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ABSTRACT The advancement of the Things connected to internet has made notable strides across various sectors such as
town,houses, and agricultural fields, encompassing fish tank maintaining systems as well. Key variables in such systems
include monitoring ammonia levels and water temperature. While prior research has proposed various systems to bolster
fish tank monitoring and control, they often entail the drawback of necessitating active user access to cloud information.
This study presents a resilient fish tank maintaining systems employing the things which has connectivity with
internet.which had , aimed at addressing remote user engagement issues. A precise day to day monitoring and doing some
operations is imperative in averting potential hazards, such as water temperature spikes. Our experimentation involved
connecting an fish tank system to a cloud and implementing a controller application. Through meticulous testing, we
evaluated data transmission late signals from a device which is used to measure the physical signals s to the cloud,
processing late signals, actuator response times, user interaction late signals, and the time taken to reach critical points in
the aquarium. Robustness assessment was conducted by gauging the likelihood of timely user information delivery during
critical periods made some good comparison with time to get those hard points. Additionally,It was devised to
complement experimental findings. Both analytically and experimentally, our results demonstrate the efficacy of the
proposed system in meeting the demands of fish tank maintaining and achieving some power/authority within an thing that
interact with internet framework.

INDEX TERMS Connectivity, Understanding, Likelihood, Strength, Fishery,Prediction

.
I. INTRODUCTION

The IoT has witnessed substantial growth in recent years,
largely driven by advancements in device to device
connecting medium over the last 10 years. Hence these
medium were designed to interconnect various devices, a
device which is used to measure the physical signals s,
and actuators. Concurrently, research has focused on
middleware facilitating communication between
hardware and IoT applications. An exemplar application
of such developments is a fish maintenance system
designed for remote monitoring and control, as explored
in this study.
Ensuring optimal fish maintenance necessitates a
reliable system that enables owners to monitor their fish's

well-being even while on the move. Continuous
monitoring is essential as users cannot always oversee
the condition of their ornamental fish. This monitoring
ensures that the fish are housed in an environment with
appropriate food and environmental conditions. Users
seek assurance that both monitoring and control
processes are functioning effectively. Factors such as the
quality of fish feed and water conditions are crucial
considerations. Maintaining an appropriate water
temperature is particularly vital, as drastic fluctuations
can lead to critical and precarious conditions for the fish.
Under specific circumstances, fish cannot survive in
environments with temperatures beyond certain limits. A
system capable of proactively anticipating such
conditions within acceptable variables is crucial. Both
manual and IoT-based fish tank caretaking systems have
been hugely adopted.
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However, manual methods for fish tankmanagement are
labor-intensive and susceptible to human errors, such as
neglect due to forgetfulness or busyness. Relying on human
sensitivity to detect changes in water temperature is
unreliable for maintaining optimal water conditions. An
automated system is essential for accurately monitoring fish
tankconditions, ensuring the well-being and longevity of pet
fish.

In addition to manual methods, various studies have
explored the function of IoT medium for fish tank
monitoring and control. Previous research has proposed
IoT-based fish tankcontrol systems, but these systems
have been passive in nature. In such systems, users are
required to actively monitor the aquarium's condition,
which may not always be feasible. This passive approach
becomes impractical, especially when users are unaware
of potential issues arising from busy schedules, leading to
oversight of the aquarium's condition. Users find
themselves monitoring the fish tankwithout prior
knowledge of its status. While accessing fish
tankinformation during optimal conditions may seem
unnecessary, late signals in obtaining information could
lead to catastrophic events during critical periods. There
is a pressing need for an IoT system that not only
provides information but also actively alerts users to the
aquarium's condition, particularly during critical
situations.

The study develops a internet based fish tank
management system encompassing both a give forcing
mechanism and handy remote accessibility for fish tank
maintaing. The forward forcing system actively sends
data to the cloud system, which subsequently relays it to
users during hard or regular conditions. Through this
forcing system, users receive information automatically
without the need for active web access. Furthermore, this
system offers the advantage of mobile accessibility,
allowing users convenient access to fish tankstatus
information.
Our major support are pointed as follows:
1) We introduce a resilient fish tank maintaining system

based on things connected to internet, employing a
Arduino cloud algorithm for device to detect physical
signal as data processing on a cloud. This
functionality is crucial for forecasting the fish
tanksystem's condition. The system autonomously
executes necessary actions when the water creature
environment reaches hard states, such as heavy
temperatures. It seriously transmits the device to
detect physical signal data to the cloud for both
normal and critical conditions, ensuring users receive
automated updates through a push system without
needing to access the web manually..

2) We present a critical analysis of the potential for
information late signals occurring from the device to
detect physical signal as a system to the cloud, cloud
processing, and subsequent late signals in relaying
information from the cloud cloud to the device. This
analysis involves monitoring the processes occurring
on the cloud.

