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Abstract:  This work investigates the development and optimisation of reinforcement learning for predicting 

worst-case scenarios in launch vehicle simulations. Simulations take into account various environmental 

factors that can affect the launch, including wind conditions, temperature, atmospheric pressure and other 

parameters. Here we are trying to identify potential failure modes and anomalies that can occur during a rocket 

launch. Reinforcement learning models are trained using an objective function designed to accurately predict 

worst-case scenarios during a rocket launch. It also provides valuable insights into the factors contributing to 

worst-case scenarios, enabling targeted strategies for risk mitigation and system improvement. This approach 

aims to quantify the impact of individual parameters or their combinations on the predicted worst-case 

outcome. This paper demonstrates the potential of reinforcement learning in predicting the worst-case 

scenarios accurately and thereby launch vehicle simulations can be used for verifying the algorithm's 

robustness. The developed models can inform decision-making and improve the overall resilience and 

efficiency of space missions by predicting and mitigating worst-case scenarios. 

 

Keywords - Worst-Case Scenarios, Reinforcement Learning, Launch Vehicle Simulations, Environmental 

factors, Anomalies, Failure modes, Risk Mitigation, Space missions 

I. INTRODUCTION 

Rocket launches are intricate and costly endeavors fraught with a high rate of failure, making it imperative 

to enhance efficiency and safety in rocket travel. Simulations play a pivotal role in mitigating costs and 

identifying potential issues. Specifically, worst-case analysis simulations are crucial for pinpointing risks and 

anomalies associated with rocket launches. In this context, reinforcement learning emerges as a promising 

approach to augment simulations for improved guidance and risk assessment. 

 

II.BACKGROUND 

This paper explores using reinforcement learning to analyze worst-case scenarios in rocket launches. The 

idea is to build models that can predict potential failures or performance problems during a rocket's 

performance from lift-off till satellite separation. These models are trained with an "objective function" that 

helps them focus on identifying the absolute worst situations. Reinforcement learning offers a significant 

advantage by providing early warnings of potential issues. This allows launch operators to make informed 

decisions and take corrective actions during critical phases of the launch, ultimately increasing the mission's 

success rate. Since rocket launches are expensive and complex, simulations are crucial for testing the system 

before real-world flight. These simulations involve detailed computer models that consider everything from 

the rocket itself to environmental factors like wind. The goal of this research is to use reinforcement learning 

to streamline these simulations, making them faster, cheaper, and more efficient. This would also allow for 

the development of robust control and guidance for rockets during launch. 
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This paper goes on to outline the key steps involved in conducting a worst-case analysis for a spacecraft. 

This includes collecting and preparing data, simulating those scenarios, defining potential worst-case 

scenarios, and then analyzing the data to develop a reinforcement learning model. Once the model is built, it's 

important to set thresholds for what constitutes a critical event and then thoroughly test and validate the entire 

system. The overall goal of this research is to make space missions safer and more reliable by proactively 

identifying and addressing potential problems using real-time or near-real-time analysis of spacecraft data. 

III. OBJECTIVE 

This project proposes using reinforcement learning to predict worst-case scenarios during launch vehicle 

simulations. By formulating a specific objective function, the models will be trained to identify these critical 

situations. Additionally, this project also aims to identify how individual factors contribute to worst-case 

outcomes. This will allow engineers to develop targeted strategies to mitigate risks and optimize the launch 

system for improved performance, safety, and overall mission success. 

 

IV. LITERATURE REVIEW 

This review examines recent research advancements in aerospace and technology, focusing on 

methodologies that enhance predictability, control, and efficiency in various systems. The papers explored 

here encompass diverse domains including air traffic control [1], rocketry [2], avionics software analysis [3], 

neural network applications [4], worst-case analysis [5],  satellite anomaly detection [6],  and reinforcement 

learning [7, 8]. 

Crisostomo et al. (2008) propose a methodology that combines worst-case and Monte Carlo methods for 

accurate aircraft trajectory prediction, addressing uncertainties in real-world scenarios [1]. This approach 

utilizes a full, non-linear aircraft model and refines predictions with each radar observation. While this method 

offers advantages like improved accuracy and adaptability to wind effects, challenges remain in estimating 

aircraft mass during descent. 

Guo (2023) presents a simulation program that leverages machine learning to train an AI for rocket control 

[2]. This approach offers cost-effective testing and optimizes AI control for different rocket phases. However, 

limitations include the lack of consideration for real-world factors like air resistance and limited training 

scenario variance. 

