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Abstract:  The field of data visualization has long aimed to devise solutions for generating visualizations 

directly from natural language text. Research in Natural Language Interfaces (NLIs) has contributed towards 

the development of such techniques. However, the implementation of workable NLIs has always been 

challenging due to the inherent ambiguity of natural language, as well as in consequence of unclear and poorly 

written user queries which pose problems for existing language models in discerning user intent. Instead of 

pursuing the usual path of developing new iterations of language models, this study uniquely proposes 

leveraging the advancements in pre-trained large language models (LLMs) such as ChatGPT and GPT-3 to 

convert free-form natural language directly into code for appropriate visualizations. This paper presents a 

novel system, Chat2VIS, which takes advantage of the capabilities of LLMs and demonstrates how, with 

effective prompt engineering, the complex problem of language understanding can be solved more efficiently, 

resulting in simpler and more accurate end-to-end solutions than prior approaches. Chat2VIS shows that 

LLMs together with the proposed prompts offer a reliable approach to rendering visualizations from natural 

language queries, even when queries are highly mis specified and underspecified. This solution also presents 

a significant reduction in costs for the development of NLI systems, while attaining greater visualization 

inference abilities compared to traditional NLP approaches that use hand-crafted grammar rules and tailored 

models. This study also presents how LLM prompts can be constructed in a way that preserves data security 

and privacy while being generalizable to different datasets. This work compares the performance of GPT-3, 

Codex and ChatGPT across several case studies and contrasts the performances with prior studies 

 

Index Terms: ChatGPT, codex, end-to-end visualisations from natural language, GPT-3, large language 

models, natural language interfaces, text-to-visualisation. 

INTRODUCTION 

The ability to generate visualizations based on natural language (NL) text has long been a desirable goal in the 

field of data visualization. Research into Natural Language Interfaces (NLIs) for visualization has emerged as 

the primary field that has recently spearheaded the advancements in this area [1], [2]. These interfaces allow 

users to generate visualizations in response to NL queries or prompts that are free from programming and 

technical constructs, thus providing flexible and intuitive way to interact with data. The ultimate aim is to 

devise systems enabling users to express queries like ‘‘Show me the sales trend?’’ which are correctly 

understood and depicted by automatically discerning the correct chart type. 

 The data visualization paradigm can be difficult to learn for users [3] who must translate their analysis 

intentions into tool-specific operations which may take the form of point-and-click applications or code in 

various programming languages. Therefore, NLIs can improve the usability of visualization tools [4] by 

making them more convenient and novice-friendly as well as effective, and ultimately, inclusive for a broader 
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range of users. As such, approaches like NLIs have the potential to make data and insights more accessible to 

a wider audience and lower the barrier by allowing users to express their queries and analysis intentions in a 

form that is most natural to them. 

The process of translating NL inputs into visualizations (NL2VIS) involves several non-trivial tasks. Generally, 

the input query is first parsed and modelled, then the required data attributes are identified, and the low-level 

analytic tasks expressed within the query are discerned. These low-level tasks, such as filtering, correlation, 

and trend analysis, must then be translated into code to be executed. Finally, the input query is analyzed and 

matched with the most appropriate visualization, and then code is invoked to render the data. Each component 

in the pipeline is error-prone. 

The performance of NLIs for visualizations is largely dependent on Natural Language 

Processing(NLP)models[6] and their robustness in understanding NL. A recent com prehensive survey [6] of 

the use of NLIs for visualizations noted hat while mos  existing approaches utilize   hand-crafted grammar rules 

that require proficiency with typical NLP toolkits, more complex large language models (LLMs) like GPT-3 

which are capable of achieving human-level performance on specific tasks [7] have not yet been implemented 

or explored for visualisation generation directly from NL. LLM shave revolutionised the field of NL 

understanding and generation. These models are based on the transformer architecture [8] which has 

demonstrated remarkable successes in tasks such as sentiment analysis, question-answering, and language 

generation owing both to the effectiveness of the architecture, and also due to them being trained on vast 

amounts of data. The data used to train these models typically comes from the internet and can include websites, 

books, and code repositories. As a result of being trained on such a large amount of data, LLM shave developed 

a comprehensive understanding of the structure and meaning of language, allowing them to perform tasks in a 

highly sophisticated manner, but also important his study, the ability generate code in response to NL requests. 

For these reasons, LLMs offer the potential to accurately understand free-form NL input and the capability to 

convert it into functional code that generates suitable visualizations which correctly pair with the underlying 

data types. 

