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Abstract:  The trajectory-based writing system offers a novel approach to writing linguistic characters or 

words in open space by utilizing finger, marker, or handheld device movements. It addresses challenges faced 

by traditional pen-up and pen-down writing methods and presents distinct advantages over gesture-based 

systems due to its simplicity. However, its efficacy is hampered by the complexity of non-uniform characters 

and varied writing styles. This study presents the development of an air-writing recognition system utilizing 

three-dimensional (3D) trajectories captured by a depth camera monitoring fingertip movements. To enhance 

feature selection, we utilized nearest neighbor and root point translation techniques for trajectory 

normalization. Our recognition model integrates long short-term memory (LSTM) and convolutional neural 

network (CNN) architectures. Validation was conducted using a self-collected dataset, and robustness was 

assessed using the 6D motion gesture (6DMG) alphanumeric character dataset, achieving a remarkable 

99.32% accuracy, a record high. This underscores the model's robustness across digits and characters. 

Additionally, we release a dataset comprising 21,000 digits, addressing the current research's dataset scarcity. 

Index Terms - air-writing; digit identification; depth sensing; Time-of-Flight (TOF) camera; LSTM; CNN; 

trajectory analysis;  human-machine  

I. INTRODUCTION 

        Air-writing, a method of writing in three-dimensional space through gestures or trajectory information, 

presents a touchless alternative to traditional writing systems. Particularly valuable in scenarios where 

conventional methods face limitations such as gesture-based interaction, augmented reality (AR), and virtual 

reality (VR), air-writing addresses these challenges effectively. Unlike pen-and-paper systems that allow 

multi-stroke character formation, air-writing lacks this flexibility, which stands as its primary drawback. 

While gesture-based writing offers a solution, its effectiveness is hindered by limited gesture options, often 

constrained by human posture. Combining gestures can expand the repertoire, albeit at the cost of increased 

complexity, posing challenges for new users to grasp.  

 

In contrast, air-writing allows users to follow familiar sequential writing patterns, akin to traditional methods. 

The trajectory-based approach typically involves writing within an imaginary spatial boundary, whether in 

front of a 2D or 3D camera. Challenges arise from spatial and temporal variability, as users exhibit diverse 

writing styles and speeds, resulting in varied trajectories. Recent advancements in 3D vision technology, 

facilitated by devices like Leap Motion, Kinect, and Intel RealSense cameras, have revolutionized trajectory 

tracking. While gloves, wearables, and Wi-Fi-based sensors offer accurate trajectory data, they often lack 

user-friendliness. Leap Motion excels in precise finger tracking, Kinect in long-range tracking, and Intel 

RealSense strikes a balance between accuracy and range, catering to diverse user needs. 

 

Despite the complexity of trajectory estimation, modern sensors provide reliable trajectory data, albeit with 

occasional zigzag effects due to unique writing styles. The absence of fixed boundaries in the imaginary 

writing space contributes to shaky trajectories and unwanted sequences, necessitating normalization 
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techniques to enhance accuracy. Machine learning-based approaches demand meticulous feature selection, a 

challenging task that deep learning models mitigate by automatically learning relevant features. In this study, 

we implement two efficient deep learning algorithms, namely the long short-term memory recurrent neural 

network (LSTM) and the convolutional neural network (CNN), where LSTM demonstrates superior 

performance. 

 

The contributions of this paper are threefold: (1) Designing two robust deep learning models, LSTM and 

CNN, for accurate air-writing digit recognition, showcasing resilience across various experimental conditions, 

especially in normalized trajectory scenarios; (2) Creating a large publicly available dataset comprising 

21,000 trajectories, essential for training deep learning algorithms, with an additional 1000 test trajectories to 

evaluate model performance on unseen data; (3) Validating the accuracy and feasibility of the proposed model 

using both our dataset and the publicly available 6DMG dataset, demonstrating superior performance 

compared to prior work.  

 

The remainder of this paper is structured as follows: Section 2 discusses related prior work; Section 3 details 

the methodology, encompassing trajectory collection and network design; Sections 4 and 5 present 

experimental procedures and results, respectively, including performance comparisons with publicly available 

datasets. Finally, Section 6 concludes the paper and outlines avenues for future research. 
 