3) We propose an examination of the late signalncy in
delivering information from the device to the end
user, aiming to prevent the aquaculture conditions
from reaching critical stages. Previous studies , and
have not extensively addressed this aspect. The
specifics of our analytical model, which relies on the
late signal probability density function, are provided
in Figure a.

4) This document also looks at late signal in cloud
process, something other references missed .
The structure of the rest of this study is outlined

follows: part 2 delves into suitable works. Following
that, Part 3 elucidates the aquaculture environment
and presents the test results. Part 4 entails the
assessment of the system's performance. Lastly, our
research is concluded in Part 5..

II. RELATED WORK
A. APPLICATION OF THINGS CONNECTED TO INTERNET
Internet things stands out as first of the good prominent

topics in the relate signald sector, significantly shaping the
landscape of the Internet. Recent research has explored IoT
across diverse domains, including agriculture,
environmental monitoring, urban development, sports,
transportation, retail, disaster management, and energy. In
agriculture, for instance, there's been investigation into the
plant wall system, utilizing IoT for automating monitoring
and control tasks. Similarly, in urban areas, IoT-driven air
pollution monitoring systems have been studied, with
projects spanning multiple countries and incorporating
thousands of devices. Notably, in smart city initiatives,
research delves into vertical IoT platforms, offering a multi-
platform approach facilitating crossplatform
communication. Sports research has explored applications
such as cycling, employing IMU a device which is used to
measure the physical signals s to provide cyclists with
comprehensive exercise metrics. In transportation, studies
on car parking have introduced reinforcement learning
solutions for optimal parking spot selection. In retail, IoT
innovations like smart shopping carts have tackled queue
management by enabling wireless billing at checkout.
Disaster management research has focused on flood
prediction using IoT, leveraging climate a device which is
used to measure the physical signals s and machine learning
algorithms. Furthermore, in the energy sector, Smart Grid
studies have investigated methods like edge computing and
anomaly detection for detecting damaged Smart Meters.As
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numerous Things connected to internet products enter into
commercial, a new concern arises: security risks. Unlike
other IT domains, the field of IoT is still in its early stages,
indicating that online risk assessment for IoT remains
underdeveloped. Several studies have examined the efficacy
of current risk analysis methods and explored strategies for
optimizing risk assessment processes.

B. SMART FISH TANK
Many reasearch peoples thoroughed on things works on
internet water culture using several devices. Chen et al.
looked on the
Box 1. solutions for internet based fish tank.

Aquariums employ a quality control system for
monitoring Dissolved Oxygen (DO) levels. The system
utilizes a DO a device which is used to measure the
physical signals for input and a microbubble device as
actuators. Tseng. utilized hydro a device which is used to
measure the physical signals s, Acidity a device which is
used to measure the physical signals s, and Oxygen a device
which is used to measure the physical signals s in their
study..

Further investigations into Internet -based fish tank have
employed more specialized device to detect physical signal
, leading to broader insights. Raju and Varma similarly
utilized a device which is used to measure the physical
signals s to monitor fish tankenvironments, including pH,
and temperature a device which is used to measure the
physical signals s. Their system also integrates water quality
a device which is used to measure the physical signals .
Anyway, unlike some systems, theirs lacks automatically

functioning actuators. Instead, users receive alerts with
instructions that they must manually execute.

Several studies have incorporated additional beneficial
features into aquaculture systems. Angani et al. focused
their research on recycling water within an fish tankto
minimize wastage. Their study employed a device which is
used to measure the physical signals s including dissolved
oxygen Oxygen, acidity, warmth, and water height a device
which is used to measure the physical signals s, plus tools
like solenoid valves for controlling water movement and
pumps.
Certain studies have undertaken a thorough assessment of
IoT systems implemented in aquaculture. For instance,
FishTalk utilized a range of a device which is used to
measure the physical signals s including pH, EC, oxygen,
Solids,heat/cold level,Aqua level. The system also
employed various actuators such as a fish food, fan, water
heating, photo source, air pressure, and

Water filter. Beyond it’s comprehensiveness of the a device
which is used to measure the physical signals and actuator
setup, what is also noteworthy What sets this study apart
from other investigations into smart

aquariums is its focus on measuring late signal. Through
meticulous sensing and actuation, this research ensures a
reliable and statistically grounded assessment of late signal.
Utilizing Erlang and gamma distribution measurements, it
is demonstrated that system late signals pose no threat to
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the wellbeing of the fish. An area for further research lies in
integrating temperature forecasting to further bolster the
system's late signal safety. Box 1 provides a comprehensive
comparison of the reviewed literature, emphasizing the
unique contribution offered by this system.