The Federal Aviation Administration (2023) introduces a "learn-and-extrapolate" methodology that utilizes 

machine learning to estimate the Worst-Case Execution Time (WCET) of avionics software [3]. This method 

offers versatility and adaptability; however, its performance can vary across different programs. 

Kumar (2021) explores a Deep Neural Network (DNN) approach for early WCET estimation, enabling 

early insights during system development [4]. While this method offers promise, the resulting WCET 

predictions can be inaccurate and require further refinement. 

Cheng et al. (2021) propose an LSTM-based method for anomaly detection in satellite power systems using 

telemetry data [5]. This approach demonstrates effectiveness in real-time anomaly detection but would benefit 

from a comparative analysis with other methods. 

Moltafet et al. (2019) examine the timeliness of information in wireless sensor networks using the Age of 

Information (AoI) metric [6]. This study analyzes worst-case scenarios to understand how various parameters 

impact AoI. However, the paper would benefit from real-world validation and incorporating more realistic 

network conditions. 

The papers by Kumar et al. [7] and Lillicrap et al. [8] delve into advancements in offline reinforcement 

learning (RL). Kumar et al. introduce Conservative Q-Learning (CQL) that addresses challenges associated 

with learning from pre-collected data [7]. CQL exhibits robustness and superior performance compared to 

existing methods but necessitates further theoretical analyses, particularly with deep neural networks. 

Lillicrap et al. propose the Deep Deterministic Policy Gradient (DDPG) algorithm that demonstrates 

effectiveness in learning policies across various environments [8]. However, DDPG requires a large number 

of training episodes and can be computationally expensive. 

The reviewed papers showcase significant advancements in applying innovative techniques to enhance 

predictability, control, and efficiency in aerospace and technology domains. These methodologies leverage 

machine learning, worst-case analysis, and non-linear modeling to address complexities in various systems. 

While challenges and limitations remain in areas like real-world applicability, training requirements, and 

model accuracy, the research presented here paves the way for further advancements and real-world 

applications. 
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V. RESEARCH METHODOLOGY  

The project begins with a file perturbation step, where a Python script is employed to modify specific 

parameter values. These values are changed within a specified range with a particular step size, resulting in 

the generation of multiple new files. Following the file perturbation, a batch program is used to automate the 

generation of additional files required for analysis using the launch vehicle trajectory simulator, SITARA. 

Software for Integrated Trajectory Analysis with Real-Time Applications (SITARA) is a 6D trajectory 

simulation software that serves as the core foundation for both real-time and non-real-time trajectory 

simulations for all ISRO launch vehicles, facilitating mission synthesis and analysis. This tool is essential for 

mission design, as well as the validation of subsystems and the comprehensive verification of avionics systems 

in these vehicles. The next step involves extracting the required data from the simulation files using a Python 

script and storing it into a comma-separated values (CSV) file. Finally, a deep Q-learning approach is applied 

to analyze the data and enhance the model's capabilities for worst-case scenarios. An environment is created 

to represent the data. An agent interacts with this environment, learning to predict the worst case of the 

parameter. The agent's Q-values are updated using a neural network model, which is trained over multiple 

episodes using an epsilon-greedy policy for exploration and exploitation. This trained agent can then be used 

to predict the values for the worst case of the parameter, providing valuable insights into the system's behavior 

under extreme conditions.  

The objective is to construct a predictive model capable of determining the proportional or percentage 

influence of individual parameters or their combinations on the identified worst-case outcome, as shown in 

Fig. 1. The steps involved in this project are as follows: 

● perturb the input parameters in the direction of worst and generate the files 

● conduct 6-DOF simulation 

● acquire the simulation results 

● generate appropriate CSV files 

● identify the worst-case performance 

● analyze and visualize the results 

 
Fig. 1  Flow chart for methodology 

 

5.1 Perturbation 

Perturbation of input parameters refers to the deliberate modification or alteration of the values, conditions, 

or variables used as inputs in a simulation, model, or system. This perturbation is done to observe how the 

changes in these input parameters affect the outcomes, behavior, or performance of the system being studied. 

The main goal of perturbation is to assess the system's behavior under different conditions and to analyze its 

sensitivity to variations in specific parameters. 

The information about the launch vehicle is given in a file using which the appropriate target parameters 

are identified here as thrust misalignment and gyroscope drift parameter, each of them is perturbed from one 

simulation to another thereby generating the synthetic data that will be used for training. 

 

5.1.1 Thrust Misalignment (TM) - Angle, Value 
Variation in angle by 10 in the range of [0, 350] and value by 0.5 in the range of  [-2, 2]. 

