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Abstract: The specific objective is to prove the existence and uniqueness of the solution of the proposed 

PDE. The existence and uniqueness of the solution have been proved. To demonstrate the existence of 

the solution, the Fourier transformation was used. The variational formulation was used to prove the 

uniqueness of the solution. The combination of the Fourier transformation and the variational 

formulation yielded the expected results: the existence and uniqueness of the solution. 
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I. Introduction: 

Joseph Fourier, a French mathematician, had invented a method called Fourier transform in 

1801, to explain the flow of heat around an anchor ring. Since then, it has become a powerful tool in 

diverse fields of science and engineering. It can provide a means of solving unwieldy equations that 

describe dynamic responses to electricity, heat or light. In some cases, it can also identify the regular 

contributions to a fluctuating signal, thereby helping to make sense of observations in astronomy, 

medicine and chemistry. Fourier transform has become indispensable in the numerical calculations 

needed to design electrical circuits, to analyze mechanical vibrations, and to study wave propagation. 

Fourier transform techniques have been widely used to solve problems involving semi- infinite or totally 

infinite range of the variables or unbounded regions.  In order to deal with such problems, it is necessary 

to generalize Fourier series to include infinite intervals and to introduce the concept of Fourier integral.   

II. Basic Definitions: 

Partial Differential Equation: 

 An equation which involves several independent variables denoted by 𝑥, 𝑦, 𝑧, 𝑡, …, a 

dependentvariable and its partial derivatives with respect to the independent variables such as,    

𝐹(𝑥, 𝑦, 𝑧, 𝑡, … , 𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , 𝑢𝑡 , … , 𝑢𝑥𝑥, 𝑢𝑦𝑦, … , 𝑢𝑥𝑦, … ) = 0 is called a partial differential equation. 

Integral Transform: 

 An Integral transform of function, 𝑓(𝑡) defined on a finite (or) infinite interval 𝑎 < 𝑡 < 𝑏 are 

particularly useful in dealing with problems in linear differential equations. 

 A general linear integral transformation of a function 𝑓(𝑡) is represented by the equation    

𝐹(𝑠) = 𝑇{𝑓(𝑡)} = ∫ 𝑘(𝑠, 𝑡). 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
. i.e., that a given function 𝑓(𝑡) is transformed into another 

function 𝐹(𝑠) by means of an integral. The new function 𝐹(𝑠) is said to be the transform of 𝑓(𝑡), and 

𝑘(𝑠, 𝑡) is called the kernel of the transformation. Both 𝑘(𝑠, 𝑡) and 𝑓(𝑡) must satisfy certain conditions to 

ensure existence of the integral and a unique transform function 𝐹(𝑠). 
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Fourier Transform: 

 If 𝑢(𝑥, 𝑡) is a continuous, piecewise smooth, and absolutely integrable function, then the Fourier 

transform of 𝑢(𝑥, 𝑡) with respect to 𝑥 ∈ ℝ is denoted by 𝑈(𝑘, 𝑡) and is defined by ℱ{𝑢(𝑥, 𝑡)} =

𝑈(𝑘, 𝑡) =
1

√2𝜋
∫ 𝑒−𝑖𝑘𝑥𝑢(𝑥, 𝑡)𝑑𝑥
∞

−∞
, Where 𝑘 is called the Fourier transform variable and exp(−𝑖𝑘𝑥) is 

called the kernel of the transform. 

Inverse Fourier Transform: 

  If 𝑢(𝑥, 𝑡) is a continuous, piecewise smooth, and absolutely integrable function, then the 

Inverse Fourier transform of 𝑈(𝑘, 𝑡) with respect to 𝑥 ∈ ℝ is denoted by 𝑢(𝑥, 𝑡) and is defined by   

ℱ−1{𝑈(𝑘, 𝑡)} = 𝑢(𝑥, 𝑡) =
1

√2𝜋
∫ 𝑒𝑖𝑘𝑥𝑈(𝑘, 𝑡)𝑑𝑘
∞

−∞
, Where 𝑘 is called the Fourier transform variable and 

exp(𝑖𝑘𝑥) is called the kernel of the transform. 

Fourier Cosine Transformation: 

 Let 𝑓(𝑥) be defined for 0 ≤ 𝑥 < ∞, and extended as an even function in (−∞,∞) satisfying the 

conditions of Fourier Integral formula. Then, the Fourier Cosine Transform of 𝑓(𝑥) and its inverse 

transform are defined by, 

ℱ𝑐{𝑓(𝑥)} = 𝐹𝑐(𝑘) = √
2

𝜋
∫ cos 𝑘𝑥 𝑓(𝑥)𝑑𝑥,
∞

0
  ℱ𝑐

−1{𝐹𝑐(𝑘)} = 𝑓(𝑥) = √
2

𝜋
∫ cos 𝑘𝑥 𝐹𝑐(𝑘)𝑑𝑘,
∞

0
 

where ℱ𝑐 is the Fourier cosine transformation and ℱ𝑐
−1 is its inverse transformation respectively. 