C. WATER hEAT/COOL PREDICTION
Scientists used computer programs to predict things like

the temperature of water. For example, they used a method
called partial least squares regression to predict the East
Asia Winter Monsoon. Another study used four different
types of tree-based models to forecast solar energy. In
Pakistan, they even used something called quantile
regression forest to predict heatwaves..

Also, other researchers have used prediction methods in
various areas like energy, economics, and electricity.
They've used a type of advanced computer network called
Enhanced Convolutional Neural Networks (ECNN) to
predict electricity prices and usage. For heating and cooling
systems in neighborhoods, they use a method called online
ensemble decision tree-neural network (DCNN) learning to
make forecasts. Decision tree classification is employed for
copper price forecasting, a methodology also applicable in
economic analysis. Electric power load forecasting utilizes
reduced error pruning tree, a type of decision tree..
Several studies have employed machine learning for

water temperature forecasting. Literature exists on utilizing
the cloud model for this purpose, which outperforms RBF
and SVM. In a prawn engineering culture pond, a mixed
empirical mode-decomposition-back-propagation neural
network method is employed. Urban water quality
management forecasting utilizes a genetic algorithm-
optimized long short-term memory approach.
Additionally, Scientists are using a mix of support vector
regression and a method inspired by fruit flies to guess how
much water will be in rivers. They noticed that there's no
special way to predict water levels just for fish farms, so
they're trying to fix that.

III. TESTING ENVIRONMENT
A. fish tanka device which is used to measure the physical signals
S
This study uses three a device which is used to measure the
physical signals s: a Waterproof Temperature a device
which is used to measure the physical signals DS18B20, a
TDS a device which is used to measure the physical
signals , and a DFRobot DO a device which is used to
measure the physical signals . The DS18B20 measures the
water's temperature (shown in Pic 1a). The TDS a device
which is used to measure the physical signals checks how
clean the water is in the fish tank(shown in Pic 1b). The
DFRobot DO a device which is used to measure the
physical signals measures dissolved oxygen levels in the
water.microcontrollers, is a low-power a device which is

used to measure the physical signals showcased in Pic 1
Part (c).

PIC 1. The water a device which is used to measure the physical signals s: (a)
temperaturer (b) Solidsr (c)Oxygen.

B. FISH TANK DEVICES
For this study, we're using a few devices called actuators.
The HB-100 Water Heater is made for aquariums that hold
between 50 to 100 liters of water (shown in Pic 2a). The
FS-120 Fan,
, tailored for fish tankuse, measures 172 × 120 × 120 mm,
operates at a frequency of 50/60 Hz, and consumes 15 W of
power, shown in Pic 2 Part (b). A 5 V Relay is utilized to
manage high-power devices with low-power
microcontrollers. An RO filter cleans water in dirty
aquariums, making it clearer and safer for fish. Automatic
fish feeders, also known as feeders, are controlled by the
system and dispense food when needed (shown in Pic 2c).

PIC 2. The aquaculture actuators: (a) Waterheater (b) Fan (c) Automatic fish
feader.

C. ENVIRONMENTAL THINGS CONNECTED WITH INTERNET
To achieved system adopts Internet of things Structure,

comprising 3 layers the end device, cloud, & application. In
this context, the fish tank serves as the final device,
encompassing all a device which is used to measure the
physical signals s, actuators, and relate signal components.
Control of the fish tank is managed by a microcontroller,
with the ESP8266 being the specific model utilized in this
study. Communication between the final device device and
both the cloud and final app is facilitated wirelessly through
An MQTT broker is like a traffic controller for messages
between devices. [29]. The Wi-Fi module integrated within
the ESP8266 is responsible for wireless communication
functionality.

A Python cloud is employed for this purpose, facilitating
communication via MQTT between the cloud back end and
the end device, the Cloud cloud receives temperature data,
makes predictions, turns these suggestions into decisions,
and then shares the results of those decisions. Prediction
tasks are executed by a Cloud model, which undergoes
training in accordance with established machine learning
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principles. Data exchange with the cloud is mediated by an
MQTT broker. The Application, operational on the user's
smartphone, provides a user-friendly interface. An
illustration depicting the entire system setup is presented in
Pic 3 for reference..

PIC 3. The end device block diagram.