 

II. RELATED WORK 

 

Various standalone devices have been explored for air-writing and gesture-based digit recognition, catering 

to different needs and budgets. These devices, ranging from MEMS gyroscopes to Wi-fi-based systems, offer 

diverse options for trajectory estimation in three-dimensional space. In particular, Wi-fi-based systems, such 

as the Wri-Fi system, utilize channel state information derived from wireless signals for device-free air-

writing experiences. Portable devices equipped with inertial sensors have gained traction for collecting human 

motion trajectory data, focusing on minimizing errors through signal manipulation and algorithm refinement. 

However, challenges persist, including user discomfort with wearable sensors and complexities in reducing 

trajectory errors. 

 

Methods like gyroscope-based and accelerometer-based approaches leverage extended Kalman filters and 

wireless transmitters for motion detection, facilitating applications in digital pens and hand gesture 

recognition. Commercial devices like the Wiimote and HP Slate offer motion detection capabilities, with 

studies showcasing the effectiveness of the six-degree-of-freedom (6DMG) dataset collected by the Wiimote. 

Despite promising results, handheld sensors pose usability challenges, leading to the exploration of 3D vision-

based approaches using depth sensor-based cameras like the time-of-flight (TOF) camera, renowned for its 

accuracy in low-light conditions. 

 

Several algorithms have been employed for air-writing recognition, including hidden Markov models (HMM), 

dynamic time warping (DTW), support vector machines (SVM), and bi-directional LSTM (BLSTM). While 

HMM and SVM-based approaches are widely used, LSTM and CNN algorithms have gained popularity for 

their efficacy in various applications, including air-writing recognition. Recent studies have explored novel 

strategies like shape writing and IMU-based systems, although challenges such as device attachment and 

recognition accuracy persist. 

 

Efforts have been made to overcome these challenges, with researchers proposing Kinect-based systems for 

online digit recognition and Persian number recognition. Full writing systems in the air have also been 

developed, employing trajectory detection devices like Leap Motion and recognition algorithms such as HMM 

and BLSTM. While these systems show promise, achieving significant recognition accuracy remains a 

continual endeavor in the field of air-writing recognition. 
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III. OBJECTIVE 
   
The objective of this study is to develop and validate an air-writing recognition system utilizing three-

dimensional trajectories captured by a depth camera. The aim is to address the limitations of traditional writing 

methods and gesture-based systems by presenting a novel approach that offers simplicity and high accuracy in 

recognizing linguistic characters or words written in open space. The study focuses on enhancing feature 

selection, utilizing trajectory normalization techniques, and integrating deep learning architectures (LSTM and 

CNN) for robust recognition across varied writing styles and non-uniform characters. Validation is conducted 

using self-collected datasets and the 6D motion gesture alphanumeric character dataset, with the primary goal 

of achieving a remarkable accuracy rate of 99.32% and releasing a dataset to mitigate dataset scarcity in this 

area of research. 

 

IV. RESEARCH METHODOLOGY 

 

The entire procedure consists of four key components: fingertip identification, data gathering, standardization, 

and network architecture. A comprehensive schematic is depicted in Figure 1 to elucidate the specifics of the 

proposed approach. Subsequent sections offer detailed insights into each component. 

 

Figure 1: Block diagram for the proposed method including the fifingertip detection, data collection, 

normalization, and network design.  
 
4.1. Fingertip Identification 

For fingertip detection, we utilized the Intel RealSense SR300 camera, renowned for its application in gesture 

recognition, finger joint tracking, and depth-sensing research. Initially, the process involved hand 

segmentation and detection. Typically, human hands comprise 22 finger joints, with focus placed on tracking 

the index fingertip for trajectory writing, ensuring user convenience. However, the trajectory was mapped 

onto a virtual window, necessitating adjustments to fit and display it within a physical window, such as a 

computer screen. To achieve this, scaling was implemented. Physical distances were calculated by multiplying 

the window size by an adaptive value determined for both the horizontal (x) and vertical (y) directions. This 

adaptive value, ranging between 0 and 1, was obtained from data collected via the RealSense camera. In the 

User Interface (UI), window sizes of 640 and 480 were designated for the x and y axes, respectively. Original 

pixel values were computed by multiplying the window size by the adaptive value. 