Fourier Sine Transformation: 

 Let 𝑓(𝑥) be defined for 0 ≤ 𝑥 < ∞, and extended as an odd function in (−∞,∞) satisfying the 

conditions of Fourier Integral formula. Then, the Fourier Sine Transform of 𝑓(𝑥) and its inverse 

transform are defined by, 

ℱ𝑠{𝑓(𝑥)} = 𝐹𝑠(𝑘) = √
2

𝜋
∫ sin 𝑘𝑥 𝑓(𝑥)𝑑𝑥,
∞

0
  ℱ𝑠

−1{𝐹𝑠(𝑘)} = 𝑓(𝑥) = √
2

𝜋
∫ sin 𝑘𝑥 𝐹𝑠(𝑘)𝑑𝑘,
∞

0
 

where ℱ𝑠 is the Fourier cosine transformation and ℱ𝑠
−1 is its inverse transformation respectively. 

Convolution of the two functions: 

 The function  (𝑓 ∗ 𝑔)(𝑥) =
1

√2𝜋
∫ 𝑓(𝑥 − 𝜉)𝑔(𝜉)𝑑𝜉
∞

−∞
 is called the convolution of the functions 𝑓 

and 𝑔 over the interval (−∞,∞). 

Properties of Convolution: 

(1) 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 (Commutative)   (2) 𝑓 ∗ (𝑔 ∗ ℎ) = (𝑓 ∗ 𝑔) ∗ ℎ (Associative). 

(3) 𝑓 ∗ (𝑎𝑔 + 𝑏ℎ) = 𝑎(𝑓 ∗ 𝑔) + 𝑏(𝑓 ∗ ℎ), (Distributive), where 𝑎 and 𝑏 are constants. 

 

III. Properties of Fourier transform: 

Linearity Property:  The Fourier transformation ℱ is linear. [or] If ℱ be the Fourier transform of 𝑓(𝑥) 

then for any constants 𝑎 and 𝑏 it follows that ℱ[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)] = 𝑎ℱ[𝑓(𝑥)] + 𝑏ℱ[𝑔(𝑥)]. 
Shifting Property: Let ℱ[𝑓(𝑥)] be a Fourier transform of 𝑓(𝑥), then ℱ[𝑓(𝑥 − 𝑐)] = 𝑒−𝑖𝑘𝑐ℱ[𝑓(𝜉)], 
where 𝑐 is a real constant. 

Scaling Property: If ℱ is the Fourier transform of 𝑓, then ℱ[𝑓(𝑐𝑥)] = (
1

|𝑐|
) 𝐹(𝑘/𝑐), where 𝑐 is a non-

zero constant. 

Differentiation Property: Let 𝑓 be continuous and piecewise smooth in (= ∞, ∞). Let 𝑓(𝑥) approach 

zero as |𝑥| → ∞. If 𝑓 and 𝑓′ are absolutely integrable, thenℱ[𝑓′(𝑥)] = 𝑖𝑘ℱ[𝑓(𝑥)] = 𝑖𝑘𝐹(𝑘). 
Modulation Property: If 𝐹(𝑘) is the Fourier transform of 𝑓(𝑥), then the Fourier transform of 

𝑓(𝑥) cos 𝑎𝑥 is 
1

2
[𝐹(𝑘 − 𝑎) + 𝐹(𝑘 + 𝑎)] 

Convolution Theorem: If 𝐹(𝑘) and 𝐺(𝑘) are the Fourier transforms of 𝑓(𝑥) and 𝑔(𝑥) respectively, 

then the Fourier transform of the convolution (𝑓 ∗ 𝑔) is the product 𝐹(𝑘)𝐺(𝑘). 

i.e., ℱ{𝑓(𝑥) ∗ 𝑔(𝑥)} = 𝐹(𝑘)𝐺(𝑘) (or) ℱ−1{𝐹(𝑘)𝐺(𝑘)} = 𝑓(𝑥) ∗ 𝑔(𝑥). 

 

Fourier Cosine Transform:  Let 𝑓(𝑥) and its first derivative vanish as 𝑥 → ∞. If 𝐹𝑐(𝑘) is the Fourier 

Cosine transformation, then ℱ𝑐[𝑓′′(𝑥)] = −𝑘2𝐹𝑐(𝑘) − √
2

𝜋
𝑓′(0). 

Fourier Sine Transform: Let 𝑓(𝑥) and its first derivative vanish as 𝑥 → ∞. If 𝐹𝑠(𝑘) is the Fourier sine 

transform, then ℱ𝑠[𝑓′′(𝑥)] = √
2

𝜋
𝑘𝑓(0) − 𝑘2𝐹𝑠(𝑘). 