This study is the first of its kind to propose an end-to-end NL2VIS solution which converts free-form 

conversational language into visualisations via LLMs. The present work leverages the most recent advances in 

LLM technologies and AI in general, specifically investigating ChatGPT and GPT-3, which are considered 

state-of-the art [7]. The advantage of using pre-trained LLMs for this task is that they offer not only accuracy 

gains in robustly under standing user requests, even when malformed, but they also result in accelerated 

development turnarounds and a significant decrease in costs. Despite the capabilities of these mod els to display 

human-like performance on specific tasks, the integration of LLMs with NLIs for visualisation has not been 

explored in published literature. Therefore, this study seeks to examine the capability and comparative 

performances of two types of GPT-3 models and ChatGPT for NL2VIS tasks that also include the automatic 

selection of chart types, through numerous experiments and examples. The experi ments demonstrate the 

potential of the LLMs to enhance the performance of NL2VIS in terms of accuracy, efficiency, and cost 

reduction, thus potentially minimising the need to devise new language models for this problem going forward. 

This work also demonstrates how LLMs can be used in a manner that is data-privacy preserving and security-

aware, making the approach generalise able to all types of datasets, irrespective of confidentiality concerns. In 

the process, this study shows how prompts for LLMs can be engineered to elicit desired outputs. Furthermore, 

the system developed here has also been made publicly available through an online application for testing and 

experimentation, with the ability for users to upload their datasets and generate visualisations 

 

RELATED WORK: 

 In recent years, the idea of using NL as a way to create visualisations has gained significant attention within 

the field of data visualisation [4], [9]. The use of NLIs has also grown in popularity in commercial software 

as a means of improving the usability of visualisation systems. Various tools, such as IBM Watson Analytics, 

Microsoft Power BI, Tableau, ThoughtSpot, and Google Spreadsheet, have to varying degrees implemented 

NLIs that allow users to generate visualisations in response to NL queries or prompts [1], [3], [4], [10], [11] 

indicating the level of demand for this innovation. These are early commercial iterations of this technology 

as these systems typically constrain NL interactions to data queries and standard chart types, and do not 

support more complex or open-ended visualisation tasks [3]. NL modelling techniques, which underpin 

NL2VIS, can broadly be categorised into traditional symbolic-based NLP approaches which rely on explicit 

rules and representation of the language structure and the emerging neural machine translation methods 

which rely on language models devel oped typically through deep learning [10].  
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FIG. 1 DEPICTS THERECENT EVOLUTION OF NL2VIS SYSTEMS IN PUBLISHED LITERATURE,2 AND THEIR 

TREND TOWARDS MORE SOPHISTICATED MACHINE LEARNING APPROACHES, WHERE THE AUTHORS IN THIS 

STUDY POSIT THAT THE LOGICAL TRAJECTORY IS POINTING IN THE DIRECTION OF USING THE MOST ADVANCED 

AI SYSTEMS LIKE LLMS FOR LANGUAGE UNDERSTANDING AND CODE GENERATION 

Models: 

A. SYMBOLIC NLP APPROACHES: 

Symbolic approaches to NLP can involve heuristic, rule based and probabilistic grammar-based approaches 

for parsing and understanding NL. Heuristic algorithms use pre-defined rules or heuristics to find 

approximate solutions for complex problems like NL and tend to be less accurate than other methods [13]. 

Meanwhile, rule-based approaches rely on predefined rules created by experts for understanding NL. They 

are more accurate and reliable but, also less flexible in handling complex queries [9]. Probabilistic grammar-

based approaches use formal grammar rules and probability distributions over the possible parses of a given 

input. These approaches are considered more accurate as well as flexible than the previous approaches but 

require more computational resources. Each of these approaches presents complexities and can be time-

consuming and challenging to resolve especially for developers without prior experience [1]. The majority 

of the earlier systems have been developed using these approaches [11], including Articulate [14], Data 

Tone [15], Eviza [16], and Deep-Eye [17], with each using distinct methodologies for mapping NL queries 

to visualisations. Certain systems also allow for user interaction to manage ambiguities. Meanwhile, recent 

state-of-the-art stud ies like NL4DV [1] and Flow Sense [18] using symbolic NLP approaches have relied 

on semantic parsers such as NLTK [19], NER, and Stanford Core NLP [20], to automatically add layers of 

valuable semantic information, such as parts-of-speech (PoS) tagging and named entity recognition to the 

NL input which improves accuracy. NL4DV [1], 

an open-source Python toolkit, accepts NL queries for a given dataset and outputs a JSON object with keys 

for dataset attributes, analytical tasks, and Vega-Lite visualisation specifications. This framework enables 

those who lack NLP expertise to harness NL2VIS concepts by creating NLIs or rendering the output in their 

own systems. 

 

B. DEEP-LEARNING MODEL APPROACHES: 

 A more promising route has been highlighted by recent advancements in NL2VIS systems which have 

shifted the focus towards neural end-to-end models that leverage deep learning. These approaches combine 

the processes of language understanding, reasoning and chart generation in a single system and are closer 

to the proposed system in this study. These approaches aim to achieve greater robust ness, flexibility and 

adaptability compared to traditional methods [9]. One notable system developed along these lines is ADVI 

Sor [21]. ADVIS or comprises multiple customised deep learning modules for determining the necessary 

visualisation data and appropriate attributes, as well as the filter and aggregation operations. These models 

are underpinned by the large language transformer-based BERT [22] model which performs the 

vectorisation of user input and the data attribute names for subsequent steps. Meanwhile, the chart type is 

chosen based on a predefined rule map.Net [4] is a novel approach which also uses transformer-based 

models and visualisation-aware optimisations. Net is a machine learning model that is trained using the 
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Bench [23] dataset, which maps natural language queries to visualisations. The system accepts the NL query 

and an optional chart template as an additional input to constrain the possible visualisations being outputted. 