The device operates as following: Initially, the device
which measure physical signal on the end device sends
heat/cold data to the algorithm for process. Subsequently,
both the cloud and the final app receive this information.
The application presents heat/cold information as
monitoring data. The cloud processes the received data,
generating predictions that inform subsequent decision
making. These decisions dictate which actuators should be
activated and which should remain idle. The decisions are
then relayed to cloud. The two final devices and the app
receive this final decision. The end device adjusts the
actuators based on the decision received, while the
application displays the status of each actuator in
accordance with the decision made.
D. DECISION TREE REGRESSION FORECASTING
The Decision Tree model emerges from the processing of

training data. Among the well-known variants of Decision
Trees, such as ID3, the training unfolds through several
phases. Initially, the decision of each and every things is
computed. Entropy represents measure of diverse within the
data, with high values indicating greater diverse in it. The
maximum Entropy value is 1. Subsequently, the
information gain value is determined, revealing the feature
that predominantly impacts the output. A higher
Information Gain value signifies a more significant
influence of features. Finally, the tree is structured based on
the Information Gain and Entropy values of each feature.
The Decision Tree model undergoes testing using a

separate dataset, known as testing data, which comprises
collected data with corresponding outputs. It's crucial that
the testing data differs from the training data. The
performance of the Decision Tree model is assessed based
on its accurate on generating result from this test data,

where accurate data is determined by done some
comparison the model's result with the actual output of the
testing data.
Decision Trees come in two forms: classification and

regression. In the classification type, the decision tree
typically takes event attributes as input. For example, it can
predict someone's gender using details like weight,weight.
Conversely, in cloud model, the input details typically
includes sequences of events over time or continuous values.
In the suggested system, Decision Tree Regression (DTR)

is employed to forecast upcoming temperature data,
enhancing system responsiveness beyond traditional
methods. DTR belongs to the category of supervised
learning within machine learning, relying on labeled data
for training. Real-time temperature data spanning
approximately 24 hours is utilized for both training and
testing purposes, with an 80% portion allocated for training
and the remaining 20% for testing. The trained model is
exportable for future applications. Algorithm 1 elucidates
the Decision Tree Regression process. Within the algorithm,
SSE represents the Sum of Squared Errors, calculate
signald as the sum of squared differences between array
members and their average value..
The IOT model trains & produces a model, which is then

moved and put into the assumption medium. Here, the
model takes in data as input. It processes this data to guess
the temperature. The guessed temperature is then put into
one of three groups: LOW, HIGH, or NEUTRAL. If it's
LOW, the heater turns on. If it's HIGH, the fan turns on.
NEUTRAL means neither turns on. These results are return
to the final Device to control the temperature. They
communicate using MQTT, where Subscribe gets data from
the MQTT Broker, and Publish sends data to it. The whole
process is detailed in Algorithm 2. Tests have been done
using a temperature dataset collected over a week.

Algorithm 1: AI Modeling

Data: Dataset
Result: Regressor
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In our system, we look at how temperatures change over
time, shown in Figure 4. We use the data we collect during
tests to guess what the next temperature will be. Then, we
compare our guesses with the real temperatures. We use
three ways to check how accurate our guesses are: RMSE,
MAPE, and R2. These help us see if our guesses are close
to the real temperatures.

v
n

2

u1
RMSE = t (yi − y˜i) (1)

n
n

MAPE (2) n
i=1

FIGURE 5. R squared value.

The RMSE and MAPE measurement results indicate that
the difference between predictive data and real data is
low— the closer to 0, the RMSE and MAPE value, the
better. Meanwhile, the R2 value is 84.52%, which shows the
closeness of the prediction variable with the real value
variable. It shows that thepredicted value strongly correlate
signalswiththe realvalue.

E. APPLICATION
In the IoT architecture, users control applications. We used
Android Studio for app development in our system. The
app lets users check the fish tankand actuator status.
Diagram 6 shows what the app looks like. which has two
parts: the main what's happening on it and adjust things.

FIGURE 6. App front page. (a) Settings. (b) Maintainingg.
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The Monitor system UI shows fish tankvalues and
actuator status. It tracks temperature, water quality,
cleanliness, and water level, along with Fan and Heater
statuses.
Each fish tankvalue has a status displayed. When all

values are within the threshold range, "Good" text appears
for each value, In the Monitoring UI, a big "Good" text is
displayed at the top. If any value goes above a certain range,
it changes to "Bad," and the big text switches to "Bad" too,
and a notification is sent to the user. In the Settings, users
can connect to the MQTT cloud by entering the cloud IP
address, port number, username, and password..

The protection median is established with a
username and password to securely access the Cloud server.
All information retrieved from the application consists of
the data published on the cloud server by either the end
device or the cloud. Monitoring data is transmitted by the
end device, while actuator states are sent by the cloud.