IV. Applications of partial  differential equation involving Fourier transforms: 
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Boundary Value Problem: Fourier integrals and Fourier transforms are very useful in solving 

boundary value problems on infinite domains. Such problems, however, are classified as singular since 

they contain no infinite boundaries. In this case we normally prescribe boundary conditions of the form,  

𝑦(𝑥), 𝑦′(𝑥)finite as |𝑥| → ∞, (4.1). Nonetheless, the use of Fourier transforms often forces us (at least 

initially) to impose the more stringent requirements.  𝑦(𝑥) → 0, 𝑦′(𝑥) → 0, as |𝑥| → ∞, (4.2) . These 

stronger requirements are necessary to ensure that the Fourier transforms of 𝑦′(𝑥) and 𝑦′′(𝑥) exist. Even 

so, the formal solutions that we generate by the transform method may not satisfy (4.2). In such cases 

we normally require 𝑦(𝑥) to at least satisfy (4.1). 

Heat Conduction is Solids:  It is well known that if the temperature 𝑢 in a solid body is not constant, 

heat energy flows in the direction of the gradient −∇u with magnitude 𝑘|∇𝑢|. The quantity 𝑘 is called 

the thermal conductivity of the material and the above principle is called Fourier’s law of heat 

conduction. This law combined with the law of conservation of thermal energy, which states that, “… 

the rate of heat entering a region plus that which is generated inside the region equals the rate of heat 

leaving the region plus that which is stored….,” leads to the partial differential equation.  ∇2𝑢 =
𝑎−2𝑢𝑡 − 𝑞(𝑥, 𝑦, 𝑧, 𝑡), → (4.3)  where 𝑎2 is another physical constant called the diffusivity. Equation (1) 

is commonly called the het equation (or) diffusion equation.  The quantity ∇2𝑢 in (4.3) is called the 

Laplacian and is a measure of the difference between the value of 𝑢 at a point and the average value of 𝑢 

in a small neighborhood of the point.  In rectangular co-ordinates, the Laplacian takes the form  ∇2𝑢 =
𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 , → (4.4). 

Heat Equation in an Infinite Line:  Let us fist consider the flow of heat in the infinite medium −∞ <
𝑥 < ∞ when the initial temperature distribution 𝑓(𝑥) is known and the region is free of any heat 

sources. Physically, this problem might represent the linear flow of heat in a very long slender rod 

whose lateral surface is insulated.  In such cases, the solution will represent the temperature distribution 

in the middle portion of the infinitely long rod, prior to the time when such temperatures are greatly 

influenced by the actual boundary conditions of the rod. The Problem is mathematically characterized 

by, 𝑢𝑥𝑥 = 𝑎−2𝑢𝑡, 𝑥 < ∞,   𝑡 > 0  B. C:  𝑢(𝑥, 𝑡) → 0, 𝑢𝑥(𝑥, 𝑡) → 0, as |𝑥| → ∞ I. C:  𝑢(𝑥, 0) = 𝑓(𝑥),
−∞ < 𝑥 < ∞. 

Wave Equation: The wave equation     ∇2𝑢 = 𝑐−2𝑢𝑡𝑡 − 𝑞(𝑥, 𝑦, 𝑧, 𝑡), where 𝑐 is a constant having the 

dimension of velocity, describes various wave motions in nature and mechanical systems such as sound 

waves emanating from a struck bell, surface waves propagingradially outward when a pebble is 

dropped into a pool, and the deflections of a membrane set in motion. The term 𝑞 is proportional to an 

external “force” acting on the system under investigation. A properly-posed problem involving the wave 

equation consists of two initial conditions and one boundary condition at each boundary point. The one-

dimensional wave equation                𝑢𝑥𝑥 = 𝑐−2𝑢𝑡𝑡 − 𝑞(𝑥, 𝑡) is the governing equation for such 

rudimentary problems as the transverse oscillations of a tightly stretched string or the longitudinal 

vibrations of a beam. 

Potential Theory: Perhaps the single most important Partial Differential Equation in mathematical 

physics is the equation of Laplace, of potential equation. In two and three dimensions, respectively, we 

have the rectangular co-ordinate representations, 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 ,   𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0 where as in 

general we write, ∇2𝑢 = 0 regardless of the co-ordinate system or number of dimensions. A properly-

posed problem involving Laplace’s equation consists of finding a Harmonic function in a region 𝑅 

subject to a single boundary condition. The most common boundary conditions fall mainly into two 

categories, giving us two primary types of boundary-value problem. If 𝑅 denotes a region in the plane 

and 𝐶 its boundary curve, then one type of problem is characterized by,∇2𝑢 = 0 in 𝑅 ,  𝑢 = 𝑓 on 𝐶 

which is called a Dirichlet problem (or) boundary value problem of the first kind. An example of a 

Dirichlet Problem is to find the steady-state temperature distribution in a region 𝑅 given that the 

temperature is known everywhere on the boundary of 𝑅.  Another problem is characterized by, ∇2𝑢 =