The approach has been evaluated through a quantitative evaluation as well as a user study, and has shown 

promising accuracy in the nv Bench benchmark. Recently, this system has been extended to include speech-

to-visualisation capabilities [11]. Meanwhile, a system called RGV is Net [5] was developed that decouples 

the NL2VIS process into two subtasks which consist of a hybrid retrieval and a generation framework. The 

first part of the system retrieves the most relevant visualisation query from a large-scale visualisation 

codebase which serves as a candidate prototype that is refined in the next step by a GNN-based deep-

learning model. Summary of Literature and Research Aims: The trends in NL2VIS research highlight that 

the focus is moving towards using transformer-based deep learning models and end-to-end solutions, and 

away from the complex task of engineering symbolic-based language models. Recent advancements, such 

as the use of pre-trained language models like BERT and domain-specific models like nc Net, have shown 

promising results in various benchmarks. However, there is a gap in the literature exploring the recent state 

of-the-art pre-trained LLMs which are significantly larger and more sophisticated. This work aims to 

address this gap and examines the potential to simplify the NL2VIS pipeline, while making it more robust 

for free-form NL and complex visualisation tasks. Additionally, while advanced systems like ADVIS or 

[21] and ncNet [4] rely on various explicit mechanisms for determining which types of visualisations are to 

be rendered, the proposed system addresses this gap by investigating the ability to delegate the chart 

selection decision-making to the AI component. 

      

 
 

C. RESEARCH QUESTIONS:  

In light of the existing literature, this study poses the following research questions: • (RQ1) Do current 

LLMs support accurate end-to-end generation of visualisations from NL? • (RQ2) How can LLMs be 

effectively leveraged to elicit the generation of correct and appropriately rendered charts? • (RQ3) Which 

LLMs tend to perform more robustly to NL prompts? How do they perform against other state of-the-art 

approaches? • (RQ4) What are the limitations of using LLMs for NL2VIS as well as the future research 

directions? 

 

 METHODOLOGY: 

 This study explored the ability of three OpenAI LLMs to generate Python scripts for visualising data based 

on NL queries without explicit direction as to which types of graphs to generate. The models chosen for this 

investigation include the most advanced model family, Davinci, specifically the GPT-3 model ‘‘text-

davinci-003’’ and the Codex model ‘‘code-davinci-002’’, as well as the most recent addition, ChatGPT.3 

The Davinci model family consists of billions of param eters,4 and is widely considered to be the most 

capable of all available models in its ability to follow instructions. This model family is based on GPT-3, 

with the Codex model receiving additional training data from a massive quantity of GitHub repository code. 
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This makes the Codex model particularly well-suited for translating NL into code, being proficient in over 

a dozen programming languages, with Python being the target language in this study. Fig. 2 depicts the 

overview of the developed Chat2VIS system. A user enters a NL query via a Stream lit NLI app which is 

an open-source Python framework for web-based dashboards. The query is combined with a prompt script 

which engineers a suitable prompt for a selected dataset. The prompt  is forwarded to selected LLMs, which 

return a Python script that is subsequently rendered within the Stream lit NLI. 

 

A. NATURAL LANGUAGE INTERFACE: 

The interface for the Chat2VIS software artefact used in this study is depicted in Fig. 3. The interface enables 

users to select a dataset and enter free-form text describing their data visualisation intent. The side toolbar 

provides the functionality to import additional CSV files and SQLite databases, with options to choose the 

desired LLMs to render the visualisations. An OpenAI Access Key is required to access the models and 

must be entered prior to querying. An input box is provided for entering the NL free-format text. 

Visualisations are presented for each selected model, with the actual dataset also shown to the users. 

 

B. PROMPT ENGINEERING:  

The most effective method for obtaining the desired output from the LLM is to use the ‘‘show-and-tell’’ 

technique5 by supplying within the prompt an example together with instructions. The proposed system 

generates an LLM prompt consisting of two parts: (1) a Description Prompt built from a Python docstring 

and declared using triple double quotes ‘‘"’’ at the beginning and the end of the definition, (2) a Code Prompt 

comprising of Python code statements that provides guidance and a starting point for the script. The structure 

of the prompt is presented in Fig. 4 and is described by way of an example dataset, using the products table 

from the nvBench database6 department_store, pre-loaded into data framedf_products. For context, the 

example dataset lists the prices for a selection of clothing products such as coloured jeans and tops, together 

with hard ware products like monitors and keyboards. There are four columns, product_id, 

product_type_code, product_name and product_price which have data types int64, object, object and f 

loat64 respectively. The Description Prompt and the Code Prompt shown in Fig. 4 are depicted in 

components in order to aid their explanation. The bolded type highlights substitution values which are 

variable and dependent on the chosen dataset and are thus specific to this illustration. These provide an 

overview of the DataFrame (a tabular data object) to the LLM, listing column names, their data types and 

categorical values, which assists the LLM in  understanding the context, while maintaining d ata privacy by 

withholding the actual raw values from being sent to the LLMs. Each component of the proposed prompt is 

described as follows: 1) The Description Prompt is initiated with a Python doc string Fig. 4(a) 2) In Fig. 

