring involves collecting periodic samples to 

measure physico-chemical and microbiological metrics such 

as temperature, pH, and sodium levels. These measurements 

are sent to a base station for decision-making using 

lightweight communication protocols like Low Power Wide 

Area Network (LPWAN) technologies. While the 

effectiveness of simulation versus real-world testing is still 

debated, researchers found that NS3 simulations yielded 

consistent results with real-world tests using benchmark 

metrics such as propagation loss, coverage Packet Inter-

reception (PIR), Packet Delivery Ratio (PDR), and Received 

Signal Strength Indicator (RSSI) level. Water parameter 

monitoring involves periodic sampling of physico-chemical 

and microbiological metrics like pH, temperature, and 

sodium levels. In water monitoring networks, data from 

measured parameters must be transmitted to a base station 

for decision-making. Due to sparse data transmission, 

lightweight communication protocols, particularly Low 

Power Wide Area Network (LPWAN) technologies, are 

favored. The efficacy of software simulations versus real-

world testing in communication technologies has been 

debated. Researchers used NS3 for simulation and Arduino 

UNO C Dragino LoRa module for real-world tests, 

evaluating metrics like Propagation loss, coverage Packet 

Inter-reception (PIR), Packet Delivery Ratio (PDR), and 

Received Signal Strength Indicator (RSSI). They found 

simulation results to be consistent with real-world tests, 

suggesting the reliability of simulation outcomes in assessing 

communication technologies. 

 

IV. Proposed System 

The proposed water network aims to monitor water 

parameters in storage dams and treatment plants across the 

region. Collected data undergoes Machine Learning (ML) 

analysis to assess its suitability for consumption or irrigation. 

The project involves curating sample-sized datasets for 

drinking and irrigation water, which serve as training and 

testing sets for ML models. The data curation phase focuses 

on collecting suitable datasets from relevant websites. 

Subsequent data preprocessing involves cleaning, removing 

null entries, and prioritizing units and metrics. Data labeling 

is performed based on calculated Water Quality Index (WQI) 

and Irrigation Water Quality Index (IWQI) values. In the 

training phase, ML models process labeled data. Feature 

extraction identifies crucial parameters influencing model 

accuracy, leading to retraining for improved classification 

accuracy. The holistic approach integrates data collection, 

preprocessing, labeling, training, and feature extraction to 

optimize the ML models for accurate water quality 

assessment. 

 
Fig 1: Block diagram of the proposed system 

 

In the absence of large, dedicated, and openly accessible 

datasets for drinking and irrigation water in Africa, the 

researchers undertook the creation of their own datasets for 

machine learning (ML) research. They aggregated smaller 

datasets primarily from Elsevier's Data in Brief (DiB), an 

open-access journal focusing on research data. Using search 

phrases like "irrigation water," "potable water," 

"groundwater," and "drinking water," irrelevant articles 

were filtered out, resulting in 11 publications, mostly from 

Asia, with seven containing irrigation water data. The 

datasets were compiled, scraped, and organized into two 

CSV files, one for drinking water and another for irrigation, 

using Microsoft Excel. While acknowledging the ideal role 

of a water monitoring network as a data source for water 

parameters, the researchers improvised due to the lack of 

such a network. The primary focus at this proof-of-concept 

stage is on obtaining usable data for training and testing ML 

models, with less emphasis on the source's origin. This 

initiative showcases adaptability and resourcefulness in 

addressing data challenges for advancing ML applications 

in water quality assessment. 

 

Preprocessing: The provided text outlines the methodology 

adopted for processing a dataset focused on drinking and 

irrigation water quality. With only 16% of entries pre-

labelled, a Python script was developed for calculating the 

Water Quality Index (WQI) and Irrigation Water Quality 

Index (IWQI) for unlabelled data. Unlike conventional 

practices, equal weights were assigned to all parameters in 

the script to maintain a generic model devoid of bias. The 

labelling process involved cross-referencing WQI values 

with a threshold of 50, classifying values below 50 as 

potable (1) and above 50 as non-potable (0) for drinking 

water. A similar approach was taken for IWQI in the context 

of irrigation water. The chosen threshold of 50 was justified 

as a widely accepted standard in literature, denoting good or 

excellent water quality. However, the text underscores the 

need for caution, noting that while an overall WQI may 

indicate fitness for use, it may not capture constituents 

beyond the threshold, such as toxicity. Table 3 is referenced 

as a summary of acceptable value ranges for each parameter 

in the labelling script, and future subsections are teased for 

a more in-depth exploration of the calculation processes for 

WQI and IWQI. 