F. TESTING
Testing was conducted to assess the performance of the
regression tree forecasting. Betta fish were introduced into
the testing environment, where their water conditions
served as the testing parameter. As betta fish thrive in water
temperatures ranging from The temperature should stay
between 25°C and 27°C, that's the rule. were tailored
accordingly. The methodology unfolded as follows: the IoT
system was established and activated, initiating data
collection through a device which is used to measure the
physical signals s, activating the computer network system
for communication, and feeding the sensed data into the
forecasting system. Subsequently, testing data was applied
to the model, generating prediction data as output. This
census data was used to decide what actions the actuators
should take at the predicted time. yielding decision data as
output. Performance evaluation ensued, with accuracy
serving as the measurement parameter. Accuracy was
determined by comparing Comparing forecasted decisions
with actual decisions. resulting in a recorded accuracy of
99%..

IV. CHECKING AND PERFORMING SOME EVALUATION
A. INTERNET SYSTEM late signalS AND MEASUREMENT
Some system underwent prior testing, employing an
empirical approach with a connected fish tanksystem within
the IoT infrastructure. MQTT protocol was utilized over a
Wi-Fi network for this test. Findings indicate the system's
capability to effectively monitor and manage the fish tankin
accordance with user specifications. The cloud
demonstrates prompt responsiveness to alterations in the
fish tankenvironment, efficiently relaying instructions to the
actuator as per cloud operations. Moreover, user-received
information remains within the system acceptable variables..

In addition to practical experimentation, this Part
delves into the creation of an analytical framework
aimed at gauging the most severe potential system
breakdown in the aquarium's monitoring and control,
from the user's viewpoint. Various time-relate
signald variables are employed in this scenario.
These variables encompass the time taken for a
device which is used to measure the physical signals
data transmission to the cloud (tw), serving as a
system alert to the user, and the cloud's processing
duration (tp), denoting the time required for the
cloud to interpret received information and formulate
signal subsequent actions. Additionally, the
timeframe for data transmission from the cloud to the
actuator (tr) in response to cloud-received
information is scrutinized. Further, the interval
between data transmission from the cloud to the user
(tu) and the time lapse between the warning and
critical points (tC) are examined. These timeframes
are pivotal in understanding the duration required for
the aquarium's water temperature to escalate signal
from the initial warning stage to a critical state.
Figure 7 illustrates this process

FIGURE 7. Time diagram.

The time picture shows how information flows a device
which is used to measure the physical signals to both the
actuator and the user. When the a device which is used to
measure the physical signals first detects a problem (like a
sudden rise in temperature from a malfunctioning heater), it
sends a alert to the cloud. The cloud gets this warning and
processes it, then decides what to do and sends messages to
both the actuator and the user. The actuator is activated at
(τt,3), for instance, shutting down the heater. The time
interval from the system's detection of a potential critical
state (τt,0) to the activation of the actuator (τt,3) is denoted
as ti. Concurrently, the cloud transmits information to the
users, reaching them by τt,u. The duration from the system's
detection of a potential critical state (τt,0) to the user
application receiving the information (τt,u) is represented as
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tj. Meanwhile, the aquarium's condition continues to
approach critical levels until reaching τt,4, at which point
critical thresholds are exceeded. This triggers controlled
measures, enabling the system to restore normal conditions
before criticality ensues.
Analytical models delve into the most adverse scenarios

concerning IoT network connections and their impact on
fish tankmonitoring systems. These models are constructed
by examining empirical late signal data generated during
communication processes among IoT system entities. The
late signal data is estimated using a Probability Density
Function, which is checked for accuracy with the
Kolmogorov-Smirnov normality test. The final model is
based on real testing results and empirical data.. This model
holds significance in ensuring the smooth operation of the
system, as it accounts for potential system failures
stemming from message late signals and packet loss
between IoT entities. Theoretical validation proves more
dependable than merely relying on empirical data derived
from laboratory tests. By computing these worst-case
scenarios, the system instills a certain level of confidence in
overcoming challenges within the IoT communication
network. The focal point of concern lies in unregulate
signald late signals stemming from network congestion or
malfunctioning functions, leading to packet loss and
hindering proper information transmission among IoT
entities.
This assessment focuses on two important areas: how

quickly the actuator responds and how fast information
reaches the user compared to when critical conditions occur.
We use certain key measurements to judge this, like how
long it takes for data to go from the a device which is used
to measure the physical signals to the cloud (tw), how long
the cloud takes to process it (tp), how long it takes for the
cloud to tell the actuator what to do (tr), and how long it
takes for the cloud to tell the user (tu). Unfortunately,
previous studies didn't look at how long it takes for the
cloud to process data or for information to get to the user,
even though they're really important. But luckily, in our
research, we've looked at all the late signal factors,
including how long the cloud takes to process data and how
long it takes for messages to reach the user from the cloud.