4(b) the LLM is explicitly informed to use a DataFrame with the name df which enables a reference to be 

made to this DataFrame by a specific name, thereby avoiding any confusion that might arise if the LLM 

were toassign a different name to the Data Frame. Even though it was opted to utilise a pre-loaded CSV f 

ile, there may be instances when the LLM (typically ChatGPT) includes code for loading the file. By 

anticipating the file name as data_file.csv, one can easily identify and eliminate this code if required before 

execution. 3) The Description Prompt in Fig. 4(c) consists of one entry for each column indicating its data 

type. 

 

TABLE 1. API parameters 

 
 If a columnwithanobjectdatatypehaslessthan20distinct values, it is deemed as a categorical type, and its 

values are enumerated in the prompt. This listing could aid the LLM in identifying keywords for certain 

requests, for instance, prompts relating to keyboards or black jeans in this example. 4) In Fig. 4(d) the LLM 

is asked to decide on appropriate naming for the x and y axes, and the plot title. In some cases, when working 

with grouped data, particularly box plots, the LLMs add a plot super-title unnecessarily. To address this, it 

is recommended to remove it by using positive instructions and explicitly setting it to empty. 5) To 

encourage correct syntax, the Python version is included as shown in Fig. 4(e). 6) The Description Prompt 

concludes with an instruction to create a plotting script with the supplied user query in Fig. 4(f). 7) For this 

demonstration, the submitted NL query from nvBench is: What is the highest price of product, grouped by 
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product type? Show a bar chart, and display by the names in desc. 8) The Python docstring in Fig. 4(g) 

closes off the Description Prompt 9) The Code Prompt begins with import statements for the required Python 

packages that is deemed helpful for the LLM stouse in Fig. 4(h). 10) To foster uniformity in the plot layout, 

the prompt asks for a single subplot with a fixed figure size in Fig. 4(i) in an attempt to render equivalently 

sized plots on the interface. 11) By assigning a copy of the named DataFrame in Fig. 4(j) to the variable df 

in the Code Prompt, con sistency is ensured within the script and enables the original Data Frame to be 

retained for further querying. Once formulated, the two prompt elements are amalga mated, with the 

resulting string submitted to the LLM sviathe text completion endpoint API with settings shown in Table. 

1. Unspecified parameters remain at their default values. With many variations to Python scripting, the 

model temperature is set to 0tohelpensuretheLLMislesscreativeandmore consistent in its code generation. 

To encourage the model to avoid any unnecessarily long script responses, a token limit of 500 is enforced 

for responses. The authors believe this limit is sufficient for generating a Python script within the context 

of this study. A stopping point is specified to avoid returning multiple script examples and code alternatives. 

 

B. SCRIPT REFINEMENT AND RENDERING:  

On the return of the script from the API for each model, the Code Prompt is inserted at the start and the Python 

code may be     edited to eliminate unnecessary instructions. It is rendered on the interface for each LLM. To 

further enhance the visualisations, users can refine their NL query, including requesting alternative chart types, 

plot colours, labels etc. 

 

C. Chat2VIS EVALUATION:  

The capabilities of the proposed Chat2VIS system to render visualisations based on NL input via LLMs, 

and their unique decision-making skills in autonomously selecting appropriate charting elements are 

demonstrated over six case studies covering five datasets. Four of these case studies are repro duced 

from examples in existing literature, comparing the resulting visualisations here with those from prior 

studies using nvBench SQLite databases7 and the NL4DV Python package.8 One case study is taken 

from NL4DV [1], one from ADVISor [21] in which the authors also use NL4DV in their evaluation, 

and the final two using databases from nvBench [23]. In the remaining two case studies, this study tests 

the capabilities of the LLMs and the prompt scripts to handle misspecification in the form of 

typographical errors as well as acute under specification, where the ability of the LLMs to exhibit 

reasoning and assumptions in the context of the priming text is explored. The results are inspected and 

evaluated visually for cor rectness and suitability. All case study examples are also reproducible from 
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the online web app. The non-deterministic nature of the LLMs does occasionally lead to variability in 

plot generation even when an identical prompt is resubmitted 

 

 RESULTS:  

