Accurate Prediction Of Sepsis In ICU Patients.

Guide - Prof. M. A. Rane
Team - Sneha Bamane, Shweta Maharanawar, Devyani Pathrikar
IT Department, BVCOEW, Pune, India

ABSTRACT:

Sepsis is a potentially life-threatening condition that occurs when the body's response to an infection causes inflammation throughout the body. This inflammation can trigger a cascade of changes that can damage multiple organ systems, leading to organ failure and death if not treated promptly. Early recognition and aggressive treatment with antibiotics and supportive care are crucial for improving outcomes in septic patients. The "Accurate Prediction of Sepsis in ICU Patients" is a project that combines awareness and predictive modeling to address sepsis, a life-threatening condition commonly encountered in intensive care units (ICUs). This project is a robust awareness campaign designed to educate both the general public and healthcare professionals about sepsis. With focusing on generating awareness about sepsis, can lead to early detection and seeking medical help. By bringing the limelight on this disease, it can potentially save lives. Concurrently, advanced machine learning techniques, specifically random forest algorithms, are employed to construct a predictive model for sepsis. This model undergoes meticulous fine-tuning to ensure accurate identification of sepsis risk in ICU patients. It uses a dataset for training the predictive model. The integration of the Sequential Organ Failure Assessment (SOFA) score, including the quick SOFA (qSOFA) criteria, enhances predictive accuracy. The qSOFA criteria play a crucial role in rapid risk assessment for early intervention. Moreover, the project maintains a dedicated website that serves as an essential platform for sepsis education and the dissemination of the predictive model to the medical community.

Keywords: Sepsis, ICU, SOFA, qSOFA, Random Forest, Predictive Modelling, Awareness Campaign

1. INTRODUCTION

Sepsis, a life-threatening condition triggered by infections, remains a critical concern within the realm of intensive care units (ICUs). It is a serious medical condition that can occur due to bacterial, viral, or fungal infections in the bloodstream. When a person has an infection, it causes inflammation in the body, which releases a chemical called cytokines. These cytokines have different effects on the body's tissues, including recruiting immune cells to fight the infection. However, some cytokines can also make blood vessels leaky, causing white blood cells to move from the bloodstream to the tissues. This process leads to the release of heat, redness, and swelling in the affected area. If sepsis
is left untreated, it can progress to severe sepsis and septic shock, which can be fatal. In response to this issue, we present the "Accurate Prediction of Sepsis in ICU Patients" project. This initiative is driven by a dual commitment: raising awareness about sepsis and harnessing the power of predictive modeling to revolutionize patient care within ICUs.

At its core, it prioritizes education and awareness. Our efforts extend to both the general public and healthcare professionals, as we recognize the significance of knowledge in the battle against sepsis. By raising awareness about the gravity of sepsis and the paramount importance of early detection and intervention, we aim to empower individuals to recognize its signs and seek immediate medical attention.

In parallel, the project leverages advanced machine learning techniques, specifically logistic regression algorithms, to construct a predictive model for sepsis. The model's rigorous finetuning is aimed at achieving accurate identification of sepsis risk in ICU patients. This predictive tool represents a critical advancement in healthcare, offering the potential for early interventions and improved patient outcomes.

Our data-driven approach encompasses comprehensive data pre-processing, addressing class imbalances within the dataset. Additionally, the integration of the Sequential Organ Failure Assessment (SOFA) score, including the quick SOFA (qSOFA) criteria, enhances predictive accuracy by evaluating organ failure trajectories and risk factors.

Moreover, the project maintains a dedicated website, serving as an essential platform for sepsis education and the dissemination of the predictive model to the medical community.

2. LITERATURE REVIEW

Anurag Shankar, Mufaddal Diwan, Snigdha Singh, Husain Nahrpurawala and Tanusri Bhowmick [1] underscore the significance of the Sequential Organ Failure Assessment (SOFA) score and elucidate the challenges inherent in achieving timely sepsis diagnosis. This seminal work sets the stage for subsequent research endeavors by highlighting the potential of ML in addressing these challenges.

