
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g397

ANALYZE THE COST IMPLICATIONS OF

ADOPTING SERVERLESS COMPUTING

MODELS

1Mahesh Kadam, 2Ganesh Wayal

1MTech Computer, 2HOD Computer

1TSSM's PADMABHOOSHAN VASANTDADA PATIL INSTITUTE OF TECHNOLOGY (PVPIT),

2TSSM's PADMABHOOSHAN VASANTDADA PATIL INSTITUTE OF TECHNOLOGY (PVPIT)

ABSTRACT

With the rise of serverless computing, new and compelling frameworks for serverless applications have

emerged, which are helping to drive the trend toward container and microservice applications. This points to

the fact that serverless computing is becoming more vital to business gatherings, conferences, blogging, and

development. Key generation time (minimum, average, and maximum), encoded key size, and signature time

are some of the security parameters that undergo experimental investigation. Serverless network metrics like as

latency, average throughput, average response time, error rate, load distribution, and cost-efficiency are also

used for testing. But there was hardly any excitement among academics. Simulation findings on serverless

network metrics reveal that, in comparison to identity-based cryptosystems and attribute-based encryption,

filter-based security utilizing fuzzy logic delivers better average throughput while reducing average response

time, error rate, and load distribution. Additionally, when compared to attribute-based encryption and identity-

based cryptosystems, testing on security metrics reveals that filter-based security employing fuzzy achieves

lower encoded key size, signature time, and key generation time with reduced minimum, average, and

maximum time. The research also demonstrates that fuzzy filter-based security is cost-effective. An important

part of making decisions in cloud computing management is analyzing the many kinds of elements that affect

the costs of cloud computing services.

KEYWORDS: Serverless Computing Models, Cost, fuzzy logic, security, cost-effective

INTRODUCTION

Initially, in the cloud's infancy, a wide variety of resources at various tiers (IaaS, PaaS, and SaaS) could be

made available as a service on demand. Without a question, the advent of cloud services has encouraged the

transfer of legacy applications to the cloud, allowing them to reach a wider audience. The difficulty of

managing distributed systems, including instance selection, auto scaling, fault tolerance, monitoring, logging,

and so on, comes with infinite computing resources. At the same time, micro-services are becoming more

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g398

popular due to advancements in virtualization and the rise of new container technologies like Docker. A

granular cloud service with easy-to-understand controls appears to be in high demand.

With the introduction of serverless computing, a new paradigm has emerged in cloud computing that frees

developers from the burden of maintaining and supplying the underlying infrastructure and allows them to

concentrate entirely on their applications. Developers may build cloud-based application functions that

automatically activate in reaction to events using the Function as-a-Service (FAAS) implementation serverless

paradigm. Serverless computing allows businesses to pay solely for the resources actually used by their

applications, as opposed to the conventional cloud approach that requires resources to be reserved in advance

regardless of consumption.

Gartner Group found that more than three quarters of businesses are using serverless computing or intend to

within the next two years. Additionally, the serverless industry is projected to see tremendous growth, going

from $3 billion in 2017 to an estimated $22 billion by 2025. Understanding the cost implications and finding

relevant workloads are critical for successful adoption. Transitioning to a serverless computing architecture

involves various issues, such as legacy system integration, cold start, and state management.

In recent years, serverless computing has gained popularity as a viable option for cloud application hosting.

Minimal setup and configuration are required for serverless computing solutions, which provide autonomous

fine-grained scaling of computational resources, high availability (24/7), fault tolerance, and charging only for

real compute time. Serverless solutions make use of transient infrastructure like MicroVMs or application

containers to accomplish these goals. By allowing cloud providers to more quickly combine customer

workloads to utilize available capacity and deallocate unneeded servers to conserve energy, the serverless

architectural paradigm change eventually promises greater server utilization. With the serverless model's

emphasis on on-demand resource provisioning and pricing that reflects only real computation time, re-

architecting apps for it offers lower hosting costs.