A. CASE STUDY 1:  DEPARTMENT STORE DATASET The first example is based on the products 

table illustrated above in the description of the prompt engineering which originated from the nvBench 

department_store database. The test query is as follows: ‘‘What is the highest price of product, grouped 

by product type? Show a bar chart, and display by the names in desc.’’. The query is categorised by 

nvBench as an easy visualisation for NLI systems. Fig. 5 shows results generated by Chat2VIS alongside 

the correct nvBench visualisation. GPT-3 and Codex produce identical results, with ChatGPT rotating 

labels for ease of reading and arguablypro viding a slightly more comprehensive title. All three LLMs 

provide more informative x and y axis labelling and titles than the ground truth example from nvBench. 
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B. CASE STUDY 2: COLLEGES DATASET This dataset holds information on students and staff at U.S. 

public and private colleges. The colleges dataset9 was usedion and Sample 

 
B. CASE STUDY 2:  

COLLEGES DATASET This dataset holds information on students and staff at U.S. public and private 

colleges. The colleges dataset9 was used by [1] to demonstrate the Vega-Lite editor for rendering queries 

visualised by NL4DV. The output from their toolset rendered via Streamlit is compared with Chat2VIS 

results. The broadness of the submitted query used in their study ‘‘Show debt and earnings for Public and 

Private colleges.’’ allows flexibility for different interpretations of the request. The figure (Fig. 6) 

demonstrates that GPT-3 generated a scatter plot, similar to that produced by NL4DV, to represent the 

relationship between median debt and median earnings for all colleges by type. Codex interpreted the query 

by creating a bar chart to show the mean value of debt and earnings for each college type. ChatGPT focused 

on the distributions of debt and earnings by creating a box-and-whisker plot for public and private colleges. 

The models were able to differentiate between public and private colleges using the ‘‘Control’’ column, which 

was not easily recognisable as a college type. However, by providing categorical values in the prompt, the 

models were able to accurately categorise the data based on the ‘‘public/private’’ indicator in the column. In 

addition, the models wererequired to perform further reasoning in order to arrive at the decision to extract 

data from the ‘‘Median Debt’’ and ‘‘Median Earnings’’ columns, having only been queried to show debt and 

earnings, thus illustrating the capability of AI inference potentials. 

 

B. CASE STUDY 3:  
ENERGY PRODUCTION DATASET The next set of visualisations is depicted on the Energy Production 

Dataset described in the ADVISor study and compared to those of both ADVISor and NL4DV outputs. 

The dataset details coal, oil, gas, and nuclear energy production in megawatt-hours per person per year 

from 2000 to 2011 for an unspecified country, including population statistics. Here, the test query used is 

from the ADVISor study, ‘‘What is the trend of oil production since 2004?’’. The results from Chat2VIS 

are shown in Fig. 7 together with the output from NL4DV rendered via Stream lit. The results can be 

compared with the ADVISor plot presented in their study. All three LLMs select a line plot as the most 

suitable style of plot for this query, with GPT-3 and ChatGPT correctly showing data from 2004 onward. 

Codex, however, neglects to incorporate this detail into its code generation and has depicted data from 

2000 onwards. NL4DV has produced an incorrect visualisation due to its semantic parsing limitations 

which lacks flexibility, as mentioned in [21]. The ADVISor plot also selected the correct chart type, but 
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like Codex, it was unable to filter the data to include 2004 onwards. It did, however, highlight the data 

points from 2004 onwards drawing attention to the oil trend and the selected data range. 

 

C. CASE STUDY 4:  

CUSTOMERS AND PRODUCTS CONTACTS DATASET The following example provides a 

demonstration of a more complex NL2VIS task from the products table in the 

customers_and_products_contacts database,10 which the nvBench example benchmark classifies as Extra 

Hard. The 

  

 

. 
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ChatGPT provides a slightly more informative title, convey ing that products with a price higher than 1000 

are ‘‘expensive’’ and those lower than 500 are ‘‘cheap’’. Despite Sony and & jcrew products swapped in 

comparison to nvBench, query is ‘‘Show the number of products with price higher than 1000 or lower than 

500 for each product name in a barchart, and could you rank y-axis in descending order?’’. Fig. 8 shows all 

three models generate similar visualisations to the ground truth example specified in nvBench both have a 

value of 3 and are plotted accurately. The visualisation from Codex, while correct, is sub-optimal, requiring 

some further improvement in its coding structure to eliminate the multiple bar plotting. All three plots show 

more informative axis labels than their nvBench counterpart. The example demonstrates the high capability 

levels of Chat2VIS to handle challenging NL queries. 
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D. CASE STUDY 5:  

MISSPECIFIED PROMPTS The following example illustrates the robustness of Chat2VIS to input errors 

that take the form of typographical mistakes. The movies11 dataset is used here and contains information 

on movies released between 1996 and 2010, including details such as financials, ratings, and 

classifications. The ideal queryinthisexampleis‘‘Plot the number fmovies by genre’’ however, the system 

is prompted with ‘‘draw the number of movie by gener’’. The results are shown in Fig.9. The correct results 

across all three LLMs highlight the ability of the LLMs to inter pret language even in the presence of 

multiple typographical errors and misspecification, thus emphasising their robust ness. However, from the 

point of view of clarity of insights, the figure generated by ChatGPT is superior to those of the other models 

since it has decided to render the results as a rank-ordered bar graph in a descending order, while GPT-3 

and Codex presented movies alphabetically. 