 

 

4.2 Data Acquisition 

We devised a straightforward interactive user interface (UI) requiring minimal instruction. Ten participants 

(8 males and 2 females), aged between 23 and 30, all graduate students, were enlisted for the study. The 

prescribed writing order, depicted in Figure 2, closely resembled traditional writing conventions, without 

imposing constraints like graffiti or uni-stroke techniques. Stroke orders for each letter adhered to the 

conventional box-writing method. In recognizing air-writing systems, two main approaches exist: online and 

offline. For our study, we adopted the offline method, also referred to as the 'push-to-write' approach, to gather 

data. In this procedure, participants were instructed to write digits in front of the depth camera, capturing their 

spatial trajectory sequences. 
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The dataset parameters for the collected RealSense trajectory digits (RTD) are outlined in Table 1. Notably, 

digits 4, 5, and 8 exhibit relatively longer trajectories compared to others, with digit 1 displaying the shortest 

trajectory and digit 4 the longest. Users had the flexibility to utilize varying writing areas according to personal 

preference, resulting in a wide range of trajectory lengths for the same digit. Despite this variability, the mean 

(Equation 1) and standard deviation (STD) suggest that the majority of data points fall within a reasonable 

range. The dataset's variance (Equation 2) indicates the extent of data spread, crucial for designing the input 

layer of deep learning algorithms. The STD (Equation 3) represents deviation from the mean value, offering 

insights into data distribution characteristics essential for algorithm development. 

          
 

where x is the mean value, xi is the ith datum, σ2 is the variance, and σ is the STD. Some data were collected 

for testing purposes to verify the accuracy of unknown data. 

 

 
 

 
 

4.3 Normalization 

A primary challenge encountered in air-writing is the inherent zigzag nature of trajectories, lacking smoothness, 

necessitating normalization prior to inputting into the network. We employed two normalization 

methodologies—the nearest neighbor and root point. The procedures are detailed as follows: 

 

4.3.2. Baseline Point Normalization 
In air-writing, users employ an imaginary ("virtual") box in which they write their digits. While all digits are 

written in the first quadrant of a Cartesian plane, their positions may vary within this virtual box, as it lacks 

fixed boundaries or margins. Consequently, the same digit may be written in different positions, even by the 

same user, resulting in random initial positions. To address this variability, we utilized baseline point 

translation to standardize the starting point. This ensures that all trajectories commence from a consistent root 

coordinate. Equations (7) to (9) are utilized to compute the baseline point. 
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Here, [x0, y0, z0] denotes the initial point of a sequence, while [xi, yi, zi] represents the instantaneous point 

derived from the entire trajectory. The unnormalized digit 0 is depicted in Figure 3a, exhibiting noise and 

zigzag effects, whereas the fully standardized trajectory (Figure 3b) appears smooth. In this representation, 'x' 

and 'y' denote the distance values within the virtual window, representing the distance between the start and 

end positions. 'z' represents the distance between the hand fingertip and the camera, all measured in 

centimeters (cm). Negative values in Figure 3b indicate relative distances, a result of employing Equations 

(7) to (9) during the normalization process. The geometric baseline point serves as the reference starting point; 

for instance, -5 in the x-direction, -30 in the y-direction, and -6 in the z-direction signify deviations of 5 cm 

left, 30 cm below, and 6 cm closer to the camera from the starting position, respectively. Here, the negative 

sign indicates direction, not mathematical operation. 

 

 

                                    

Figure 3. Three-dimensional trajectory visualization: (a) sample trajectory before normalization and  

(b) trajectory after normalization. 

 

 

4.4. The Data Collection 

In our research, we utilize two distinct datasets: one is our self-compiled collection (RTD), and the other is the 

6DMG dataset [33]. Below are the detailed descriptions of each dataset: 

 

4.4.1. RTD Dataset 

The RTD dataset comprises trajectories gathered in-house, encompassing 20,000 trajectories, with 2000 data 

points allocated for each digit. The writing sequence and specific parameters are depicted in Figure 2 and Table 

1, respectively. To the best of our knowledge, this dataset boasts the largest digit repository currently available, 

considering the number of trajectories attributed to each digit. The RTD dataset is readily accessible online, 

along with comprehensive usage instructions. 

 

 

 

4.4.2. 6DMG Dataset 

The 6DMG dataset consists of motion gesture data, including alphanumeric air-writing samples [33]. Collected 

via the Wiimote device by 28 participants, this handheld gadget operates based on acceleration and angular 

speed, with orientation computed using inertial measurements. For our study, we incorporate the 6DMG air-

writing dataset, which features characters written in a uni-stroke fashion. Sample characters are illustrated in 

Figure 4. 