 

5.1.2 Gyroscope Drift in 3 axes - G0X, G0Y, G0Z 

These values are changed over the nominal range of 30 to  [29.7, 30.3] with a step size of 0.1. Each file 

represents a unique combination of the perturbed values, while the other two values remain constant. 
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It is a method to continuously improve previously obtained approximate solutions and handles the problem 

of nonlinear equations for which exact solutions cannot be obtained. It is used for demonstrating, predicting, 

and describing phenomena. Hence after perturbation, we get combinatorial perturbed files as the output 

generating 324 files for parameter one and 21 files for parameter two respectively. 

 

5.2 Simulation 
Simulation programs like 6 degrees of freedom (DOF) trajectory are performed on the data that is generated 

from standalone tests,empirical methods,results of design techniques and the measurements from all the 

physical systems. The method involves generating a large number of samples from specified ranges for input 

parameters, running simulations, and using the aggregated results to estimate outcomes or behaviors of 

interest. Further here we propose to do it intelligently by extending the limits thereby reducing the 

repeatability. 

 

5.2.1 Thrust Misalignment 
Simulation of the files generated in perturbation (run1.1 - run324.1) using SITARA software see Fig. 2. 

The simulator input files are generated for each of the perturbed files by batch processing the files in the 

command prompt to generate them for all the perturbed files in a parallel manner to increase the efficiency. 

Here we have divided the perturbed files into 4 batches and executed the SITARA simulation for all 324 files. 

 

 
Fig. 2 SITARA files generated for TM (nominal 

file and file) 

 
Fig. 3 SITARA files generated for gyroscope drift 

(1st file and 20th file)

 

5.2.2 Gyroscope Drift 

Following the file perturbation, a batch file is used to automate the generation of additional files required 

for analysis. We conduct the Sitara files generation of i_1.1 to i_21.1 files and then generate the files, named 

isu_1.msg to isu_21.msg, as shown in Fig. 3, that are essential for calculating the difference between apogee 

and perigee values for each perturbed file and the variation in inclination.

5.3 File  Generation 

In this step we convert the obtained input files from the previous step to their corresponding CSV files, 

applying the filters to include only the essential range of data from them. This is done by utilizing the functions 

and modules from pandas. 

 

5.2.1 Thrust Misalignment 
The input files [rundap1.txt - rundap324.txt] were processed to extract relevant data within the time range 

of 120s to 260s, discarding data outside this range. These processed data were then converted to CSV format, 

resulting in files labeled as "r1.csv" to "r324.csv," each containing approximately 7000 rows representing the 

time, C1, C2 and parameter values. Then the difference between the C1, C2 of the corresponding r files is 

calculated and the maximum difference from each of the files is then stored in a CSV file along with its 

corresponding values of the input parameters. 

 

5.2.2 Gyroscope Drift 

This step involves extracting the perigee and apogee values from the “isudap” files [isudap_1.txt - 

isudap_21.txt]  using a Python script. For each file, the difference between the apogee and perigee values is 

calculated and stored in a CSV file along with the corresponding perturbed values of G0X, G0Y, and G0Z. 
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5.4 Training 

The complete dataset is divided into train and test datasets. The training dataset is used to fit and tune your 

models. The test dataset is used to evaluate your models. The synthetic data used to create the feed-forward 

neural network is trained to produce the results for the worst case that is the amount of contribution of the 

parameters to cause it and identify the causal parameter. 

To enhance the model's prediction capabilities for worst-case scenarios, we implemented a reinforcement 

learning (RL) approach. An RL agent was trained to predict the values that resulted in the maximum difference 

in system behavior. The agent was trained using the maximum difference as the reward, aiming to maximize 

this difference through its actions. An environment is created to represent the data, where the state is the time 

step and the action is the perturbed values of TM in the case of parameter one and G0X, G0Y, and G0Z in the 

case of parameter two. The agent interacts with this environment, learning to predict the maximum difference 

along with the corresponding perturbed values. 

Here, a training loop is implemented for a reinforcement learning (RL) agent using a Deep Q-network 

(DQN) to learn in an environment. Within each episode, the agent iterates through a fixed number of steps, 

where it selects actions based on an epsilon-greedy policy, balancing exploration and exploitation. After 

choosing an action, the agent observes the resulting next state and reward from the environment. Using these 

observations, it updates its Q-value estimates via temporal difference learning, aiming to minimize the mean 

squared error between predicted and target Q-values. The agent gradually improves its policy over episodes, 

adjusting its exploration rate through epsilon decay. 