LITERATURE REVIEW

Andi, Hari (2021) This article provides a concise overview of the serverless cloud computing paradigm,

including its idea, advantages, and applications in the IT industry. The old paradigm, which included three

service-based models (IaaS, PaaS, and SaaS), held that developers should allocate resources, manage servers,

and own servers. Infrastructure as a service (IaaS) allows the cloud provider to store and access data, software

as a service (SaaS) allows users to have access to various applications, and platform as a service (PaaS) allows

developers to have access to specific services for organizing and running their projects. With serverless cloud

computing, the supplier of cloud services handles all aspects of server ownership, management, and

maintenance, relieving the developer of this burden. Therefore, this strategy is cost-effective and significantly

shortens the time it takes for a system to reach the market. Amazon Lambda, Microsoft Azure, and Google

Cloud Platform are the three main types of serverless architecture. Among its drawbacks, which are detailed

later in this article, is the fact that it is useless when a procedure takes too long to complete.

Mahajan (2019) Clients might expect lower costs and more flexibility with serverless computing, while cloud

providers can expect more profits and better usage of their resources. We examine the possible financial

advantages of serverless computing for both cloud service providers and end users in this article. We compare

serverless computing (SC) with standard cloud computing (VM) using realistic cost models, queueing theory

performance models, and a game theory formulation. The suggested model has the cloud provider setting

pricing for SC and VM in order to maximize profit, while consumers divide their workload between SC and

VM to save cost while keeping a certain performance restriction. We investigate the effect of provider

expenses, service capacity, customer workload, and comparable pricing. The primary outcome of our work is

the discovery and description of three provider-and customer-beneficial operating regimes that make use of SC

alone, VM alone, or a combination of the two. Cloud providers and their clients may benefit from this paper's

many insights on the pros and cons of a hybrid system that uses serverless computing, virtual machine renting,

and related pricing methods.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g399

Thatikonda, Vamsi (2023) Serverless computing, or just "serverless," is changing the game when it comes to

application development, deployment, and runtime. By removing the need for developers to worry about the

underlying infrastructure, serverless computing frees them up to concentrate on code while cloud providers

handle server management. Instead of being charged for pre-allocated capacity, customers are now charged for

real resource use, thanks to dynamic resource allocation, which is the outcome of this paradigm change. The

article describes serverless computing and its main parts, which are FAAS and BaaS, which stand for "function

as a service" and "backend as a service," respectively. We highlight the advantages of serverless, which include

its cost-effectiveness, built-in scalability, quick development, and decreased operating requirements. But it

does have its limits. Discussed are issues like "cold starts," possible vendor lock-in, limited flexibility, and

particular security holes. Web apps, data processing, Internet of Things (IoT) backends, chatbots, and

temporary jobs are all examples of practical serverless applications. Last but not least, organizations should

carefully weigh the benefits and drawbacks of serverless computing, especially as the market changes.

Organizations need to assess their preparedness for the serverless revolution since it is the wave of the future.

Hassan (2021) Thanks to its significant impact on a variety of issues—including but not limited to cost

reduction, latency reduction, improved scalability, and elimination of server-side management—serverless

computing has emerged as a promising new area of study in the last decade. Unfortunately, academics and

developers still lack a comprehensive study on the topic of serverless computing and its relevance in many

settings. Therefore, it is crucial to provide published study evidence in this field. In order to compile relevant

data for this systematic review, 275 studies that looked into serverless computing were culled from reputable

literature sources. Afterwards, a number of research concerns about the most recent developments in serverless

computing, including its principles, platforms, use, etc., were addressed by analyzing the collected data. We

also go over some of the current issues with serverless computing and how future studies can make it easier to

use.

Adzic (2017) In late 2014, Amazon Web Services introduced its "Lambda" platform. Since then, all the main

cloud infrastructure providers have introduced new services that work in the same way. Instead of deploying

and managing large services or virtual machines, users can now deploy individual functions and pay only for

the time their code is actually running. The suppliers indicate that these technologies, which are marketed as

"serverless," may drastically alter the design, development, and operation of client/server applications. The

article delves into two case studies of early adopters from the industrial sector to demonstrate how moving an

application to the Lambda deployment architecture cut hosting costs by 66% to 95%. It also explores how this

trend could impact common software architecture design practices if it continues to gain traction.

PROPOSED ATTRIBUTE BASED ENCRYPTION MODEL

Using an attributed-based encryption on serverless computing architecture, this section proposes an access

control system. First, the data is encrypted with the help of user characteristics. Then, it is divided into cipher

text. At last, a decryption algorithm deciphers it. The encrypted text is then disseminated over the network, and

the serverless system stores the wrapped letters. In the serverless computing concept, data is encrypted and

transferred in a searchable way. Data cannot be accessed prior to its scheduled expiry period and will be

deleted at that point. Therefore, with the serverless architecture, no one other than authorized users may access

the material. Service provider, owner, user, attacker, third party, and server are the six organizations that the

suggested system use to securely access the data. Users are given the option to save and retrieve their data by

the service provider.