B. C. Srimedha, Rashmi Naveen Raj, and Veena Mayya [2] present a thorough investigation into four prediction algorithms—Random Forest, Logistic Regression, Gradient Boosting, and Decision Tree—while also examining the impact of various imputation techniques. This comprehensive pipeline offers valuable insights into the development of robust ML models for accurate early prediction of sepsis in ICU settings.

Guilan Kong, Ke Lin, and Yonghua Hu [3] focus on leveraging ML techniques to predict in-hospital mortality among sepsis patients in the ICU. The study develops ML models, including the Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), Gradient Boosting Machine (GBM), and Logistic Regression (LR), demonstrating their effectiveness in mortality prediction.

Yash Veer Singh, Pushpendra Singh, Shadab Khan, and Ram Sewak Singh [4] propose a novel ML model for early sepsis prediction in ICU patients, leveraging data from clinical laboratory values and vital signs. By comparing various models, such as Support Vector Machine (SVM), Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), and XGBoost, the study identifies an ensemble method that shows promising results in terms of classification performance and prognosis improvement.

Longxiang Su, Zheng Xu, Fengxiang Chang, Yingying Ma [4] focus on harnessing ML techniques to anticipate in-hospital mortality among sepsis patients in the ICU. The study develops several ML models, including LASSO, RF,
GBM, and LR, to predict mortality, severity, and length of stay, contributing to a comprehensive understanding of sepsis prognosis.

3. SYSTEM ARCHITECTURE

![System Architecture Diagram]

The system architecture for the Accurate Prediction of Sepsis in ICU Patients is designed to seamlessly integrate technology, education, and clinical insights to address the pressing issue of sepsis in intensive care units (ICUs).

1. **Input Data**: The architecture begins with the input data, which comprises a set of vital signs and clinical parameters from ICU patients like Blood Pressure, Respiratory Rate, Heart Rate, etc.

2. **SOFA Score Calculation**: The SOFA score is a comprehensive assessment that evaluates the patient's condition across various organ systems, which include Respiratory System, Nervous System, Cardiovascular System, Liver, Coagulation, and Kidney. Machine learning algorithms are employed to calculate the SOFA score by considering the values of these organ systems. The resulting score indicates the patient's overall health.

3. **qSOFA Score Calculation**: In contrast to SOFA, the qSOFA score is a more rapid assessment that focuses on three key criteria that are Blood Pressure, Respiratory Rate, and Altered Mentation. We use machine learning techniques to calculate the qSOFA score, enabling quick predictions of sepsis risk.

4. **Prediction Outcome**: Both the SOFA and qSOFA scores play a crucial role in our sepsis prediction. These scores are used as features to train machine learning models. The architecture integrates these scores with other clinical insights to enhance prediction accuracy.

4. **Prediction Outcome**: Both the SOFA and qSOFA scores play a crucial role in predicting sepsis risk in ICU patients. These scores, along with other clinical insights derived from the input data, serve as features for training machine learning models.
Machine learning models are trained using datasets that incorporate patient data along with corresponding sepsis outcomes. These models learn patterns and relationships within the data to predict the likelihood of sepsis development in ICU patients accurately.

The integration of SOFA and qSOFA scores, along with other clinical features, enhances the prediction accuracy of the models, enabling early detection and intervention to mitigate the risks associated with sepsis.

Machine learning techniques are utilized to calculate the qSOFA score, enabling rapid assessment and prediction of sepsis risk. This score provides a quick indication of the likelihood of sepsis in ICU patients.

4. METHODOLOGY

Web Interface:

The web interface is designed to be intuitive and user-friendly, accessible to both healthcare professionals and the general public. It features a predictive model powered by the Random Forest algorithm, trained on a comprehensive dataset of ICU patient data encompassing vital signs, laboratory results, and demographic information. Additionally, the interface integrates educational content on sepsis, including information on its awareness, symptoms, underlying causes, and precautionary measures.