 

E. CASE STUDY 6:  

UNDERSPECIFIED AND AMBIGUOUS PROMPTS The movies dataset is again used in this example 

in order to demonstrate the inference capabilities of the LLMs together with the underlying priming 

prompts developed for Chat2VIS, to creatively make decisions based on extremely underspecified or 

ambiguous queries. The test query used here is: ‘‘tomatoes’’, which has an association with an existing 

column in the dataset called Rotten Tomatoes Rating. Fig. 10 demonstrates the results. Remarkably, the 

figures demonstrate that each LLM was able to make inferences and produce a figure that connected the 

results with the Rotten Tomatoes Rating despite a lack of direction. GPT-3 plots the rating against the 

IMDb Rating column. It is uncertain whether this column is selected due to it being a rating column or 

simply because it is the next column in the dataset. Codex plots the rating for every title, producing an 

aesthetically unusable visualisation due to overcrowding, while ChatGPT produces a meaningful 

distribution plotofthe ratings 

Consumer Price Index (CPI) is used as a proxy in this study for inflation rate. CPI is a wide basic measure to 

computeusualvariation in prices of goods and services throughout a particular time period. It is assumed that 

arise in inflation is inversely associated to security prices because Inflation is at lastturned into nominal 

interest rate andchange in nominal interest rates caused change in discount rate so discount rate increase due 

to increase in inflation rate and increase in discount rateleads todecreasethe cash flow’s present value 

(Jecheche, 2010). The purchasing power of money decreased due to inflation, and due to which the investors 

demand high rate of return, and the prices decreased with increase in required rate of return (Iqbal et al, 2010). 
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V. DISCUSSION: 

 The experimental results from the six case studies in this work confirm that LLMs can effectively support 

the end-to-end 

generation of visualisations from NL when supported by well-engineered prompts, and are therefore, an ideal 

solu tion for the NL2VIS problem (RQ1). The proposed method exhibits a number of advantages over existing 

NL2VIS sys tems which rely on developing tailored symbolic NLP and deep learning approaches for the NL 

semantic analysis com ponent. The primary one is efficiency since LLMs provide an end-to-end solution from 

language understanding to code generation. This results in  reduced development expenses, but also, in higher 

accuracies. As such, LLMs offer a pre-trained and simplified solution to the most difficult problem of 

understanding NL, while also providing advanced capabilities for automated chart selection as well as the 

encapsula tion of the code generation. The abilities of current LLMs raise questions about the necessity to 

continue to further explore symbolic NLP approaches for providing solutions to NL2VIS as a whole. 

Meanwhile, the proposed method demonstrated superior performances over existing methods, while showing 

robustness to misspecified and highly under specified NL queries. Since the accuracy of LLMs will only 

continue to improve with time, they therefore represent the most viable solution for developing NL2VIS 

systems going forward. 

 

To leverage this technology (RQ2), this study demon strated the importance of prompt engineering in 

providing the LLMs with clear and concise NL requests. The study demonstrated how effective prompts can 

be engineered using Description and Code Prompt definitions that inform LLMs on the underlying data 

attributes as well as a coding guide. The  results confirm that LLM scan  be effectively primed with the 

proposed prompts, and it is the prompt engineering that helps elicit the correct chart selection and the 

appropriately rendered charts when accompanying the NL requests. The demonstration of the autonomous 

selection of correct  plotting types by LLMs goes beyond the capabilities of prior studies. In terms of 

performance (RQ3), the preliminary results indicate that the capability between ChatGPT, GPT-3 and Codex 

LLMs tend not to show large deviations. Arguably, some enhanced performance was exhibited by ChatGPT. 

The largely comparable performances can likely be attributable to the fact that the three LLMs were trained 

on similar datasets. While the results demonstrate the potential of LLMs for NL2VIS, there are still some 

challenges to this technology (RQ4), mostly minor, and centering around aesthetic features of graphs and 

variations in visualisation results. These challenges are addressed individually below. 
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 A. REMAINING CHALLENGES : 

While the proposed framework has performed impressively well and provided a viable solution to the problem 

of con verting free-form NL directly into visualisation, some minor challenges still remain.  

 

1) SETTING THE PLOT BACKGROUND COLOUR: 

 Providing instruction within the engineered prompt to consistently and successfully generate code to change 

the back ground colour of a plot proved unsuccessful. With multiple factors at play, ranging from the type of 

plot generated and the Python contain eritis rendered within, through to software theme settings, no consistent 

approach was unearthed.  

 

2) DISPLAY OF PLOT GRID LINES: The incorporation of grid lines into a plot can enhance its aesthetics 

and aid in its interpretation. However, generating precise code for the successful rendering of grid lines is 

often determined by the choice of plot type. As this is not specified within the engineered prompt, it is difficult 

to inform the LLM of the correct methods and function parameters to render the grid lines successfully. With 

thorough experimentation, the LLMs produced varying levels of success when the request for horizontal grid 

lines was included in the engineered prompt. Therefore, it is more favourable to request the adjustment of 

styling elements such as grid lines during the refinement of the NLquery, and will be most successful when 

performed in conjunction with explicitly stating the type of plot to be rendered.  