The data is encrypted before being stored in the serverless system. Authorized users may access the original

data by decrypting it using the decryption keys and the appropriate characteristics. The entities that attempt to

access the server without authorization are known as attackers. Before and after the release and expiry times,

respectively, they try to access the data.

By allowing a third party to manage the properties, the serverless architecture safeguards the data from

malevolent users. You may create the system's parameters—public parameters, secret, and decryption key—

through a third party. The reference time is recorded by the time server without interactions. It keeps track of

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g400

the exact moment when the time-sensitive key changes are released. The network nodes are used for key

management and storage. In their last-ditch effort, the criminals try to steal the protected key shares.

SECURITY REQUIREMENTS

In this section, we detail the security criteria that will be applied in this investigation.

i. Data Confidentiality: Even a malevolent user cannot obtain sensitive information. In order for an

authorized user to have access to the data, access permissions must be met, which includes having

sufficient credentials.

ii. Collision Resistance: Due to collision resistance, many users are unable to decode encrypted material,

even when they work together and combine their unique encryption keys.

iii. Attack Resistance: The suggested system is resistant against several cyber and brute-force assaults. In

a brute-force assault, the bad guy tries every conceivable key until he finds one that works, and in a

cyber-attack, he utilizes many identities to crack the code.

iv. Non-accessibility of sensitive data before release time: The sensitive data is available before the

appropriate release time within the permission period, but users are not permitted to access it.

v. Delete data after expiration time: After the expiry period has passed, the sensitive data will be

automatically deleted.

SECURITY ASSUMPTION - BILINEAR MAP

Let G0 and G1 it is thought of as prime-order multiplicative cyclic bilinear groupings p. Envision g as a

generator of G0. As a kind of map, a bilinear map possessing the qualities listed below:

 Bilinearity: For all

 Non-degeneracy:

 Computability: There is an efficient algorithm to compute

Consider G1, G2 and GT constitutes a bilinear group, where g and h are the generators of G1 and G2.

Define for an unknown and set When given g, h, and y as input,

algorithm B has a better chance of solving the BDHE issue .

FIS IMPLEMENTATION

In Figure 1, we can see that the output variable linked to the fuzzy logic system is expected to fall somewhere

between very low, low, medium, high, and very high.

Figure 1. Cost value of Fuzzy membership functions

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g401

To get the desired result from each input, the FIS is programmed using If-Then rules. As a result of optimizing

the fuzzy system's inputs VM reliability, maximum residual energy, and maximum connection costs may be

reduced. The following rule forms the basis of the proposed system:

The output is deemed to be very low if R l is medium, Rn is low, and E r is low. In defuzzification, the input

variables (Rn, R l, Er) determine the trust level of each message forwarded to Virtual Machines (VMs) using the

value acquired from FIS.

RESULT ANALYSIS

In order to estimate the computational cost of the suggested technique, the Pairing‐Based (PBC) library is used.

A desktop computer with an Intel Core i7 3.4 GHz CPU, 500 GB of storage, and 8 GB of RAM is used for the

research. We do the calculations for several iterations and then present the average results. File sizes ranging

from 20 kilobytes to 240 kilobytes are used in the studies. Data encryption, ciphertext extraction, decryption

key overhead, ciphertext share creation, and ciphertext share distribution constitute the anticipated

computational overhead. As seen in Figure 2, the computational cost varies with file size.

Table 1: Computational overhead for different file size

File Size (kB) Top K SEED Attribute Based Encryption

1 120 99 90

2000 155 134 125

4000 190 169 160

6000 225 199 190

8000 260 229 220

10000 295 259 250

Figure 2: Computational overhead for different file size

In each of these cases, the suggested solution outperforms the current ones in terms of overhead. The current

approaches' increased overhead is caused by the fact that encryption text must be associated before its

components can be extracted. Conversely, computational overhead is reduced when encrypted text is not

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g402

associated with it while it is being extracted. As both execution time and file size increase, the overhead in all

the approaches, including the suggested one, seems to be linear.