 

Figure 4. Sample character from 6DMG dataset 
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4.5. Network Architecture 

In this study, we utilized two cutting-edge neural network algorithms: CNN and LSTM. These algorithms 

leverage convolution and recurrent units, respectively, and are renowned for their efficacy in time series 

prediction tasks. 

 

4.5.1. LSTM Model 

The LSTM (Long Short-Term Memory) network [34] represents a variation of recurrent neural networks 

(RNNs). Diverging from conventional feed-forward networks, LSTM incorporates feedback connections, 

rendering it highly significant. Figure 5 illustrates the architecture of an LSTM cell 

.  

 

Figure 5. A Single long short-term memory (LSTM) unit. Here, ct, it, ft, and ot represents cell, input gate, forget gate, and output 

gate, respectively 

 

The LSTM layer consists of a cell housing input (Equation 10), forget (Equation 11), and output (Equation 12) 

gates, collectively referred to as the cell state (Equation 13). This state undergoes modifications via the forget 

gate, which determines what information to discard from the previous state, thereby retaining only relevant 

data. Subsequently, the 

output gate of the cell facilitates the transfer of information to the subsequent state.      

                      
 

where i, f, and o represent the input, forget, and output gates, respectively. The weight matrices W and bias b 

are parameters that undergo learning during training. The symbol ⊙ denotes the Hadamard product [35], 

generating a matrix of the same dimensions as the input. 

 

The proposed network comprises two LSTM layers and two dense layers. The input layer, positioned at the 

beginning of the network, serves solely to transfer inputs to the subsequent LSTM layer. Given the varying 

trajectory lengths, each trajectory contains a unique set of 3D spatial points, and even identical digits may 

exhibit differing lengths based on writing speed and direction. However, LSTM-RNNs necessitate fixed-length 

sequences as input. Hence, the input layer is configured to accommodate the maximum trajectory length. 

 

The architecture of the proposed LSTM model is depicted in Figure 6; where I0 and In denote inputs containing 

the x, y, and z values derived from the trajectory. LSTM 1 and LSTM 2 comprise 64 and 128 cells, respectively, 

with each cell computing the output activation of the LSTM unit. Cross-validation was facilitated using a mini-

batch size of 256. DENSE 1 and DENSE 2 house 64 and 256 neurons, respectively, employing the Rectified 

Linear Unit (ReLU) activation function (Equation 14). ReLU is chosen for its simplicity and non-saturating 

output characteristic, transmitting only the positive output to the subsequent layer. 
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Dropout serves as a regularization technique, originating from Google, to mitigate overfitting in neural 

networks by discouraging complex co-adaptations in training data. It aids in preventing overfitting [36] with a 

mini-batch size of 256. DENSE 1 and DENSE 2 consist of 64 and 256 neurons, respectively, both employing 

the Rectified Linear Unit (ReLU) activation function (Equation 14), which is straightforward and non-

saturating. The key property of ReLU is its ability to eliminate the negative output portion, transmitting only 

the positive values to the subsequent layer 

.  

Figure 6. Network diagram of the proposed LSTM network indicating the input, output and hidden layers. Here I0 and In is the 

fifirst and last point for an individual trajectory, respectively. There are two LSTM and dense layer with multiple neurons. The 

output layer is the result of the model. 

  

4.5.2. CNN Architecture 

A CNN architecture comprises input and output layers alongside multiple hidden layers, incorporating 

convolution, pooling, and activation layers. CNNs exhibit various variants tailored to specific applications and 

datasets. The conventional CNN network entails significant computational overhead due to convolution and 

pooling layers. Therefore, we employed the separable convolution layer, also known as depth-wise 

convolution, recognized for its faster computation. 

 

The proposed CNN network is delineated in Figure 7. Similar to the LSTM network, the input layer is 

configured to accommodate the maximum trajectory length. Comprising a 300 × 1-dimensional vector, the 

input layer transfers input values to the first separable convolution layer. Convolution layers 1, 2, and 3 feature 

64, 128, and 256 channels, respectively, with a filter size of 3 across all cases. Each convolution layer is paired 

with a 1D max-pooling layer. Two dense layers housing 256 and 128 neurons, respectively, are included. 