τt,3 = tw + tp + tr (4)

and
τt,u = tw + tp + tu (5)

The assessing procedure presupposes the activity of the
cloud, engaged in multiple concurrent tasks. The cloud's
workload is crucial to emulate signal a realistic operational
environment, accounting for various ongoing tasks. The
time it takes to process data is important because it affects
how long everything takes, which the previous system
didn't consider. So, our evaluation looks at what happens

when things aren't going well. such as network disruptions
leading to prolonged data transmission late signals.
Through analysis, this study verifies that even under such
unfavorable circumstances, the system can maintain
effective control processes, ensuring satisfactory
performance despite challenges.

The next scenario concerns the dissemination of
information to users across varied locations. In specific
circumstances, users may find themselves in complex
situations where they lack the time to monitor the fish
tanksystem actively. Consequently, it becomes imperative
for the system to relay this information to the user. An
advantageous feature of our developed system, not
previously addressed in literature, is its implementation of a
push information mechanism for users. Various time
elements must be taken into account: the late signal in a
device which is used to measure the physical signals -
tocloud data transmission (tw), cloud processing time (tp),
and the late signal in information reaching the user from the
cloud (tu). The collective time span is juxtaposed with the
likelihood of an fish tank encountering a hard times.
Assessing this situation encompasses both normal network
conditions and scenarios of poor network connectivity.
B. ASSESING THE EFFECT OF late signal RECEPTION IN SERVER
Here's the check of the test output for late signals in send of
data across the IoT network from one device to another. For
instance, tw represents the late signaled in transmitting data
from the a device which is used to measure the physical
signals to the cloud, while tp is the process late signal.

FIGURE 8. The late signal tp graph.

FIGURE 9. The late signal tr graph.
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We've measured four types of late signals: tw for a device
which is used to measure the physical signals -to-cloud, tp
for cloud processing, tr for cloud-to-actuator, and tu for
cloud-to-user. Each of these late signals is represented by
some alphabets with some functions fw(tw), fp(tp), fr(tr),
and fu(tu). We've collected data from 3000 measurements
for tw, 3041 for tp, 3000 for tr, and 3022 for tu, all relate

signal to Wi-Fi transmission late
signals. From these measurements,

we've calculate signal the expected values and variances
using Erlang distributions. For example, the expected value
for tw is 0.27704 ms, with a variance of 0.00135.
Similarly, the expected value for tp is 0.05223 ms, with a
variance of 0.0005491. The expected value for tr is 0.28036
ms, with a variance of 0.00131, and for tu, it's also 0.28036
ms, with a variance of...
00131. The histogram for each PDF with an
m and the scale parameter β is formulate signald as follows.

βmtm−1e−βt

and

Z t

fE(t,m,β) =
(m − 1)!

m−1 βktke−βt

(6)

X

fE(τ,m,β)dτ= 1 − (7) τ=0 k=0 k!

where E and V[t] = βm2

FIGURE 10. The late signal tu graph.

FIGURE 11. The late signal tw histogram.

FIGURE 12. The late signal tC graph.

From derivation (6), we can estimate fw(tN,w) using
fE(tN,w,mN,w,βN,w), where the variable is mN,w = 56 and
the scale variable is βN,w..
As discussed earlier, the monitoring and control of the

fish tanksystem involve four time units: tw, tp, tr, and tu.
For instance, if the water temperature gradually rises due to
factors like heater activation or external heat, reaching a
critical temperature, say 25°C, detrimental to the fish,
timely information transmission becomes crucial. At 24°C,
the a device which is used to measure the physical signals
detects the approaching critical conditions (τt,0), signaling
the cloud with a Travel time is the duration it takes to
journey from one location to another. tw. Upon cloud
reception at τt,1, data processing takes tp time, followed by
a response sent at τt,2. Subsequently, the output attained the
fish tank within tr, and the actuator at τt,3. Concurrently,
the cloud notifies the user via a mobile app withThe time it
takes to reach the critical point, tC, from the initial
detection at τt,0 to the actuator at τt,4, must be longer than
the sum of the a device which is used to measure the
physical signals -to-cloud late signal (tw), cloud processing
time (tp), and cloud-to-actuator late signal (tr), or τt,4 > τt,3
and the cloud-to-user late signal (tu), or τt,u.. This dual
control system, activating the actuator and alerting the user,
ensures effective fish tankcondition management. Empirical
testing of temperature rise time to critical points yielded
100 data points, represented by a histogram (Figure 12),
with a measured value tC . Approximating tC with a
Gamma distribution revealed E[tC ] = 712.14s and V[tC ]
= 3.902, yielding shape parameter α = 130.69 and scale
parameter Âµ = 5.464. The PDF curve estimate was
validated through the Kolmogorov-Smirnov suitability test.
It's important to keep the system under control before it
reaches a critical point that could harm the fish. We call this
critical time tC. The time it takes to get information and
activate the actuator is ti, and the time to inform the user is
tj. We need a model to figure out how likely it is to reach
this critical point.A lower probability indicates a more
favorable system. Thus, to avert the system from entering a
hazardous state for the fish, it is imperative to guarantee
that τt,4 > τt,3 or tC > ti, and τt,4 > τt,u or tC > tj. Further
details are provided in
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Appendix B.