0 in 𝑅. 
𝜕𝑢

𝜕𝑛
= 𝑓 on 𝐶, which is known as a Neumann Problem (or) boundary value problem of the second 

kind. The derivative 
𝜕𝑢

𝜕𝑛
 is called the normal derivative of 𝑢 and is positive in the direction of the outward 

normal to the boundary curve 𝐶. There is also a third boundary value problem, called Robin’s problem, 

in which the boundary conditions is a linear combination of 𝑢 and its normal derivative. 
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Potential Problems in the Infinite Strip: Suppose we now consider the Dirichlet problem 𝑢𝑥𝑥 + 𝑢𝑦𝑦 =

0, −∞ < 𝑥 < ∞, 0 < 𝑦 < 𝑎, → (4.5)B. C:  𝑢(𝑥, 0) = 𝑓(𝑥), 𝑢(𝑥, 𝑎) = 𝑔(𝑥), −∞ < 𝑥 < ∞. 

Physically, this problem might correspond to finding the steady-state temperature in an infinite slab 

whose faces are mentioned at prescribed temperature[See Fig.1]. Again, we use the Fourier transform, 

ℱ{𝑢(𝑥, 𝑦); 𝑥 → 𝑠} = 𝑈(𝑠, 𝑦) which reduces to (4.5) to 𝑢𝑦𝑦 − 𝑠2𝑈 = 0, 0 < 𝑦 < 𝑎 

B. C;   𝑈(𝑠, 0) = 𝐹(𝑠), 𝑈(𝑠, 𝑎) = 𝐺(𝑠) 

where 𝐹(𝑠) and 𝐺(𝑠) are Fourier transforms, respectively, of 𝑓(𝑥) and 𝑔(𝑥). The solution 

of this boundary value problem is easily shown to be 𝑈(𝑠, 𝑦) =

𝐹(𝑠)
sinh 𝑠(𝑎−𝑦)

sinh 𝑠𝑎
+ 𝐺(𝑠)

sinh 𝑠𝑦

sinh 𝑠𝑎
, → (4.6) 

Recalling the Fourier transforms, inverse transforms and cosine 

transforms are all the same for even functions,  

we deduce that  𝑘(𝑥, 𝑦) = ℱ−1 {
sinh 𝑠𝑦

sinh 𝑠𝑎
, 𝑠 → 𝑥}  =

1

𝑎
√

𝜋

2

sin(𝜋𝑦/𝑎)

cos(𝜋𝑥/𝑎)+cos(𝜋𝑦/𝑎)
 . 

Hence, using the convolution theorem we can express the inverse transform of (4.6) in the form,             

𝑢(𝑥, 𝑦) =
1

√2𝜋
[∫ 𝑓(𝜉)𝑘(𝑥 − 𝜉, 𝑎 − 𝑦)𝑑𝜉

∞

−∞
+ ∫ 𝑔(𝜉)𝑘(𝑥 − 𝜉, 𝑦)𝑑𝜉

∞

−∞
] 

 

Hydrodynamics: A fluid flow in three-dimensional space is called two dimensional if the velocity 

vector 𝑣 is always parallel to a fixed plane (𝑥𝑦 plane), and if the velocity components parallel to this 

plane along with the pressure 𝑝 and fluid density 𝜌 are all constant along any normal to the plane.  This 

permits us to confine our attention to just a single plane which we interpret as across section of the 

three-dimensional region under consideration. Our discussion here will be limited to two-dimensional 

flow problems. An ideal fluid is one in which the stress on an element of area is wholly normal and 

independent of the orientation of the area. In contrast, the stress on a small area is no longer normal to 

that area for a viscous fluid in motion. If the density 𝜌 is constant, we say the flow is incompressible. Of 

course, the notions of an ideal fluid or incompressible fluid are only idealizations that are valid when 

certain effects can be safely neglected in the analysis of a real fluid. The velocity, pressure, and fluid 

density are all interrelated through a set of differential equations consisting of a continuity equation, 

equation of motion, and an equation of state (such as the density equal to a constant, etc.,).  

 The continuity equation is an expression of the conservation of mass out of it, and assumes the 

form,  
𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑣) = 0 For an incompressible fluid, this reduces to ∇. 𝑣 = 0 which implies there are no 

sources nor sinks with in the region of interest (i.e., points at which fluid appears (or) disappears). 

 

Irrotational Flow of an Ideal Fluid: If the vorticity Ω is zero at every point with in the region of 

interest, we say the flow is irrotational. This means that ∇ × 𝑣 = 0, which in two dimensions is 

described by 𝜔 = 𝑣𝑥 − 𝑢𝑦 = 0. This relation combined with 𝑢 = −𝜓𝑦 and 𝑣 = 𝜓𝑥 leads to Laplace’s 

equation  𝜓𝑥𝑥 + 𝜓𝑦𝑦 = 0, → (4.7) Clearly, solutions of Laplace’s equation ∇2𝜓 = 0 are solutions of 

the equations of motion given by,   
𝜕

𝜕𝑡
∇2𝜓 +

𝜕𝜓

𝜕𝑦
(

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
) ∇2𝜓 = 𝑣∇4𝜓. 