Functionality:

Upon accessing the web interface, users are greeted with a dashboard providing options for sepsis severity prediction and educational resources. The prediction module allows clinicians to input patient data and receive predictions on sepsis severity, categorized as low, medium, or high risk. The results are presented in a clear and interpretable format, aiding clinicians in making informed decisions regarding patient care. Simultaneously, the educational section of the interface offers comprehensive information on sepsis, covering its definition, epidemiology, risk factors, common symptoms, underlying causes, and recommended precautions. Interactive features such as infographics, videos, and quizzes enhance user engagement and facilitate a better understanding of sepsis-related concepts.

Educational Content: The website serves as a platform for educating both the general public and healthcare professionals about sepsis. This could include articles, infographics, videos, and other resources to raise awareness about the condition and its early detection.
2. Explanation of Predictive Model: The website should provide an overview of the predictive model employed in the project. This explanation could include details on the use of logistic regression algorithms, the integration of SOFA and qSOFA scores, and how these factors contribute to accurate prediction of sepsis risk.

3. Data Input Interface: Users may interact with the website to input relevant data for predicting sepsis risk. This interface could include fields for entering vital signs and clinical parameters, such as blood pressure, respiratory rate, heart rate, etc.

4. Visualization of SOFA and qSOFA Scores: The website can display the calculated SOFA and qSOFA scores for users to better understand the patient's overall health status and sepsis risk.

5. Prediction Outcome Display: Users can view the prediction outcome generated by the machine learning model based on the input data and calculated scores. This could include a risk assessment of sepsis and recommendations for further action.

6. Accessibility Features: Ensure the website is accessible to a wide audience, including individuals with disabilities. This may involve implementing features such as alternative text for images, keyboard navigation, and compatibility with screen readers.

7. Flask Web Framework: The Flask web framework serves as the backbone of the digital platform. It handles user requests, routes them to the appropriate components, and ensures seamless communication between the user interface and the server.

- Feature selection:

Feature selection helps to select some specific features from the set of features which helps the model to make predictions.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HR</td>
<td>Heart Rate (Beats Per Minute)</td>
</tr>
<tr>
<td>2.</td>
<td>DBP</td>
<td>Low (Diastolic) Blood Pressure (mm Hg)</td>
</tr>
<tr>
<td>3.</td>
<td>SBP</td>
<td>High (Systolic) Blood Pressure (mm Hg)</td>
</tr>
<tr>
<td>4.</td>
<td>O₂Sat</td>
<td>Pulse oximetry (%)</td>
</tr>
<tr>
<td>5.</td>
<td>Altered Mentation</td>
<td>Glasgow Coma Scale (GCS)</td>
</tr>
<tr>
<td>6.</td>
<td>RR</td>
<td>Respiratory Rate (Breaths Per Minute)</td>
</tr>
<tr>
<td>7.</td>
<td>Temp</td>
<td>Temperature (Deg C)</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8.</td>
<td>Liver</td>
<td>Bilirubin (mg/dL)</td>
</tr>
<tr>
<td>9.</td>
<td>Creatinine</td>
<td>Kidney Function (mg/dL)</td>
</tr>
<tr>
<td>10.</td>
<td>Coagulation</td>
<td>Platelets (count (\times 10^3/\mu L))</td>
</tr>
<tr>
<td>11.</td>
<td>Respiratory System</td>
<td>Respiratory System ((P_{A_02}/F_{I_02}))</td>
</tr>
</tbody>
</table>

These parameters encompass physiological, clinical, and laboratory measurements that are relevant for assessing sepsis severity and predicting patient outcomes. Feature selection involves identifying the most informative subset of these parameters to build predictive models for sepsis prediction.

- **Model Training:**

1. **Dataset Splitting:**
 - The dataset containing ICU patient data, including features such as vital signs, laboratory results, and demographic information, is divided into two subsets: a training set and a testing set.
 - The training set is used to train the Random Forest, while the testing set is kept separate for evaluating the trained model's performance.