FIGURE 13. Impact of network late signal to probability of Pr [tC > ti] and Pr [tC > tj].

mw

Pr[tC > ti] = 1 − k=0

mw

Pr[tC > tj] = 1 −
k=0

In verifying the developed analytical model, testing
involved sample cutted data to validate the both equations.
Then numerous calculations involving time variables tC, ti,
and tj, it was concluded that the probability is exceedingly
small, less than 0.01%. This empirical evidence serves as a
fitting confirmation of the developed analytical model
within the test environment, affirming the system's
effectiveness in monitoring and controlling the fish
tankwithin an IoT context. Subsequently, the next phase of
testing aims to anticipate adverse network conditions,
assuming a significant increase in late signal with expected
values of E[ti] and E[tj], along with their respective
variances V[ti] and V[tj]. By substantially augmenting late
signal values, as depicted in Figure 13, the test results
indicate that the new system remains resilient even when
subjected to an 800-fold increase in late signal, with
probabilities Pr[tC > ti] = 99.9% and Pr[tC > tj] = 84.025%.
This underscores the system's robustness, demonstrating

its ability to maintain control despite deteriorating network
conditions marked by substantial message delivery late
signals within the IoT framework.
Thus far, this Part has provided empirical and

mathematical demonstrations of system testing. Both
methodologies consistently confirm the system's ability to
effectively monitor and control the fish tankthrough the IoT
network, even under adverse network conditions. Despite

the identified accomplishments, several limitations are
evident. Primarily, the system is tailored for a specific fish
tanksize and environmental temperature range. Moreover,
external air conditions exert an influence on system
performance.
Our examinations have confirmed that the suggested

system operates with a discernible late signal, yet
opportunities for enhancement remain evident. The
forefront concepts introduced include edge computing, a
paradigm within cloud-enabled IoT frameworks wherein
intelligent processing migrates from centralized cloud
clouds to local end devices. This notion necessitates the
development of streamlined intelligent model solutions.
Numerous investigations into the quantization of machine
learning models have already been conducted and can be
leveraged for adoption.
V. CONCLUSION
Our study introduces a new system that uses technology to
make aquariums better. It predicts changes in the
environment and can handle late signals. It uses a special
algorithm called decision tree regression (DTR) to make
predictions. The system has different parts like a device which
is used to measure the physical signals s for temperature, TDS,
and dissolved oxygen, as well as a heater, a fan, e-relay, and a
purifier. It also has a computer cloud and an app for your
phone. They talk to each other using something called MQTT.
Our tests show that the system is good at sending data from a
device which is used to measure the physical signals s to the
cloud, processing it, and then making things happen with the
actuators. It's also good at telling users when something's
wrong. We made a plan to make sure data moves smoothly
between all the parts of the system, even if there are big late
signals in the network. We collected a lot of data and found
that the system is very unlikely to have a problem, even if
there are big late signals. Even when there are late signals, the
system still works well, especially in places where the
temperature and water level are stable. In the end, our
research gives us a strong system for controlling aquariums
using technology, and it helps us understand how clouds work,
which hasn't been studied much before.

APPENDIX A

Pr[tC > tw + tp + tr]

Z ∞ Z tC Z tC−tr Z tC−tp

= fC(tC)
tC=0 tr=0 tp=0 tw=0

×f (E)(tr,mr,βr) × f (E)(tp,mp,βp)

×f (E)(tw,mw,βw)dtwdtpdtrdtC (8)

In equation (8), if βw 6= βp 6= βr it is assumed that βr > βp >
βw, we have

Z tC−tp f (E)(tw,mw,βw)dtw
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tw=0

= 1 −

k

−1
k

= 1 −tCk−i(−tp)i
k=0 i=0 mw

= 1 −
tCk−ie−βwtC (−tp)ieβwtp (9)

Substitute (8) and (9) in above

Pr[tC > tw + tp + tr]

Z ∞ Z tC Z tC−tr

= fC(tC)f (E)(tr,mr,βr)
tC=0 tr=0 tp=0

×f (E)(tp,mp,βp)dtpdtrdtC

Z ∞ Z tC Z tC−tr

− fC(tC)f (E)(tr,mr,βr)
tC=0 tr=0 tp=0

×f (E)(tp,mp,βp)

× tCk−ie−βwtC (−tp)ieβwtp (10)

Pr[tC > tw + tp + tr] =M − N

Equation formula M

Z ∞ Z tC Z tC−tr

M = fC(tC)f (E)(tr,mr,βr) tC=0 tr=0

tp=0 ×f (E)(tp,mp,βp)dtpdtrdtC (11)