 The irrotational flow of an fluid can also be described in terms of a velocity potential functions 

𝜙.  That is, the condition ∇ × 𝑣 = 0 implies the existence of a potential function 𝜙 such that 𝑣 = −∇𝜙, 

(or)  𝑢 = −𝜙𝑥, 𝑣 = −𝜙𝑦, → (4.8) .  By combining (4.8) and (𝑢𝑥 + 𝑢𝑦 = 0), 

we find that the velocity potential 𝜙 is likewise a solution of Laplace’s equation  𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0, →

(4.9) Thus, for irrotational flows we have the choice of solving (4.7) for the stream function 𝜓 (or) 

solving (4.9) for the potential function 𝜙. 

 

Elasticity in Two-Dimensions: The effect of body or surface forces on a two-dimensional body will be 

to produce internal forces between various parts of the body. The magnitude of these internal forces are 

defined by the ratio of the force to the area over which it acts, called the average stress. In the limit as 

the area shrinks to zero, we obtain the components of stress at a point in the elastic medium. This stress 

is composed of two normal components 𝜎𝑥𝑥 and 𝜎𝑦𝑦, and two shearing components, 𝜎𝑥𝑦 and 𝜎𝑦𝑥, for 

which 𝜎𝑥𝑦 = 𝜎𝑦𝑥. We adopt the convention that stresses are positive when a tension is produced and 

negative when a compression occurs. The Differential Equations satisfied by the components of stress in 

an elastic medium under the action of a force per unit mass having components (𝐹𝑥 , 𝐹𝑦) may be obtained 

by applying Newton’s 2nd law of motion to a small rectangular of the medium. Writing the displacement 
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vector as, 𝑢 = (𝑢, 𝑣), these equations of motion are,  
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+  𝜌𝐹𝑥 = 𝜌

𝜕2𝑢

𝜕𝑡2   ;             
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+

 𝜌𝐹𝑦 = 𝜌
𝜕2𝑣

𝜕𝑡2
,  where 𝜌 is the mass density of the elastic body, for equilibrium problems the time 

derivatives on the right-hand sides can be set to zero.  Also, in the absence of body forces we have𝐹𝑥 =

𝐹𝑦 = 0, and in these cases the equation of equilibrium take the simpler form,  
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
= 0, →

(4.10)  
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
= 0, → (4.11). The above equations of equilibrium, together with appropriate 

boundary conditions are still not sufficient for the determination of the stresses.  That is, the complete 

solution requires us to take into account a compatibility condition for the distribution of stress that arises 

from the stresses, is given by the relation,  
𝜕2

𝜕𝑦2 [𝜎𝑥𝑥 − 𝑣(𝜎𝑥𝑥 + 𝜎𝑦𝑦)] +
𝜕2

𝜕𝑥2 [𝜎𝑦𝑦 − 𝑣(𝜎𝑥𝑥 + 𝜎𝑦𝑦)] =

2
𝜕𝜎𝑥𝑦

𝜕𝑥𝜕𝑦
, → (4.12) where 𝑣 is the Poisson ratio of the material. To solve this system of equations is it 

convenient to introduce a scalar function 𝜒, called the Airy stress function, by setting, 𝜎𝑥𝑦 = −
𝜕2𝜒

𝜕𝑥𝜕𝑦
 . 

Using this relation, we find the equations of equilibrium (4.10), (4.11) reduce to 
𝜕

𝜕𝑥
(𝜎𝑥𝑥 −

𝜕2𝜒

𝜕𝑦2) = 0 :   

𝜕

𝜕𝑦
(𝜎𝑦𝑦 −

𝜕2𝜒

𝜕𝑥2) = 0. Hence it follows immediately that the equations of equations of equilibrium 

(4.10), (4.11) are satisfied by 

𝜎𝑥𝑥 =
𝜕2𝜒

𝜕𝑦2 , 𝜎𝑦𝑦 =
𝜕2𝜒

𝜕𝑥2 , 𝜎𝑥𝑦 = −
𝜕2𝜒

𝜕𝑥𝜕𝑦
, → (4.13) Lastly, the substitution of these expressions into the 

compatibility condition (3) yields the biharmonic equation,   
𝜕4𝜒

𝜕𝑥4
+ 2

𝜕4𝜒

𝜕𝑥2 𝜕𝑦2
+

𝜕4𝜒

𝜕𝑦4
= 0, → (4.14). 

Solving (4.14) for the Airy stress function, subject to appropriately prescribed boundary conditions, 

leads to the stress components through use of (4.13). 