Table 2: Encryption time with different attribute size

File Size (kB) Top K SEED Attribute Based Encryption

1 122 50 42

10 277 200 187

20 389 270 244

30 494 400 365

40 603 500 463

Figure 3: Encryption time with different attribute size

Look at Figure 3 and Table 2 for the encryption time results, then look at Figure 4 and Table 3 for the

decryption time findings. For different types of users. The assessment takes place in milliseconds and

compares the suggested approach to the current ones. The results are linear with rising user characteristics, as

seen by the varied user attributes between 1 and 50. According to the simulation results, the suggested

approach has a shorter encryption time compared to the current methods. The suggested approach also has a

shorter decryption time than the current ones.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g403

Table 3: Decryption time with different attribute size

File Size (kB) Top K SEED Attribute Based Encryption

1 100 44 23

10 250 190 190

20 322 272 250

30 458 358 332

40 588 449 435

50 683 632 603

Figure 4: Decryption time with different attribute size

Figure 6 shows the results of the decryption time with regard to different file sizes, whereas Table 4 and Figure

5 show the results of the encryption time with respect to different file sizes. In milliseconds, we compare the

suggested approaches to the current ones and evaluate them.

Table 4: Encryption time with different file size

File Size (kB) Top K SEED Attribute Based Encryption

1 1100 700 100

100 1500 1250 740

200 1900 1700 1323

300 2200 2000 1743

400 2423 2300 2239

500 2746 2500 2493

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g404

Figure 5: Encryption time with different file size

Table 5: Decryption time with different file size

File Size (kB) Top K SEED Attribute Based Encryption

1 1023 600 250

100 1423 1002 734

200 1966 1432 1233

300 2342 1765 1734

400 2954 2303 2102

500 3124 2643 2543

Figure 6: Decryption time with different file size

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g405

The findings are linear over the range of 1–500 MB, and then they start to show a steady increase as the file

size increases. Due to the use of public key cryptography in the proposed technique, this criterion holds true for

both the encryption and decryption times. The results of the simulation demonstrate that, for files of different

sizes, the suggested method's encryption time is lower than that of the current approaches. Similarly, for files

of varied sizes, the suggested method's decryption time is lower than that of the current approaches.

Cost implication in Function-level

Programming languages, performance, restrictions, composability, and deployment should always take

precedence while creating serverless computing. Composability refers to various function compositions, while

performance and limitations denote the maximum available memory and CPU resources; both are influenced

by the design strategy of functions. Furthermore, the execution efficiency and the environment setup time are

both directly impacted by the efficiency of the programming language.

 Language Selection Strategy: After the design is complete, implementing it is a breeze. But which

language is best for a serverless platform? Jackson and Clynch investigated the two most prominent

serverless technologies, AWS Lambada and Azure Functions, in order to find a solution to this issue.

Their experiment with a tiny use case compared all the programming languages on these platforms,

which are also typical on other platforms, in order to clear up the influence of language runtime on

performance and cost. A single POST request to the API was used to invoke the function during cold

start (when a function is called for the first time, there is a very high delay to initialize the container and

the language runtime environment) and warm start conditions, during which all tests were executed in

batches. Table 6 displays the outcome.

Table 6: Relationship Between AWS Performance and Cost

Language Runtime

(ms)

Warm Start Cold Start

Average Execution

time

Average Execution

time

Average Billed

Duration

Average Cost Per

Million

C#. Net 6.32 2500.09 2600 5.61775

Golang 19.21 8.97 100 0. 408375

JAVA 8 11.13 391.91 400 1.0335

NodeJS 11.46 23.67 100 0. 408375

Python 6.13 2.67 100 0. 408375

Mathematical Modeling of Cost Types

Strategic Choice, Cloud Computing Service and Cloud Type Selection (str): The time investment (eot)

required to make a choice (in monetary terms) determines how much it will cost to implement a strategy and

choose the best Cloud Computing Services. The expenditures for potential decision-making information (inf),

such as scientific literature or market research, and the expenditures for external consulting services (cons).

The sum of all workers' time spent on the task is what determines the entire cost of the spending. A worker's

hourly wage multiplied by this number gives the total. due to the time invested as well as the

total for all participating workers in times i<1, decision-making costs occur.

