
www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT2405240 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c209 
 

Enhanced Gas Detection in Hyperspectral Images 

With 3 CNN and Autoencoder Models 
 

P.Jaya Chowdaiah1          Mrs.K.Rupa2 

1PG student, Vemu Institute of Technology, P. Kothakota. 
2Assistant Professor,Vemu Institute of Technology, P.kothakota. 

ABSTRACT 

This pioneering project tackles the pressing issue of gas emission detection, crucial for environmental and 

human well-being. Conventional detection systems face limitations, prompting the exploration of 

hyperspectral image analysis for a safer and more efficient solution. Introducing a groundbreaking deep 

learning methodology for hyperspectral gas detection in the longwave infrared spectrum, this project merges 

unmixing and classification techniques. Through a specialized 3-D convolutional neural network and 

autoencoder-based network, it converts radiance data to luminance-temperature data, achieving remarkable 

performance surpassing conventional methods. Further innovation extends the approach with an Ensemble 

model, integrating CNN, Bi-directional, and GRU algorithms, enhancing input features for improved 

prediction accuracy. This innovative endeavor underscores the efficacy of modern techniques in addressing 

environmental challenges.  
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INTRODUCTION 

Over the past three decades, imaging spectroscopy 

has been indispensable in identifying materials and 

their compositions, with hyperspectral remote 

sensing emerging in the mid-80s as a powerful tool 

for mineral mapping. As gas leaks become a 

pressing environmental concern, especially in 

developed countries, the need for effective 

monitoring solutions intensifies. Traditional 

methods fall short, prompting the adoption of 

infrared remote sensing technology for safer and 

more efficient gas detection. Forward-looking 

infrared hyperspectral cameras, operating in 

medium-wave and long-wave infrared bands, offer 

a promising approach. Previous studies have 

employed statistical detection methods and signal 

processing operations for gas detection, yet 

innovative approaches are needed. This project 
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pioneers a novel deep learning-based methodology 

for hyperspectral gas detection, aiming to enhance 

environmental monitoring and mitigate risks 

associated with gas emissions. 

LITERATURE SURVEY 

A. Vallières et al 

Standoff detection and quantification of gaseous 

chemicals are vital across various sectors. Meeting 

sensor demands necessitates high sensitivity, 

minimal false alarms, and real-time functionality in 

a portable, durable package. Thermal infrared 

technology has historically facilitated chemical 

sensing, either through spectrometers or imagers. 

However, recent advances in high-speed, large-

format infrared imaging arrays enable unparalleled 

performance in spectral, spatial, and temporal 

domains. Integrating spatial and spectral data 

holds significant promise for enhancing passive 

detection and identification of chemical agents. 

This paper introduces algorithms tailored for 

hyperspectral imagers in the thermal infrared, 

demonstrating their efficacy through field data 

acquired with Telops FIRST imaging spectrometer. 

C. C. Funk et al 

By integrating matched filters with modified k-

means clustering, this study enhances the 

detection of subtle signatures in hyperspectral 

data. Investigating various bivariate scenarios, the 

research elucidates the symbiotic relationship 

between filtering and partitioning, showcasing how 

clustering minimizes within-class variance and 

groups correlated pixels. The modified k-means 

algorithm, operating on image samples iteratively, 

exhibits improved convergence with a novel 

"extreme" centroid initialization method. 

Comparative analysis across different filtering 

formulations demonstrates the superiority of 

clutter matched filters, outperforming simple 

matched filters by an order of magnitude. 

Clustering amplifies filter efficacy by two to five 

times, with clutter matched filtering achieving a 

fifty-fold improvement, enabling the detection of 

faint signals in hyperspectral imagery. 

S. Kumar et al 

Efficient analysis of hyperspectral imagery is crucial 

for swiftly gathering actionable insights on areas 

affected by atmospheric gases like CH4. Current 

methods require manual inspection and 

annotation of massive datasets, posing scalability 

challenges and human error risks. Introducing 

Hyperspectral Mask-RCNN (H-mrcnn), this project 

integrates principled statistics, signal processing, 

and deep neural networks to overcome these 

limitations. H-mrcnn employs fast algorithms to 

analyze large-area hyperspectral data, 

autonomously detecting CH4 plumes through 

match-filtering sliding windows. By optimizing 

matched-filtering and ensemble learning, H-mrcnn 

achieves 85% matching accuracy with expert 

annotation, significantly reducing processing time 

and offering rapid insights into gas plumes. 
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PROBLME STATEMNET: 

Over the past century, industrial advancements 

have propelled global progress, yet the resultant 

waste poses a grave threat to the environment. It's 

imperative to monitor gas emissions from 

industrial sectors to mitigate pollution and 

safeguard our natural surroundings. 