 

Probability and Statistics: Suppose that 𝑋 is a random variable. The function 𝑃(𝑥), called the 

distribution function, represents the probability that 𝑋 < 𝑥, where 𝑥 is a real number. The distribution 

function has the following properties:  (1) lim
𝑥→−∞

𝑃(𝑥) = 0 (2) lim
𝑥→∞

𝑃(𝑥) = 1 

(3) 𝑃(𝑥1) ≤ 𝑃(𝑥2) when 𝑥1 ≤ 𝑥2.  If we think of 𝑋 as a continuous variable, then there usually exists a 

related function 𝑝(𝑥) such that  𝑃(𝑥) = ∫ 𝑝(𝑢)𝑑𝑢
𝑥

−∞
 . The function 𝑝(𝑥) is called the probability density 

function (PDF) of the random variable 𝑋.  Once 𝑝(𝑥) has been determined, various properties of the 

random variable 𝑋 can be calculated, such as the statistical moments of 𝑋. In statistics, the moments 

𝑚1, 𝑚2, …, of the random variable 𝑋 are defined in terms of the expextation operator 𝐸. For Example, 

𝑚1 = 𝐸[𝑥] = ∫ 𝑥𝑝(𝑥)𝑑𝑥
∞

−∞
 ;  𝑚2 = 𝐸[𝑥2] = ∫ 𝑥2𝑝(𝑥)𝑑𝑥

∞

−∞
 where as in general, 

𝑚𝑘 = 𝐸[𝑥𝑘] = ∫ 𝑥𝑘𝑝(𝑥)𝑑𝑥

∞

−∞

, 𝑘 = 1,2,3, … , → (4.15) 

 The first moment gives the average value of a random variable, and the higher order moments 

give additional information about the spread of the distribution defining the random variable. The 

variance of the distribution is defined by 𝜎2 = ∫ (𝑥 − 𝑚1)2𝑝(𝑥)𝑑𝑥
∞

−∞
= 𝑚2 − 𝑚1

2 which follows by 

expanding the square and using relations (4.15). 

 

Characteristic Functions: In many situations it is convenient to introduce the notion of a characteristic 

function 𝐶(𝑡) from which the statistical moments of 𝑋 also can be found in certain applications the 

characteristic function of a random variables is easier to calculate than its PDF, and thus this function 

can be useful in such cases, we define this new function by the expectation 𝐶(𝑡) = 𝐸[𝑒𝑖𝑡𝑥] =

∫ 𝑒𝑖𝑡𝑥𝑝(𝑥)𝑑𝑥
∞

−∞
 which we recognize as a Fourier transform relation given by,  𝐶(𝑡) = √2𝜋ℱ{𝑝(𝑥); 𝑡} 

Hence, it follows that, 

𝐶(0) = ∫ 𝑝(𝑥)𝑑𝑥
∞

−∞
= 1;𝐶′(0) = 𝑖 ∫ 𝑥𝑝(𝑥)𝑑𝑥

∞

−∞
= 𝑖𝑚1;𝐶′′(0) = − ∫ 𝑥2𝑝(𝑥)𝑑𝑥

∞

−∞
= −𝑚2 

while in general, we deduce, 𝑚𝑘 = (−𝑖)𝑘𝑐𝑘(0), 𝑘 = 1,2,3, … This says that 𝑚𝑘 is the co-efficient 

 of (𝑖𝑡)𝑘/𝑘! In the Maclaurin series expansion of the characteristic function. Finally, it also follows from 

properties of inverse Fourier transforms, that if the characteristic function of a random variable is known, 

its probability density function is reduced by 
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𝑝(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑥𝐶(𝑡)𝑑𝑡

∞

−∞

, → (4.16) 

V. Problems on Partial differential equations using Fourier transform: 

 

Problem: 5.1 

 Given that 𝑋 and 𝑌 are independent normal random variables with means zero and unit 

variances, find the probability density function (PDF) of the random variable Z= 𝑋𝑌. 

Solution: 

 To find 𝑝𝑧(𝑧), we will first determine the characteristic function for 𝑧 and then invert it 

according to (5.1). Since 𝑍 = 𝑋𝑌, the characteristic function of 𝑍 can be determined by calculating 

𝐶𝑧(𝑡) = 𝐸[𝑒𝑖𝑡𝑧] = ∫ ∫ 𝑒𝑖𝑡𝑥𝑦𝑝𝑋,𝑌(𝑥, 𝑦)𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
 where 𝑝𝑋,𝑌(𝑥, 𝑦) is the joint PDF of 𝑋 and 𝑌. Because 

𝑋 and 𝑌 are assumed to be independent, it follows that the joint PDF is simply the product of their 

individual PDFs. Hence we have, 

𝑃𝑋,𝑌(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦) =
1

√2𝜋
𝑒−𝑥2/2.