Dropout rate of 0.5 is implemented in DENSE1 and DENSE2 layers. The ReLU activation function (Equation 

14) is applied across all layers except the output layer, where softmax (Equation 15) regularization is utilized. 

The Adam optimizer with a learning rate of 0.0001 and categorical cross-entropy as the loss function are 

employed. 

 

 

Figure 7. Proposed convolutional neural network (CNN) model. The model has three convolutions,  

three max-pooling and 2 dense layers. 
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V. Experimental Configuration 

For the experiment, we connected an Intel RealSense SR300 camera to a computer. A user-friendly graphical 

interface (GUI) was developed to facilitate trajectory data collection. C# and Python programming languages 

were utilized for interface development and training, respectively. The proposed networks were implemented 

using the Keras high-level API with TensorFlow backend. Real-time trajectory capture was achieved at a rate 

of 50 frames per second (fps). To expedite the training process, we employed an NVIDIA GeForce GTX 1050 

Ti graphics processing unit (GPU) with 32 GB memory. The experimental setup is illustrated in Figure 8.  

 

The trajectory capturing process commenced with writing the digit 0 in the air, tracked by the RealSense 

camera. Trajectories were captured in real-time without normalization, resulting in slight distortions. Complex 

digits were also captured frame by frame, aiding in understanding the motion associated with each digit's 

writing order. 

 

5.1. Interface Design 

The user interface featured three primary buttons: start, stop, and save trajectory. It displayed both depth 

information and the captured trajectory, offering real-time trajectory visualization. The GUI was intuitive and 

interactive, requiring minimal instruction. Each digit was represented in 2D Cartesian coordinates for 

simplicity, though the data was inherently three-dimensional. Upon clicking the 'start' button, the camera 

initiated fifingertip position detection. Users could stop trajectory recording by clicking the 'stop' button, 

refresh the window if needed, and save trajectories using the 'save' button. Labels for the trajectories were 

automatically generated by the system. The 'start' and 'stop' buttons controlled the initial and end points, 

respectively, while the 'cut' button facilitated trimming of unwanted starting or ending points. 

 

 

5.2. User Experience Evaluation 

A user study was conducted to assess usability. Participants were instructed to write in the air in front of the 

camera, with minimal training required initially. On average, training time was less than 3 minutes. Users 

encountered minor challenges such as shaky effects and hand stiffness in the initial attempts, but these issues 

were quickly overcome. Overall, users provided positive feedback and appreciated the functionality of the 

system. 

 
 
VI. Results and Discussion 

5.1. Parameter Optimization 

The model underwent multiple training iterations using a dataset comprising 20,000 trajectories, with 10-fold 

cross-validation applied. Each iteration consisted of 18,000 training and 2000 validation data points. Various 

batch sizes and iterations were experimented with to optimize parameters. 

 

The LSTM model was trained for 25, 50, 75, and 100 iterations. Figure X illustrates the variation in accuracy 

across different iterations and batch sizes. It can be observed that the highest accuracy was achieved with a 

batch size of 256 for 100 iterations. Therefore, optimal parameters for LSTM include a batch size of 256 and 

100 iterations. 

 

                    

Figure  Parameter tuning: (a) batch size vs accuracy for LSTM network, (b) batch size vs accuracy for CNN network. The 

convergence is faster in LSTM rather than CNN in terms of the number of iterations 
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In contrast to LSTM, the CNN model underwent 250, 500, 750, and 1000 iterations (as depicted in Figure 

10b). It necessitated a higher number of iterations compared to LSTM to reach convergence. The highest and 

optimal accuracy was achieved with a batch size of 256 and 1000 iterations. Therefore, subsequent discussions 

will be based on using a batch size of 256 and 100 iterations for LSTM, and 1000 iterations for CNN. The 

scatterplot in Figure X appears disordered due to the absence of a definitive relationship indicating linear 

accuracy with respect to iteration and batch size. 

 

Table 1. Evaluation of the Proposed LSTM and CNN Network 

                       
 

We conducted a comprehensive experiment on the RTD dataset utilizing LSTM and CNN networks. It was 

observed that the LSTM model achieves satisfactory accuracy within approximately 20 iterations, after which 

it stabilizes. The accuracy trend over iterations is illustrated in Figure A1 (Appendix A). Notably, a significant 

peak in accuracy was reached within the first 15 or 20 iterations. Conversely, the CNN model stabilizes around 

150 iterations (as depicted in Figure A2 (Appendix A)). These abrupt changes in model loss and accuracy 

suggest rapid adaptation to the dataset. Both CNN and LSTM models performed admirably. However, the 

highest accuracy was attained with a fully normalized RTD dataset using LSTM. Further details are presented 

in Table 2. The poorest performance was observed with non-normalized data for both LSTM and CNN. 