3) SPECIFYING COLOURING OF PLOT LINES AND ELEMENTS: 

 Analogously to the problems encountered with rendering grid lines, specifying refinements to other plotting 

elements such as line colour proved challenging within the engineered prompt. With the dependence of some 

function and parameter values on plot type selection, LLMs on occasion attempted to invoke unsuitable 

functions or assign values to unknown parameters while end eavouring to style plot elements as requested. 

As with grid line refinement, styling of plot lines will be most successful when combined with plot type and 

included as an extension to the user query.  

 

4) VARIABILITY IN PLOT GENERATION:  

Identical prompts to the same language model can result in significant variability in the type of plot generated 

and its features. This can make it difficult to consistently gener ate the desired visualisations. With their non-

deterministic nature, especially of ChatGPT, is not possible to address this adequately at this stage since 

parameters that regulate the stochastic processes in its reasoning are not yet publicly available.  

 

5) REFINING THE PROMPT FOR BEST RESULTS: The generic and verbose nature of the engineered 

prompt caters to all three LLM models, but experimentation has 45192 shown that the ideal prompt for each 

model can be varied slightly to achieve the best results. Once a specific LLM is selected, the prompt may be 

optimised and refined for generating the best visualisations. Study Limitations and Future Work: The current 

study included a limited number of case studies consisting of a selection of NL queries and example 

visualisations. Ideally, a comprehensive evaluation of a system like Chat2VIS would include end-users 

andaqualitative assessment of the system’s usefulness based on their feedback. While the evaluation of NLIs 

in data visualisation is a complex task in the context of end-user experience, it is the intention of the authors 

to expand this study and conduct this type of evaluation in the subsequent work. Future work will explore 

the incorporation of the nvBench benchmark dataset into the refinement of the Chat2VIS capabilities and 

make use of the dataset for a more comprehensive quantitative analysis of its capabilities across a wider set 

of queries, thus enabling a more robust comparison against results from prior studies. Additionally, a valuable 

future research direction is the study of the effects of perturbations in the LLM prompts for this domain, 

quantifying the sensitivity in the changes of the quality of the outputs. Comparing the capabilities of a wider 

range of LLMs, including Yolo Pandas, to solve the NL2VIS problem is also a worthwhile undertaking; 

however, methods and benchmark datasets that support the automation of comparisons need to be further 

developed in this area in order to facilitate progress.  

 

 CONCLUSION:  

The ability to generate visualisations based on natural language has been a long-standing goal in the field of 

data visualisation. The development of Natural Language Interfaces has paved the way for advancements in 

this area making data visualisation more accessible to a broader range of users by allowing them to express 

their queries and analysis intentions in natural language. However, the process of accurately and reliably 

translating natural language inputs into visualisations (NL2VIS) has been a challenging problem to solve due 

to the difficulty in understanding natural language. This study proposed a novel end-to-end solution for con 
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verting free-form natural language into visualisations using state-of-the-art Large Language Models (LLMs). 

This study explored ChatGPT and its predecessors like GPT-3 and Codex for their ability to solve the task 

of understanding the queries and both auto-generating code while using their internal inference abilities for 

selecting the appropriate visualisation types. The proposed system, Chat2VIS, has demonstrated that the use 

of pre-trained LLMs together with well-engineered prompts, provides an efficient, reliable and accurate 

solution for the problem of NL2VIS. Chart-type selection is automatic, and the LLMs are able to understand 

vague user queries as well as those that are malformed. Moreover, the approach is also data-privacy pre 

serving and security-aware, making it generalisable to all types of datasets. 

 

The present study highlights the viability of LLMs to further the capabilities of existing NLIs for 

visualisation, providing a simpler pathway towards robust solutions which do not involve the task of defining 

grammars and customised domain-specific language models for language understanding. The results of this 

study provide valuable insights for researchers and practitioners in the field of data visualisation and NLIs, 

and offer simpler and more accurate solutions for making data and insights more accessible to a wider 

audience.  
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 Variables of the study contains dependent and independent variable. The study used pre-specified 

method for the selection ofvariables. The study used the Stock returns are as dependent variable. From the 

share price of the firm the Stock returns are calculated. Rate of a stock salable at stock market is known as 

stock price. 

 

 Systematic risk is the only independent variable for the CAPM and inflation, interest rate, oil prices 

and exchange rate are the independent variables for APT model. 

 

Consumer Price Index (CPI) is used as a proxy in this study for inflation rate. CPI is a wide basic measure to 

computeusualvariation in prices of goods and services throughout a particular time period. It is assumed that 

arise in inflation is inversely associated to security prices because Inflation is at lastturned into nominal 

interest rate andchange in nominal interest rates caused change in discount rate so discount rate increase due 

to increase in inflation rate and increase in discount rateleads todecreasethe cash flow’s present value 

(Jecheche, 2010). The purchasing power of money decreased due to inflation, and due to which the investors 

demand high rate of return, and the prices decreased with increase in required rate of return (Iqbal et al, 2010). 