PROPOSED METHOD: 

This paper proposes a novel approach using a 3D-

CNN autoencoder-decoder model to predict 

various gas emissions. Utilizing hyperspectral 

images captured by drones or satellites, the author 

applies the Spectral Angle Mapper (SAM) distance 

formula to discern gas leaks. SAM calculates pixel 

distances, matched against the NIST database, 

linking distance values to specific gases. This 

method enables the identification of gas presence 

in the images by correlating SAM distances, 

providing a valuable tool for detecting and 

monitoring industrial gas emissions. 
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ARCHITECTURE  

 

METHANE AND SULPHUR LEAK DATASET: 

 

In above dataset page we have spectral features and labels for testing and by using above features we are 

training and test performance of propose 3D-CNN model.  

 

 

METHODOLOGY: 1. Dataset Preprocessing: 
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Hyperspectral spectrum images are loaded from 

the dataset, captured by drones or satellites, 

containing features related to gas emissions. 

The dataset labels are adjusted to represent two 

classes: methane and sulfur dioxide leaks. 

Dataset shuffling and splitting are performed to 

create training and testing sets, with 80% for 

training and 20% for testing. 

The dataset is reshaped into 4-dimensional data 

suitable for 3D Convolutional Neural Network 

(3D-CNN) training. 

2. Model Training: Propose 3D-CNN Encoder-

Decoder Model 

A 3D-CNN model architecture is defined, 

comprising convolutional and pooling layers for 

feature extraction. 

Batch normalization and dropout layers are added 

to prevent overfitting and enhance model 

generalization. 

The model is compiled with the Adam optimizer 

and categorical cross-entropy loss function. 

If the pre-trained weights are not available, the 

model is trained using the training dataset. 

Model performance is evaluated using accuracy, 

precision, recall, F1-score, and confusion matrix. 

3. Model Extension: CNN + Bidirectional GRU 

Model 

An extension model is proposed by combining 

Convolutional Neural Network (CNN) with 

Bidirectional Gated Recurrent Unit (BiGRU) 

layers. 

CNN layers extract spatial features, while BiGRU 

layers capture temporal dependencies in the data. 

The model is compiled and trained similarly to the 

propose 3D-CNN model. 

Performance metrics are calculated and compared 

with the propose model. 

4. Evaluation and Analysis: 

Accuracy, precision, recall, and F1-score are 

calculated for both models on the test dataset. 

Confusion matrices are plotted to visualize model 

performance. 

Training accuracy graphs are plotted to compare 

the training progress of both models over epochs. 

Performance graphs are generated to illustrate the 

accuracy, precision, recall, and F1-score of each 

algorithm. 

5. Deployment and Testing: 

The trained models are used to predict gas 

emissions from test data. 

Test data samples are provided, and the models 

predict the presence of methane or sulfur dioxide 

leaks. 

Predictions are evaluated against actual labels to 

assess model accuracy and reliability. 
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RESULTS: 

 

In above finding and plotting graph of different gases emission found in dataset where x-axis contains gas 

names and y-axis contains count of those gas leaks found in dataset 

 

 

In above propose 3DCNN got 88% accuracy and can see other metrics also and in confusion matrix graph x-

axis represents Predicted Labels and y-axis represents True Labels. Yellow and green boxes contains correct 

prediction count and blue boxes contains incorrect prediction count. 
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In above extension model got 93% accuracy. 

 

 

In above graph x-axis represents training epoch and y-axis represents accuracy and green line represents 

propose algorithm and blue line extension training accuracy where extension got high accuracy 
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In above displaying both algorithm performance in tabular format where x-axis represents algorithm names 

and y-axis represents accuracy and other metrics in different colour bars 

 

 

 

 

 

 

Prediction: 

 

In above reading test data and then using extension model predicting type of gas presents in leak where square 

brackets contains Test Data and after arrow symbol we can see predicted and identified Gas Leak Names 
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CONCLUSION 

This study presents a novel approach using 3D-

CNN and autoencoder-based techniques for gas 

detection in hyperspectral images, addressing 

environmental concerns arising from industrial 

activities. Leveraging spectral features and SAM 

distance calculation, the model accurately predicts 

gas emissions, contributing to pollution mitigation 

efforts. While the proposed 3D-CNN model 

achieves an 88% accuracy rate, an ensemble 

extension model, combining CNN, bidirectional, 

and GRU algorithms, achieves a higher accuracy 

of 93%. Through extensive experimentation and 

analysis, this study demonstrates the efficacy of the 

proposed methodology in accurately detecting gas 

leaks, paving the way for future advancements in 

environmental monitoring and pollution control. 
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