A Q-learning algorithm is used to train a neural network model to learn an optimal policy for an 

environment. The training process involves iterating over multiple episodes, where each episode starts with 

resetting the environment to its initial state. Within each episode, the agent interacts with the environment for 

a fixed number of steps, selecting actions based on an epsilon-greedy policy. This policy balances exploration 

and exploitation by choosing random actions with probability epsilon or selecting the action with the highest 

predicted Q-value otherwise. After taking each action, the agent receives feedback from the environment in 

the form of the next state and the associated reward. The Q-values of the current state-action pairs are then 

updated using the Q-learning update rule, which combines the immediate reward with the discounted 

maximum Q-value of the next state. The variation in the Q values during the training are shown in Fig. 4, Fig. 

5 and Fig. 6. 

 
Fig. 4 Prediction of the worst-case output of parameter 1 
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Fig. 5 Prediction of the worst-case output of parameter 2 (Case 1 - Apogee, Perigee) 

Throughout the training, the epsilon value gradually decays to shift the agent's focus from exploration to 

exploitation. This decay ensures that the agent initially explores the environment more broadly but gradually 

exploits the learned policy as training progresses. Finally, after all episodes are completed, the predictions can 

be made. The only difference in the architecture of both the parameters is that the dimension of the output 

parameter is 2 for parameter one and 3 for parameter two as shown in Fig. 7 and Fig. 8 respectively.  

5.5 Prediction 

The models designed here are then used to predict the unknown results, thereby obtaining the combination 

of parameters that cause the Launch Vehicle's worst-case scenarios. Assessing the results of a simulation is a 

crucial step to ensure the reliability, accuracy, and usefulness of the simulation. The assessment process 

involves analyzing the simulation outputs, comparing them with expected or known outcomes, and nominal 

values, and interpreting the implications of the results. Here's a systematic approach to assess the results of a 

simulation: 

● Verification 

● Visualization 

● Documentation 

Prediction screenshots for both parameters are given in Fig. 4, Fig. 5 and Fig. 6

 

5.6 Analysis and Visualization 

Finally, the predicted output is analyzed by comparing the parameter value for the maximum difference 

condition with the parameter value for the nominal file of parameter one. This is done by visualizing them 

graphically by plotting their corresponding rundap file  plots as shown in Fig. 9 and Fig. 10  respectively. The 

two conditions for the worst case of the second parameter are also analyzed. 
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Fig. 6 Prediction of the worst-case output of parameter 2 (Case 2 - Inclination 

 
Fig. 9 Graph of parameter 1 for worst-case condition 

 

VI. RESULTS AND DISCUSSION 

Prediction of the worst-case output for thrust misalignment  based on the updated Q values are done as 

shown in Fig. 4. We can analyze the output based on the worst-case Q-value predicted by the DQN, which in 

turn predicts the maximum thrust misalignment value of -2.000000 with an asymmetry of at 50.000000 

degrees. Assume that the Q-values represent the expected cumulative reward of taking a particular action in 

a given state, a negative Q-value indicates a negative reward, which could correspond to a failure or a 

suboptimal outcome thus pointing to a worst-case scenario where maximum fuel usage occurs. 

The graph of thrust misalignment for the nominal condition is given in Fig. 10. From Fig. 9 and Fig. 10, the 

predicted data point at an angle of 50 degrees with -2 inclination  and the nominal file (180 degrees with 0 

inclination) graphs are compared where we can observe a significant deviation between graphs from the time 

120 to 260 which points toward the maximum deviation which infers that the predicted point points to a 

maximum worst case scenario. Graph of comparison of the C1 value of thrust misalignment between nominal 

condition and worst case condition and graph of the comparison of C2 value of thrust misalignment between 

the nominal condition and worst case condition is given in Fig. 11 and Fig. 12 respectively. 

The output in Fig. 4 shows the Q-values for each action at each step of each episode. The Q-values represent 

the expected cumulative reward for taking each possible action in the current state. The agent chooses the 

action with the highest Q-value at each step. Here in the first episode, the initial state has a Q-value of 

[0.60179335, -1.7123946, -0.6901989] for each of the three possible actions. The agent chooses the first 

action, which has a Q-value of 0.60179335 and observes the new state and reward. The new state has a Q-

value of [0.49229485, 0.12196423, -1.6292136], and so on for each subsequent step. The final Q-values are 

shown at the end of each episode. For example, at the end of the first episode, the final Q-values are 

[0.42719033, -3.9943874,  -1.2111145]. These Q-values represent the expected cumulative reward for taking 

each possible action in the final state of the episode. 
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At the end of the training process for the prediction of the worst-case output for parameter 2, the maximum 

difference and the corresponding G0X, G0Y, and G0Z values are printed. These values represent the largest 

deviation from the desired trajectory, which the agent aims to minimize. In this case, the final maximum 

difference value is 4.559. The corresponding G0X, G0Y, and G0Z values of 30.0, 30.0, and 30.3 respectively, 

indicate the specific deviations in each dimension that led to the maximum difference.