1

√2𝜋
𝑒−𝑦2/2 =

1

√2𝜋
𝑒−(𝑥2+𝑦2)/2 which leads to the double integral 

𝐶𝑧(𝑡) =
1

2𝜋
∫ 𝑒−𝑦2/2 ∫ 𝑒𝑖𝑡𝑥𝑦𝑒−𝑥2/2𝑑𝑥

∞

−∞
𝑑𝑦

∞

−∞
  Working with the inner most integral, we find  

∫ 𝑒𝑖𝑡𝑥𝑦𝑒−𝑥2/2𝑑𝑥
∞

−∞
= √2𝜋ℱ{𝑒−𝑥2/2; 𝑡𝑦} = √2𝜋𝑒−𝑡2𝑦2/2. Using this result, the remaining integral 

yields,  𝐶𝑧(𝑡) =
1

√2𝜋
∫ 𝑒−(1+𝑡2)𝑦2/2𝑑𝑦

∞

−∞
 =

1

√1+𝑡2
. Substituting this expression for 𝐶𝑧(𝑡) into (5.1), we 

obtain, 𝑝𝑧(𝑧) =
1

2𝜋
∫ 𝑒𝑖𝑡𝑧𝐶𝑧(𝑡)𝑑𝑡

∞

−∞
 =

1

2𝜋
∫

𝑒−𝑖𝑡𝑧

√1+𝑡2
𝑑𝑡

∞

−∞
 =

1

𝜋
∫

cos 𝑧𝑡

√1+𝑡2
𝑑𝑡

∞

0
 where we have used the fact that 

𝐶𝑧(𝑡) is an even function. This last integral is not an elementary integral nor does it lend itself to 

evaluation by conventional means using basic complex variable theory. Nonetheless, it is a well-known 

integral which leads to the final result, 𝑝𝑧(𝑧) =
1

𝜋
𝑘0(|𝑧|), where 𝑘0(𝑥) is a modified Bessel function 

of the second kind and order zero. 

 

Problem: 5.2 

Solve the heat conduction equation given by 𝐏𝐃𝐄: 𝑘
𝜕2𝒻

𝜕𝓍2 =
𝜕𝓊

𝜕𝓉
, −∞ < 𝑥 < ∞, 𝓉 > 0 

Subject to  𝐁𝐂𝐬: 𝓊(𝓍, 𝓉)& 𝓊𝑥(𝓍, 𝓉)both → 0 as |𝓍| → ∞ 𝐈𝐂: 𝓊(𝓍, 0) = 𝒻(𝓍), −∞ < 𝑥 < ∞,  
Solution: 

Taking the Fourier transform ∗ of PDE, we get −𝑘𝛼2ℱ[𝓊(𝓍, 𝓉); 𝓍 → 𝛼] = ℱ[𝓊𝓉(𝓍, 𝓉); 𝓍 → 𝛼] 
or 𝑈𝓉(𝛼, 𝓉) + 𝑘𝛼2𝑈(𝛼, 𝓉) = 0  (5.2) . In deriving this, the BCs are already utilized (as can be seen from 

equations). The Fourier transform of the IC gives 𝑈(𝛼, 0) = 𝐹(𝛼), −∞ < 𝛼 < ∞  (5.3). The solution 

of equation (5.2) can be readily seen to be 𝑈 = 𝒜𝑒−𝑘𝛼2𝓉. When 𝓉 = 0, we have equation (2) the 

relation 𝑈 = 𝐹(𝛼), implying 𝒜 = 𝐹(𝛼). Therefore, 𝑈(𝛼, 𝓉) = 𝐹(𝛼)𝑒−𝑘𝛼2𝓉(5.4) Inverting this relation, 

we obtain 

𝓊(𝓍, 𝓉) =
1

√2𝜋
∫ 𝐹(𝛼)𝑒−𝑘𝛼2𝓉𝑒−𝒾𝛼𝓍∞

−∞
𝒹𝛼 =

1

√2𝜋
∫ 𝐹(𝛼) ℯ𝓍𝓅(−𝑘𝛼2𝓉 − 𝒾𝛼𝓍)

∞

−∞
𝒹𝛼  (5.5) 

The product form of the integrand in equation (5.4) suggests the use of convolution. If the Fourier 

transform of ℊ(𝓍)is 𝑒−𝑘𝛼2𝓉, then ℊ(𝓍) will be given by ℊ(𝓍) =
1

√2𝜋
∫ 𝑒−𝑘𝛼2𝓉𝑒−𝒾𝛼𝓍∞

−∞
𝒹𝛼. But, if 𝒶 >

0, 𝒷is real or complex, and we know that 

∫ ℯ𝓍𝓅(−𝒶𝓍2 − 𝒾𝛼𝓍)
∞

−∞
𝒹𝓍 =

√𝜋

√𝒶
ℯ𝓍𝓅(𝒷2/𝛼) (5.6) . Here, 𝒶 = 𝑘𝓉, 2𝒷 = 𝒾𝓍. Therefore, 

ℊ(𝓍) =
1

√2𝜋

√𝜋

√𝑘𝓉
ℯ𝓍𝓅 (−

𝓍2

4𝑘𝓉
) =

1

√2𝑘𝓉
ℯ𝓍𝓅 (−

𝓍2

4𝑘𝓉
) Using the convolution theorem, we have 𝓊(𝓍, 𝓉) =

1

√2𝜋
∫ 𝒻(𝛼)ℊ(𝓍 − 𝛼)

