AIRPLANE FARE PREDICTION USING
MACHINE LEARNING

1Attada Yamini, 2Kolati Bhavani, 3 Mongam Asha,4 Gandatti Sridhar,5 Manda Sravanti
123UG Students, 4M.Tech(Ph.D.),Assistant Professor,5MCA
1Department of Computer Science and Engineering,
3Satya Institute of Technology and Management,Vizianagaram,Andhra Pradesh,India.

Abstract: Currently, Everyone loves to travel by flights . Going along with the study ,the charge of travelling
through a plane charge now and then which also includes the day & night time.Additionally , it changes with
special times of the year of celebration seasons .There are a unique elements upon which the cost of air
transport depends. For example time of the day ,time of take off , number of stops between them , number of
days remaining in the month will provide the perfect time to purchase the plane ticket. As a result ,it is a
basic understanding of flight rates before booking a vacation will undoubtedly save many individuals money
and time. The goal is to investigate the factors that determine the cost of a flight. The data can be used to
create a system that predicts flight prices.

Index Terms – Machine Learning Algorithms, airfare, supervised learning, predictions, flight, Linear
Regression, Artificial Neural Network, Random Forest.

Introduction:

The flight ticket buying system is to purchase a ticket many days prior to flight take-off so as to stay away
from the effect of the most extreme charge. mostly, aviation routes don’t agree this procedure. plane
organizations may diminish the cost at the time, they need to build the market and at the time when the tickets
are less accessible. they may maximize the costs. so, the cost may rely upon different factors. all organizations
have the privilege and opportunity to change its ticket costs at any time. explorer can set aside cash by booking
a ticket at the least costs. people who had travelled by flight frequently are aware of price fluctuations. the
airlines use complex policies of revenue management for execution of distinctive evaluating systems. the
evaluating system as a result changes the charge depending on time, season, and festive days to change the
header or footer on successive pages. the ultimate aim of the airways is to earn profit whereas the customer
searches for the minimum rate. customers usually try to buy the ticket well in advance of departure date so as
to avoid hike in airfare as date comes closer. but actually, this is not the fact. the customer may wind up by
giving more than they ought to for the same seat.
Methodology

![Data Flow Diagram](image)

Fig. Data Flow Diagram

Data Collection:
The act of obtaining, acquiring, and combining the data that will be used to develop, test, and verify a machine learning model is known as data collection in machine learning. This step plays crucial role in implementation. Here data is collected from flight fare dataset which is imported from Kaggle. The dataset consists of both categorical data and numerical data. The categorical data includes source, destination, type of airline, additional info and numerical data includes arrival and departure dates, number of Stops. There are 11 columns (each represents a feature) and 10683 rows in this large dataset.

Data Preprocessing:
Data preprocessing means nothing but cleaning data, which can be used for model training and testing. By this step we can make our data useful for model training purpose. Data preprocessing involves cleaning, transforming, and preparing the data for data analysis. The sub steps involved in the data preprocessing are:

- **Data Cleaning:** In this step the null values are removed, missing values are removed and if any duplicates are present that are also removed.
- **Feature engineering:** In this step the features of our model are extracted and all the relevant 'label encoding' for ordinal categorical data was used to convert the categorical values to engineering numerical values. The dataset consists of categorical variables like airline, source, destination, route, total number of stops and additional info.

Data Splitting:
This step involves splitting our data into two parts for training and testing purpose. For model training 80 percent of data was used by using Random Forest regressor model was trained. The machine learning algorithms are: LGBM Regressor LGBM stands for Light Gradient Boosted Machine. It is a gradient boosting framework based on decision trees that can be used for various machine learning tasks such as regression, classification and ranking. LGBM Regressor is a class in light GBM package that can be used to train and predict regression models.
Random Forest Regressor:
Random Forest regressor uses multiple decision trees to perform regression tasks. It is an example of ensemble learning. Random forest is a Supervised Learning algorithm which uses ensemble learning approach for classification and regression. Decision trees are sensitive to the specific data on which they are trained. If the training data is changed the resulting decision tree can be quite different and in turn the predictions can be quite different. Also, Decision trees are computationally expensive to train, carry a big risk of overfitting, and tend to find local optimal because they can’t go back after they have made a split to address these weaknesses, we turn to Random Forest.

Model evaluation:
This is an important step in our project, as it helps us to measure the performance and accuracy of our model. Test data is used for model evaluation. Here, we employed Cross-validation for model evaluation. This method divides the data into k-subsets, called folds. the model is trained on k-1 folds and tested on the remaining fold. this process is repeated k times, so that each fold is used as a test set once. The average performance across all k-folds is reported as the final result. The metrics that are used for model evaluation purpose are:

- **Root Mean Squared Error (RSME):** It gives the root of the average squared difference between the actual values and the predicted values for a regression problem.
- **Mean Absolute Error (MAE):** It gives the absolute difference between the actual values and predicted values. The higher negative mean values indicate the better performance of model.
- **R-Squared:** This metric measures how well the regression model fits the data, by comparing it to a baseline model that always predict the mean value. It shows how much variation in the data is explained by the model.

Implementation and Results:
Importing the required libraries.

```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```
Read the Dataset:

Our dataset format might be in .csv, excel files, .txt, .json, etc. We can read the dataset with the help of pandas.