 

 Exchange rate is a rate at which one currency exchanged with another currency. Nominal effective 

exchange rate (Pak Rupee/U.S.D) is taken in this study.This is assumed that decrease in the home currency is 

inverselyassociated to share prices (Jecheche,2010).  Pan et al. (2007) studied exchange rate and its dynamic 

relationship with share prices in seven East Asian Countries and concludethat relationshipof exchange rate 

and share prices varies across economies of different countries. So there may be both possibility of either 

exchange rate directly or inverselyrelated with stock prices.Oil prices are positively related with share prices 

if oil prices increase stock prices also increase (Iqbal et al, 1012).Ataullah (2001) suggested that oil prices 

cause positive change in the movement of stock prices. The oil price has no significant effect on stock prices 

(Dash & Rishika, 2011).Six month T-bills rate is used as proxy of interest rate. As investors arevery sensitive 

about profit and where the signals turn into red they definitely sell the shares. And this sensitivity of the 

investors towards profit effects the relationship of the stock prices and interest rate, so the more volatility will 

be there in the market if the behaviors of the investors are more sensitive. Plethora (2002)has tested interest 

rate sensitivity to stock market returns, and concluded an inverse relationship between interest rate and stock 

returns. Nguyen (2010) studies Thailand market and found thatInterest rate has aninverse relationship with 

stock prices.  

 

 KSE-100 index is used as proxy of market risk. KSE-100 index contains top 100 firms which are 

selected on the bases of their market capitalization. Beta is the measure of systematic risk and has alinear 

relationship with return (Horn, 1993). High risk is associated with high return (Basu, 1977, Reiganum, 1981 

and Gibbons, 1982). Fama and MacBeth (1973) suggested the existence of a significant linear positive relation 

between realized return and systematic risk as measured by β. But on the other side some empirical results 

showed that high risk is not associated with high return (Michailidis et al. 2006, Hanif, 2009). Mollah and 

Jamil (2003) suggested thatrisk-return relationship is notlinear perhaps due to high volatility. 
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3.4Statistical tools and econometric models 

 This section elaborates the proper statistical/econometric/financial models which are being used to 

forward the study from data towards inferences. The detail of methodology is given as follows. 

3.4.1 Descriptive Statistics 

 Descriptive Statics has been used to find the maximum, minimum, standard deviation, mean and 

normally distribution of the data of all the variables of the study. Normal distribution of data shows the 

sensitivity of the variables towards the periodic changes and speculation. When the data is not normally 

distributed it means that the data is sensitive towards periodic changes and speculations which create the 

chances of arbitrage and the investors have the chance to earn above the normal profit. But the assumption of 

the APT is that there should not be arbitrage in the market and the investors can earn only normal profit. 

Jarque bera test is used to test the normality of data. 

 

3.4.2 Fama-Mcbeth two pass regression  

 After the test statistics the methodology is following the next step in order to test the asset pricing 

models. When testing asset pricing models related to risk premium on asset to their betas, the primary question 

of interest is whether the beta risk of particular factor is priced. Fama and McBeth(1973)develop a two pass 

methodology in which the beta of each asset with respect to a factor is estimated in a first pass time series 

regression and estimated betas are then used in second pass cross sectional regression to estimate the risk 

premium of the factor. According to Blum (1968) testing two-parameter models immediately presents an 

unavoidable errors-in-the variables problem.It is important to note that portfolios (rather than individual 

assets) are used for the reason of making the analysis statistically feasible.Fama McBeth regression is used to 

attenuate the problem of errors-in-variables (EIV) for two parameter models (Campbell, Lo and MacKinlay, 

1997).If the errors are in the β (beta)of individual security are not perfectly positively correlated, the β of 

portfolios can be much more precise estimates of the true β (Blum, 1968). 

 The study follow Fama and McBeth two pass regressionto test these asset pricing models.The Durbin 

Watson is used to check serial correlation and measures the linear association between adjacent residuals from 

a regression model. If there is no serial correlation, the DW statistic will be around 2. The DW statistic will 

fall if there is positive serial correlation (in worst case, it will be near zero). If there is a negative correlation, 

thestatistic will lie somewhere between 2 and 4. Usually the limit for non-serial correlation is considered to 

be DW is from 1.8 to 2.2. A very strong positive serial correlation is considered at DW lower than 1.5 

(Richardson and smith, 1993). 

 

 According to Richardson and smith(1993) to make the model more effective and efficient the selection 

criteria for the shares in the period are: Shares with no missing values in the period, Shares with adjusted R2 

< 0 or F significant (p-value) >0.05of the first pass regression of the excess returns on the market risk premium 

are excluded. And Shares are grouped by alphabetic order into group of 30 individual securities (Roll and 

Ross, 1980).  
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