∞

−∞
𝒹𝛼  (5.7). Hence,   𝓊(𝓍, 𝓉) =

1

√2𝜋
∫ 𝒻(𝛼)

1

√2𝑘𝓉
ℯ𝓍𝓅 [

−(𝓍−𝛼)2

4𝑘𝓉
]

∞

−∞
𝒹𝛼 =

1

√4𝜋𝑘𝓉
∫ 𝒻(𝛼) ℯ𝓍𝓅 [−

(𝓍−𝛼)2

4𝑘𝓉
]

∞

−∞
𝒹𝛼      (5.8) 

Introducing the change of variable  𝒵 =
𝛼−𝓍

√4𝑘𝓉
 , we can rewrite solution (5.8) in the form 𝓊(𝓍, 𝓉) =

1

√𝜋
∫ 𝒻(𝓍 + √4𝑘𝓉 𝓏)𝑒−𝓏2∞

−∞
𝒹𝓏     (5.9) 

Problem: 5.3 

 (Flow of heat in a semi-infinite medium). Solve the heat conduction problem described by 

𝐏𝐃𝐄: 𝑘
𝜕2𝓊

𝜕𝓍2 =
𝜕𝓊

𝜕𝓉
, 0 < 𝓍 < ∞, 𝓉 > 0 𝐁𝐂𝐬: 𝓊(0, 𝓉) = 𝓊0, 𝓉 ≥ 0 𝐈𝐂: 𝓊(𝓍, 0) = 0, 0 < 𝓍 < ∞,  

𝓊 and 𝜕𝓊/𝜕𝓍 both tend to zero as 𝓍 → ∞. 
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Solution: 

Since 𝓊 is specified at 𝓍 = 0, the Fourier sine transform is applicable to this problem. Taking the 

Fourier sine transform of the given PDE and using notation.   𝑈𝓈(𝛼, 𝓉) = √
2

𝜋
∫ 𝓊(𝓍, 𝓉)

∞

0
𝒮in 𝛼𝓍 𝒹𝓍, We 

obtain from known the relation 

𝑘 [√
2

𝜋
𝛼𝓊(𝓍, 𝓉)│𝑥=0 − 𝛼2ℱ𝓈[𝓊(𝓍, 𝓉); 𝑥 → 𝛼]] =

𝜕𝑈𝓈

𝜕𝓉
(𝛼, 𝓉) or 

𝒹𝑈𝓈

𝒹𝓉
+ 𝑘𝛼2𝑈𝓈 = √

2

𝜋
𝑘𝛼𝓊0(5.10) 

Its general solution is found to be  𝑈𝓈(𝛼, 𝓉) = √
2

𝜋

𝓊0

𝛼
(1 − 𝑒−𝑘𝛼2𝓉)(5.11). Inverting by Fourier inverse 

sine transform, we obtain  𝓊(𝛼, 𝓉) = √
2

𝜋
∫ 𝑈𝓈(𝛼, 𝓉)

∞

0
𝒮in 𝛼𝓍 𝒹𝛼. Therefore, 

𝓊(𝓍, 𝓉) =
2

𝜋
𝓊0 ∫

𝒮in 𝛼𝓍

𝛼
(1 − 𝑒−𝑘𝛼2𝓉)

∞

0
𝒹𝛼(5.12) . Nothing that erf(𝓎) =

2

√𝜋
∫ 𝑒−𝓊2𝓎

0
𝒹𝓊 

And using the standard integral  ∫ 𝑒−𝛼2 𝒮in(2𝛼𝓎)

𝛼

∞

0
𝒹𝛼 =

𝜋

2
erf(𝓎) 

We have solution (5.11) in the form  𝓊(𝓍, 𝓉) =
2𝓊0

𝜋
[

𝜋

2
−

𝜋

2
erf (

𝓍

√2𝑘𝓉
)] (5.13). Finally, the solution of the 

heat conduction problem is 

𝓊(𝓍, 𝓉) = 𝓊0 (1 −
2

√𝜋
∫ 𝑒−𝓊2

𝓍/√2𝑘𝓉

0

𝒹𝓊) = 𝓊0 erfc (
𝓍

√2𝑘𝓉
) (5.14) 

VI. Conclusion: 

In this paper, we have discussed some solution of Heat equations using Fourier transform. 

Fourier transforms played major roles in Space science technology and computer science. So, I have 

chosen heat equation solutions with the help of Fourier transforms, It is very helpful for my future 

research studies. I have extended this Fourier transforms idea to Space science technology.  
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