```python
import pandas as pd
df = pd.read_excel(r"C:\Users\attad\Downloads\airline.xlsx")
print(df.head(2))
```

<table>
<thead>
<tr>
<th>Airline Date of Journey</th>
<th>Source Destination</th>
<th>Route Dept time</th>
<th>Arrival time</th>
<th>Duration</th>
<th>Total stops</th>
<th>Additional info</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndiGo 2019-03-24</td>
<td>banglore new delhi</td>
<td>blr to delhi</td>
<td>22:20:00</td>
<td>2h 50m</td>
<td>non stop</td>
<td>no</td>
<td>3897</td>
</tr>
<tr>
<td>AirIndia 2019-05-01</td>
<td>kolkata banglore</td>
<td>ccu to bbi b</td>
<td>05:50:00</td>
<td>7h25m</td>
<td>1 stop</td>
<td>no</td>
<td>7662</td>
</tr>
</tbody>
</table>

Data preprocessing:

The `df.isnull()` method is used to verify that no values are present. We employ the `sum()` function to add up those null values. Two null values were discovered in our dataset, we discovered. We thus start by investigating the data.

```python
import pandas as pd
df = pd.read_excel(r"C:\Users\attad\Downloads\airline.xlsx")
dat = df.dropna()
print(dat.info())
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, 1 to 2
Data columns (total 11 columns):
#    Column               Non-Null Count  Dtype
---  ------               --------------  -----
 0    Airline             2             object
 1    Date of Journey     2             object
 2    Source              2             object
 3    Destination        2             object
 4    Route               2             object
 5    Dept time           2             object
 6    Arrival time        2             object
 7    Duration            2             object
 8    Total stops         2             object
 9    Additional info     2             object
 10   Price               2             int64
dtypes: datetime64[ns](1), int64(1), object(9)
```

Feature Selection: Applying One-Hot-Encoding technique to improve the accuracy by segregate into 0’s and 1’s
While we go through the algorithms we employed (XGBoost, Random Forest, and Decision Tree) and also how they operate in our models, please read the discussion below.

Decision Tree:
The decision tree appears to be the most well-known and commonly employed categorization technique. A decision tree is a collection of nodes that resembles a diagram, for each junction indicating a test on the a characteristic and each branch indicating a test outcome, such that each node in a decision tree (terminal node) has a class label. A tree can be "trained" by dividing the resources collection into subgroups depending on a characteristic values test. This procedure is known as partitioning the data because it is performed iteratively on each derived subset. The recursion ends when all subgroups at a node have the same posterior probability, or when the split no longer adds additional value to the predictions. A decision tree is appropriate for experimental extracting knowledge since it does not need subject matter expertise or parameters configuration.

Assume S is a collection of cases, A is a property, Sv is the subgroup of S with Such a = v, as well as Value (A) is the collection of all number of values of A, then

\[
\text{Gain}(S,A) = \text{Entropy}(S) - \sum_{v \in \text{Value}(A)} \frac{|S_v|}{|S|} \cdot \text{Entropy}(S_v)
\]

Random Forest:
A Random Forest is an ensemble approach that can handle simultaneous regression and classification problems by combining many decision trees using a technique known as Bootstrap as well as Aggregation, or bagging. The core idea is to use numerous decision trees to determine the final result instead of depending on personal decision trees. Random Forest's foundation learning methods are numerous decision trees. We arbitrarily choose rows and characteristics from the dataset to create sample datasets for each model. This section is known as Bootstrap. We simply have to understand the purity in our dataset, and we'll use that characteristic as the root of the tree which has the smallest impurity or, in other words, the smallest Gini index. Mathematically Gini index can be written as:

\[
\text{Index} = 1 - \sum_{i=1}^{n} (P_i)^2 = 1 - [(P_x)^2 + (P_y)^2]
\]

XG Boost:
XGBoost is an effective method for developing supervised regression models. Knowing as to its (XGBoost) goal function and baseline learners can help determine the truth of this proposition. This optimization problem has both a loss function and a regularization component. It makes a distinction between real and theoretical predictions, i.e. how far the model outputs deviate from the real amounts. In XGBoost, the most used standard error in regression problems is quarantine, whereas reg:logistics is used for classifications. The formula may be used to compute the output value of each model.

\[
\text{Output Value} = \sum \frac{\text{Residual}}{\text{no.of Residual}} + \lambda
\]

Results:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training Accuracy</th>
<th>Testing Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>XG Boost</td>
<td>0.92</td>
<td>0.77</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.95</td>
<td>0.78</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>0.97</td>
<td>0.67</td>
</tr>
</tbody>
</table>
FUTURE SCOPE:

- **Optimal date recommendation**: It means suggesting the date to users on which date the flight prices will be minimum.
- **Real-Time Updates**: Dealing with real-time data for dynamic pricing adjustments based on factors like weather, demand, and airline policies.
- **Integration**: Partnering with airlines, travel agencies, and online booking platforms to provide pricing as a value-added service.

CONCLUSION:

In conclusion, the main aim of our project flight fare prediction using machine learning is to predict the prices. We have created a User Interface for the entire process which includes arrival date, departure date, source, destination, etc. Our flight fare prediction project using machine learning has successfully produced a reliable and user-friendly system. We collected, preprocessed, and extracted features from flight fare data, trained a robust random forest model and evaluated its performance. This web application we developed empowers travelers to make informed decisions by predicting flight prices based on their input.

References:

[10] S. Chakravarty, B. K. Paikaray, R. Mishra and S. Dash, "Hyperspectral Image Classification using Spectral Angle Mapper," 2021 IEEE International Women in Engineering (WIE) Conference on 0 0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8 Artificial Neural Network Linear Regression Decision Tree Random Forest MAPE Values Algorithm Applied MAPE RESULTS 177 Electrical and Computer Engineering (WIECON-ECE), 2021, pp. 8 7-90, doi: 10.1109/WIECON54711.2021.9829585.