 

 
Fig 2: Snippet of labelled drinking water dataset showing calculated 

WQI 

 
Fig 3: Snippet of labelled irrigation water dataset showing calculated 

IWQI 
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In this section, the text discusses the utilization of 

hypothetical datasets curated from existing online sources, 

deviating from the expected data provision by WaterNet. The 

data curation process is detailed, highlighting the use of 

Algorithm 1 to calculate both the Water Quality Index (WQI) 

and Irrigation Water Quality Index (IWQI) for all entries. 

The resulting WQI values, ranging from 0 to 100, were 

subsequently mapped to determine the fitness of the water 

for drinking or irrigation purposes. Figures 2 and 3 visually 

present excerpts from the final labelled datasets. The 

penultimate column in both figures displays the calculated 

WQI values, while the last column indicates the assessed 

fitness of use for each entry. This methodology provides 

insight into the overall water quality and suitability for 

specific purposes based on the generated indices. 

 
Fig 4: View Water Quality Detection Ratio Results  
Figure 4 shows a graphical depiction of the result of carrying 

out RFE on each of the models considered, that is, RFE on 

LR (RFECLR), RFE on RF (RFECRF), and RFE on 

SVC(RFECSV). The result, though non-uniform, revealed 

that pH was the least influential parameter across board. 
 

 

Fig 5: view accuracy results Figure 5 shows a graphical 

depiction of the results of recursive feature elimination 

(RFECLR, RFECRF, and (RFECSVC) on the irrigation water 

dataset. It reveals that SSP had the least influence on the 

classification accuracies 

of the models, while RSC was the most influential feature 

(water parameter). SAR and Na were also relatively 

influential across board. EC 

 

V. Algorithm and Technique 

 Algorithm 1 Calculating WQI for Drinking Water. 

1. Select relevant parameters. 

            (P D [P1; P2; P3 : : : Pn]): 

2. Assign weights to each parameter (wp), 1 < p < n 

3. Calculate relative weight 

                        Wp =
𝑤𝑝

∑ 𝑤𝑝
𝑛
𝑝=1

 

4. Calculate quality index 

                  𝑞𝑝 =
𝐶𝑝

𝑆𝑝 ∗ 100
 

5. Obtain 

             WQI =∑ 𝑊𝑝 ∗ 𝑞𝑝
𝑛
𝑝=1  

where P = parameter selected, wp = weight of parameter p, 

n = number of parameters, Cp = concentration of p, Sp = 
standard value for parameter p as stipulated 
Algorithm 2 Calculating WQI for Irrigation Water 

 

 

 

1. Identify prominent parameters in the sample, i.e. EC 

sodium, chloride, bicarbonate, SAR. 

2. Determine weights for each parameter. 

2a. Calculate quality measurement value 

         qi = qmax - 
(𝑋𝑖𝑗 − 𝑋𝑖𝑛𝑓 ) ∗ 𝑞𝑖𝑎𝑚𝑝

𝑋𝑎𝑚𝑝
  

2b. Calculate aggregate weight 

          wi = 
∑ 𝐹𝑗 ∗ 𝐴𝑖𝑗𝑘

𝑗=1

∑ ∑ 𝐹𝑗 ∗ 𝐴𝑖𝑗𝑘
𝑗=1

𝑘
𝑗=1

 

3. Obtain 

          IWQI = ∑ 𝑞𝑖 ∗  𝑤𝑖
𝑛
𝑖=1  

where qmax = max value of qi in its class; Xij is the value 

of parameter i; Xinf is the lowest value in the class to which 

Xij falls; qiamp = class amplitude; Xamp = amplitude of Xij's 

class; wi = parameter weight; F = autovalue of the _rst 

component; Aij = explainability of parameter i by j; j = 
factor 

count. 

VI. Conclusion 

This study addresses two primary objectives: proposing 

a real-time water monitoring network utilizing LoRa 

technology for collecting water parameter data, and 

applying machine learning (ML) models to assess water 

quality. The developed LoRa-based monitoring network, 

simulated in Radio Mobile, favors a partial mesh 

topology for optimal citywide coverage. The gathered 

data is intended to be aggregated on a Cloud server, 

where ML models—Random Forest (RF), Logistic 

Regression (LR), and Support Vector Machine (SVM)—

are trained and tested. LR performs best for drinking 

water, boasting high accuracy and minimal false 

positives/negatives, while SVM excels for irrigation 

water. The study employs recursive feature elimination 

(RFE) to identify pH and total hardness as least 

influential for drinking water and Suspended Solids 

(SSP) as least influential for irrigation. Although the 

study 

acknowledges the potential application of deep learning 

models, it focuses on ML models and suggests their 

consideration in future work. Additionally, the manual 

calculation of water quality indices prompts the 

exploration of unsupervised ML models as alternatives. 

Alternative approaches, such as multi-criteria decision-

making, could replace RFE for identifying influential 

parameters. The study proposes extending the research 

by incorporating usage prediction models, microbial 

monitoring, and tracking water contaminant sources 

within the water network. 
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