From equation (11), if βp 6= βw and it is assumed that βp >

βw, then Z tC−tr f (E)(tp,mp,βp)dtp

tp=0
mp−1

h −β (t −t ) i
k=0

m
p

−
1

i

tCk−i(−tp)i

−1

= 1 − k tCk−ie−βptC (−tp)ieβptp (12)
i

k=1 i=0

Substitute (12) and (11)

Z ∞ Z tC

M =

fC(tC)f
(E)(tr,
mr,βr)
dtrdtC

tr
C fC(tC)f (E)(tr,mr,βr)

Xk−i −βptC (−tp)ieβptpdtrdtC

(13)

M = P − Q

with

1 rk

k r t C d t C

Z ∞ Z tC

P = fC(tC)f (E)(tr,mr,βr)dtrdtC (14)
tC=0 tr=0 and

Q is the remainder.

= 1 − XtCk fC(tC)e−βrtC dtC (15)
k=0

Z ∞ tkf (t)extdt(16)
t=0

f C
0

t

C
( t

C

C )

f C

( t

1 mk

C ) mk

r

0

r

0

tC

e

k

tC

e

k

k

h

tC=0

=0

mp−1 k

× k! i tC e k=0 i=0

P
t

1

mr 1
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mr−1

X
x

k=0r

Q

Z tC R fC(tC)tCk−ie−βptCdtC
× f (E)(tr,mr,βr) (21)

tr=0 and
S mr+i−1 ltl e−(βr−βp)tC (β β )

mp X r p dtC
× C

X k−i βptC l!

= k=0 k i=0 tC=0 fC(tC)tC e l=0

mr+i−1 Z ∞

Z tC X

S = fC(tC)tCk−ie−βptC l=0 C=0

P = 1 −

= 1 − (17)
k x=βr

Q

f (C)tCf (E)(tr,mr,βr)

×
×dtrdtC

m −1 k ∞

Q fC(tC)
0

k Z ∞mp−1

Q
X
= k=0 kp! i=0(−1)i tC=0 fC(tC)tCk−ieβptC

×

× dtc
−1 k

Q (−1)i
k=0 i=0

×(R − S) (20)

with

tCk−ie−βptC (−tp)ieβptpdtrdtC

i

http://www.ijcrt.org/


www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT2405341 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d157

×

Z tC tr=0
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Substitute (19) and (18) Q
k

∞

M = P−Q Z tC−tr

× f (E)(tp,mp,βp)tpi eβwtptCk−ie−βwtC
= Pr[tC > tr + tp] tp=0
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×dtpdtrdtC

−

×

Z
for example
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× Z tC
combined with (27) O = f (E)(tr,mr,βr)dtr

mw−1
tr=0
k

k
∞ tC

k

N fC(tC)
=0 i=0 tC=0 =0 k

×f

(E)(tr,mr,βr)tCk−ie−βwtC

×

×
×dtrdtC

mw−1 k

∞ Z
tC

kk × N ( 1)

k=0 k! i=0 i tC=0 tr=0

×fC(tC)tCk−ie−βwtC

Z tC

×
(βp−βw)mp+i(mp−i)!

× (30)

If
×dtrdtCm

Z tC mr+

h i
!

× (29)
Obtaining equation N

−1 k

Ni
k=0 i=0

×

×

1 l=0

l!

×

× g=0 g!

tr=0 f (E)(tr,mr,βr)

Pr[tC > tw + tp + tr] =M − N

x=βr
mr−1 k

m

r
i (βr−βp)mr+i(k−i) k=0 i=0

×

x=βr

i 1 ( p)k mrr

= (−1)i × T × O

×

×
×dtrdtC

(k−i) −βwtC dtC
TfC(tC)tC e
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O = f (E)(tr,mr.βr)dtr
to X

−
l

i
×

×

×

×
mp+1−i

h X g − tr)g
× 1 − (βp − βw)
(tC g=0

×e (31)

APPENDIX B

Pr[tC > ti]
Z ∞ Z tC

= fC(tC)fE(ti,mw + mp + mr,β)dtidtC
tC=0 ti=0

.

Pr[tC > ti]
mw+m +m −1

−

k=0x=β

Z ∞ −xtC dtC = (x µα α

fC (x) = x=0 fC(tC) = e + µ)

Therefore, the equation (32) can be rewritten as follows

Pr[tC > ti]

mw

= 1 −(33)
k=0

With the same pattern, we can look for opportunities to
convey a message to the user, Pr[τt,4 > τt,u] = Pr[tC > tw + tp + tu]
= Pr[tC > tj] as follows

Pr[tC > tj]

mw

= 1 −(34)
k=0
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