2. **Training the Random Forest Model:**
 - With the training set prepared, a Random Forest is trained using this data.
 - Random Forest builds an ensemble of decision trees, where each tree is constructed using a bootstrapped sample of the training data (sampling with replacement).
 - At each node of each decision tree, a random subset of features is considered for splitting, rather than using all available features. This randomness helps to de-correlate the trees and reduce overfitting.

3. **Hyperparameter Optimization:**
 - The Random Forest classifier has several Hyperparameter that control its behaviour during training.
 - Key Hyperparameter include:
 - **Number of trees (n_estimators):** Determines the number of decision trees in the forest. Increasing the number of trees may improve model performance but also increase computational cost.
 - **Maximum depth of trees (max_depth):** Specifies the maximum depth allowed for each decision tree. Deeper trees can capture more complex relationships in the data but may lead to overfitting.
 - **Minimum samples per leaf (min_samples_leaf):** Sets the minimum number of samples required to be at a leaf node. This parameter helps control the size of the leaves and prevent overfitting.
 - **These Hyperparameter can be optimized through techniques like grid search or random search, where different combinations of Hyperparameter values are tested, and the best combination is selected based on performance metrics.**
5. RESULTS

In our study on the accurate prediction of sepsis in ICU patients, we compared the performance of four different prediction models: Random Forest (RF), Naive Bayes, Logistic Regression, and Support Vector Machine (SVM). Each of these models was trained using a dataset containing ICU patient data, including vital signs, laboratory results, and demographic information. Approximate accuracy of models is mentioned below:

- Random Forest (RF): 75%
- Naive Bayes: 68%
- Logistic Regression: 64%
- Support Vector Machine (SVM): 63%

![Sepsis Prediction Validation Accuracy for Different Classifiers](image)

Fig 3. Accuracy Comparison

6. CONCLUSION

In conclusion, our project represents a pioneering endeavour that addresses the critical issues of sepsis awareness and early detection in intensive care units (ICUs). By integrating education, technology, and clinical insights, this project strives to create a holistic approach to sepsis management, with the ultimate goal of improving patient outcomes and reducing sepsis-related fatalities.

Through a user-friendly web interface and educational content, the project empowers individuals, both healthcare professionals and the general public, with the knowledge and tools to recognize sepsis symptoms early. This educational component, combined with the implementation of the Random Forest Regress or algorithm fine-tuned for accuracy, ensures rapid and accurate sepsis risk assessment.
The project’s significance is underscored by the potential to save lives and contribute to a healthier future. By raising sepsis awareness, fostering early detection, and ensuring the ethical and secure handling of healthcare data, the project sets a precedent for the successful integration of education and technology in healthcare practices.

As we look ahead, the project not only holds the promise of reducing the burden of sepsis but also serves as a model for addressing critical medical conditions through interdisciplinary collaboration. With its commitment to improving patient-centered care, the project stands as a testament to the potential of innovation in healthcare, setting a course toward a brighter and healthier future for all.

7. FUTURE SCOPE

In the future, advancements in sepsis prediction and early intervention hold significant promise for improving patient outcomes and reducing the burden on healthcare systems. The integration of real-time monitoring, predictive analytics, and wearable health devices offers opportunities for continuous monitoring and early detection of sepsis outside the ICU setting, enabling timely interventions and potentially preventing the progression to severe sepsis or septic shock. Personalized risk stratification models, informed by genomic and proteomic analysis, can enhance the accuracy and specificity of sepsis prediction, allowing for targeted interventions and tailored treatment approaches. Moreover, the integration of telemedicine platforms facilitates remote monitoring and consultation, extending the reach of sepsis prediction systems to diverse patient populations and geographic regions. Collaborative efforts between clinicians, data scientists, and technology developers will be essential to drive innovation in sepsis prediction algorithms, refine predictive models, and ensure seamless integration with electronic health records for efficient clinical decision support. Patient engagement and education initiatives will play a crucial role in raising awareness about sepsis prevention and management, empowering individuals to recognize early warning signs and seek timely medical assistance.

8. REFERENCES