Additionally, it was noted that the nearest neighbor normalization technique was more influential than the 

root point normalization method. 

The confusion matrix, depicted in Figure A3 (Appendix A), illustrates the performance of both CNN and 

LSTM models. CNN exhibited a higher false recognition rate compared to LSTM. For instance, the digit 6 

was misclassified as 1 sixteen times by CNN, whereas LSTM corrected this automatically. Overall, LSTM 

outperformed CNN in all scenarios, likely due to its ability to handle long-term dependencies inherent in time-

series data such as trajectories. Nevertheless, both CNN and LSTM achieved commendable accuracies of 

99.06% and 99.17%, respectively. 

Evaluation on the 6DMG dataset provides a more comprehensive assessment of our proposed model, as the 

RTD dataset lacks benchmarks. A detailed comparison is presented in Table 3. Chen et al. conducted an 

extensive analysis of the 6DMG dataset [38], considering both user-dependent and user-independent cases, 

as well as explicit and implicit motions. Their initial model achieved 96.9% accuracy for explicit motion 

characters using an HMM classifier, which was later improved to 99.2% accuracy [13]. Subsequent 

approaches, such as the LSTM-based method by Xu and Xue, yielded lower accuracy compared to previous 

works [32]. In a contemporary study, Yana and Onoye combined BLSTM and CNN features, achieving a 

maximum accuracy of 99.27% [39]. This comparison underscores the competitive performance of our 

proposed network. 

Table 2. Various Algorithm and there Accuracy  

 
In this scenario, the proposed LSTM architecture surpasses previous works, achieving a remarkable 99.32% 

accuracy, the highest reported to date. Similarly, the accuracy of the proposed CNN model aligns closely with 

[39]. While previous researchers also utilized LSTM layers, our approach of employing consecutive LSTM 
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layers and preprocessing the dataset through normalization led to higher accuracy compared to previous 

methods. 

 

5.2. Result Image 

 

 

 

VI. CONCLUSION 
 
        This study presents a trajectory-based air-writing recognition system leveraging an Intel RealSense SR300 

camera, accompanied by the development of two deep learning-based algorithms for trajectory recognition. 

Offering a paperless writing solution, our approach diverges from previous studies reliant on motion sensors 

and handheld devices, opting instead for a vision-based strategy for improved user experience. Through 

extensive experimentation under various normalization conditions, we determined that normalized 3D data 

yielded optimal results. Leveraging the 6DMG dataset, we achieved the highest accuracy reported to date. The 

primary contribution lies in the design of a network that enhances recognition accuracy and addresses dataset 

challenges prevalent in current research. The highest recognition accuracies attained for the RTD and 6DMG 

datasets using CNN are 99.06% and 99.26%, respectively. Notably, the highest accuracy was achieved with 

LSTM, recording 99.17% and 99.32% for the RTD and 6DMG datasets, respectively. Furthermore, these 

accuracies were achieved within a reasonable number of iterations, underscoring the efficiency and rapid 

learning capability of the model. A comparative analysis with prior studies revealed notably higher accuracy 

in our work. Future endeavors will focus on designing a model tailored for continuous writing systems 

applicable to augmented reality/virtual reality or gesture-based interfaces. 

 

Appendix A  

Here, we present plots illustrating the relationship between iterations, accuracy, and loss for both LSTM and 

CNN networks. The rapid convergence of these networks in terms of iterations is evident. 

 

                      
(a)                                                                           (b)  

Figure A1. Model accuracy and loss for LSTM network: (a) accuracy over 100 iterations. (b) loss over 100 iterations 

 

The confusion matrix for LSTM and CNN network. Itshows that the accuracy is a little higher in LSTM than 

CNN. However, the difference is not significant 
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                             (a)                                                                                       (b)   

Figure A2. Confusion matrix for RTD dataset using: (a) LSTM and (b) CNN networks. The false recognition rate for CNN is higher 

than for LSTM.  
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