Also, the overall price of all bought materials is the same as the total cost of purchased information materials

(inf). Finally, the expenses associated with advising add up to a grand amount, as shown in Table 7

formula G.3. At long last, the sum of the cost elements of cost type str is:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g406

Table 7. General formulas

Serverless computing platform performance modeling in time

The creation of an innovative model for temporal analytical performance that can forecast many key

performance indicators across time. Because of the unpredictable and ever-changing nature of serverless

computing platforms, it is crucial to use temporal performance models to keep performance measurements

within reasonable limits; otherwise, steady-state performance models may no longer be applicable. A simple

M/G/∞ queuing system with a Markovian arrival process, a general service process, and infinite processing

capacity can be used to model an ideal platform for developing an accurate analytical performance model for

serverless computing platforms. In this model, every request goes through the same service process and there is

no latency caused by queuing. Cold starts can take orders of magnitude longer than warm starts, and there are

limits on maximum concurrency levels, which can cause request rejection when the system reaches its capacity

limit. Sadly, modern serverless computing platforms are still far from perfect. To construct an all-

encompassing temporal performance model for serverless computing systems, we update the M/G/∞ queuing

system to account for these alterations in this study.

Figure 7. The warm pool's state transition diagram. The red dashed self-loop represents requests that

were refused because there wasn't enough capacity.

 Cold Start Rate

As previously mentioned, we use M/G/m/m queuing systems to simulate the warm pool in all of its states.

Assuming the warm pool rejects the model, this modeling approach creates a new instance, runs it through a

cold start, and then adds it to the warm pool. Therefore, in order to get the cold start rate for every state, we

must determine the rate of request rejection in the corresponding M/G/m/m queuing system.

 Arrival Rate of Warm Instances

In the suggested paradigm, we need to determine the arrival rate for each instance in the warm pool before we

can get the instance expiry rate. In order to do this, we will first pretend that we have a warm pool of m

instances shown as {I1, I2,...,Im}, with I1 having the top priority for new arrivals and Im having the worst

priority. Think of 𝜆�w,m,n as the rate at which the nth instance in the pool arrives.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT2404733 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g407

CONCLUSION

This paper introduces a state-of-the-art serverless method that uses an effective security mechanism to

safeguard data in a serverless computing environment. In order to assist with improved cost awareness in

serverless computing, the aims to provide guidance on how to establish a serverless platform or design

serverless apps. Our goal is to create a temporary analytical performance model that can understand serverless

computing systems, their specific features, and forecast future resource needs and important service quality

indicators. One of the most talked-about issues with cloud computing is the associated costs. Serverless

computing offers promising future prospects because to its cheap cost, ease of use, and good performance,

despite its relative youth. Protected data in a serverless environment enhances information and resource

exchange while warding off several threats. This technique enhances serverless security and performance

against the PBC library by deploying user characteristics. The simulation results demonstrate the effectiveness

of the suggested strategy in safeguarding resources or data prior to their access by unauthorized third parties.

REFERENCES

1. Adzic, Gojko & Chatley, Robert. (2017). Serverless computing: economic and architectural impact.

884-889. 10.1145/3106237.3117767.

2. Hassan, Hassan & Barakat, Saman & Sarhan, Qusay. (2021). Survey on serverless computing. Journal

of Cloud Computing. 10. 10.1186/s13677-021-00253-7.

3. Thatikonda, Vamsi. (2023). Serverless Computing: Advantages, Limitations and Use Cases. European

Journal of Theoretical and Applied Sciences. 1. 341-347. 10.59324/ejtas.2023.1(5).25.

4. Mahajan, Kunal & Figueiredo, Daniel & Misra, Vishal & Rubenstein, D. (2019). Optimal Pricing for

Serverless Computing. 1-6. 10.1109/GLOBECOM38437.2019.9013156.

5. Andi, Hari. (2021). Analysis of Serverless Computing Techniques in Cloud Software Framework.

Journal of ISMAC. 3. 221-234. 10.36548/jismac.2021.3.004.

6. P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and virtual machines at scale: A

comparative study,” in ACM International Middleware Conference, 2016.

7. L. Kleinrock, Theory, Volume 1, Queueing Systems, 1975.

8. M. J. Osborne and A. Rubinstein, A course in game theory, 1994.

9. D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi, “A survey on spot pricing in cloud computing,”

Journal of Network and Systems Management, 2017.

10. B. Jennings and R. Stadler, “Resource management in clouds: Survey and research challenges,” Journal

of Network and Systems Management, 2015

http://www.ijcrt.org/