Fig. 10 Graph of parameter 1 for nominal condition 

Fig. 11 Graph of comparison of C1 value of parameter 1 between nominal and worst case condition 

 

The output in Fig. 6 at the end of the provided code shows the maximum inclination difference and the 

corresponding G0X, G0Y, and G0Z values, which are calculated based on the predicted Q-values. The 

maximum inclination difference is the highest inclination difference observed during the training process. In 

this case, the maximum inclination difference is 0.02200000000000024, which is a small value. However, it 

is important to note that the inclination difference is a relative measure, and a small value may still be 

significant in the context of the problem being solved. These values provide insight into the specific actions 

that the agent took to achieve the maximum inclination difference. A high maximum inclination difference 

and reasonable G0X, G0Y, and G0Z values of 30.3, 30.0, and 30.0 respectively, indicate that the DQN model 

has learned a policy that leads to a large inclination difference, which is the desired outcome. 

Here, for the second parameter, the G0X, G0Y, and GOZ values predicted at both the apogee perigee 

difference and the inclination difference are taken into consideration for finding the translational and 

rotational aspects of the motion. 

Overall in our prediction, there are high chances of failure of the Launch vehicle due to the over-exhaustion 

of energy when the thrust misalignment  at an angle of 50 degrees at -2° during gyroscope drift of both  

translational point (G0X, G0Y, G0Z) = (30.0, 30.0, 30.3) and rotational point (G0X, G0Y, G0Z) = (30.3, 30.0, 

30.0). The overall results are tabulated and presented in Table 1. 
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Table 1: Results  

 

  

 

 

 

 

 

 

 

 

 

Fig. 12 Graph of comparison of C2 value of  parameter 1 between nominal and worst case condition

 

This study sought to improve worst-case scenario analysis during rocket launches by leveraging advanced 

machine learning techniques, specifically deep Q-learning. Conventional approaches frequently struggle to 

encompass the entire spectrum of potential situations, highlighting the potential of machine learning's 

adaptable and data-centric approach. By accurately predicting worst-case scenarios, this approach could 

significantly improve mission safety and success rates. Despite the importance, there's a notable gap in 

applying advanced machine learning to this area. 

The study successfully developed a deep Q-learning framework for this purpose, demonstrating its 

effectiveness in predicting worst-case scenarios. However, further research could explore advanced 

reinforcement learning techniques, different neural network architectures, and handling multi-agent systems 

to enhance the model's performance and applicability. In summary, this study marks a notable progression in 

utilizing machine learning for worst-case scenario analysis in rocket launches. It establishes a groundwork for 

forthcoming research endeavors and enhancements aimed at bolstering space mission safety and enhancing 

success rates. 

 

VII. CONCLUSION 

The project's goal is to enhance rocket launch safety and success by devising a machine learning framework 

to simulate and predict worst-case scenarios during launch. This proactive approach enables preemptive 

measures to address extreme situations, promoting safer and more successful missions and furthering space 

exploration. This project signifies a notable milestone in the development of space exploration technologies. 

In the project's future scope, there lies the potential for integrating advanced deep reinforcement learning 

methods like Double DQN, Dueling DQN, Prioritized Experience Replay, or Rainbow DQN. These 

enhancements aim to amplify the agent's capacity for learning and adaptation within intricate environments. 

Furthermore, extending the project to encompass multi-agent systems or cooperative/competitive setups could 

Parameter 
Maximum 

Difference 

Worst Case 

Outputs 

Thrust 

Misalignment 
5.138854 

Angle 
50.0000

00 

Value 

-

2.00000

0 

Gyroscope Drift 

(Apogee - 

Perigee) 

4.55900000000008

3 

G0X 30.0 

G0Y 30.0 

G0Z 30.3 

Gyroscope Drift 

(Inclination) 

0.02200000000000

024 

G0X 30.3 

G0Y 30.0 

G0Z 30.0 
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unveil fresh avenues for research and confrontations. Collectively, these forthcoming endeavors hold the 

promise of cultivating a more resilient and adaptable RL agent, equipped to navigate diverse tasks and 

surroundings. 
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