ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

SPECTROSCOPIC CHARACTERIZATION AND DFT COMPUTATIONAL STUDY FOR THE 4-CHLOROMETHYL PYRIDINE HYDROCHLORIDE MOLECULE

^{1*} Keerthana Ravikumar, ²Soundhariya Segar,³ Sivaranjini T, ⁴ Periandy S ¹ Research Scholar,²Assistant professor, ³ Assistant Professor, ⁴Associate Professor

^{1*}Department of Physics,

¹ Kanchi Mamunivar Govt. Institute for Postgraduate studies and research, Pondicherry University,

Puducherry, India.

Abstract: In the present study, the structural, optical, and biological properties of the 4–chloromethyl pyridine hydrochloride molecule were examined by quantum computation density functional theory (DFT) using the B3LYP 6-311++G (d,p) basis set. The observed bond length and bond angles were compared with the reported XRD results. HOMO and LUMO orbitals have determined the energy gap. The donor–acceptor interactions are investigated using a second-order Fock matrix. The obtained vibrational frequencies were confirmed with experimental FT-IR and FT-RAMAN analysis. The molecular electrostatic potential surface analysis shows the electrophilic and nucleophilic attack of the present molecule. ¹³C and ¹H Nuclear Magnetic Resonance data were used to study the molecular structure of the titled molecule at the elemental level. The UV-Vis absorption spectra confirm the optical properties of the titled molecule. The Ramachandran plot of the titled molecule is used to identify the protein's favorable regions for docking. Docking studies confirm the pharmaceutical activity of the titled molecule.

Keywords: DFT; UV-Vis; HOMO-LUMO; NMR; Molecular Docking

I. INTRODUCTION

Pyridine is an aromatic amine with delocalized electron pairs similar to benzene. It is a foulsmelling liquid and it has been widely used for clinical applications [1,2]. Various spectroscopic investigations such as NMR, Raman, IR and UV analysis interpreted its fundamental properties. Pyridine derivatives have a variety of biological properties, including antibacterial, antimicrobial, and anti-diabetic properties. It is used in electrochemical and photochemical processes. Pyridine moieties are commonly employed in medication manufacture due to their basicity and hydrogen bonding capabilities [3]. 4-Chloromethyl pyridine hydrochloride is one of the low-cost pyridine derivatives used in the chemical industry [4]. A detailed quantum computation study by using Density functional theory (DFT) will aid different spectroscopic investigations of the Chloromethyl pyridine hydrochloride molecule [5]. Hence, in this work we investigated the structural, Vibrational, UV, NMR, non-linear optical and thermal properties of the chloromethyl pyridine hydrochloride molecule using B3LYP functional and 6-311++G(d,p) basis set. To the best of our knowledge, the quantum chemical analysis of the titled compound has not been reported so far.

II. METHODS

2.1 EXPERIMENTAL METHODS

The substance under study, 4-chloromethyl pyridine hydrochloride, was bought from Sigma Aldrich Chemical USA in spectroscopic grade. The FT-IR spectra in the 4000-400 cm⁻¹ region were captured using a Bruker IFS 66V spectrometer. The spectral resolution measures around 2 cm⁻¹. The FT-Raman spectra of this compound are also captured using the same module with FRA 106 Raman module outfitted with Nd: YAG laser source running at 1.064 m line widths with 200 mW power. The powerful multinuclear FT-NMR model Avance II (Bruker) was used to record the high resolution NMR spectra displayed in Fig.4. The instrument is outfitted with a cryo magnet of field strength 9.4 T with its frequency 400 MHZ for ¹H and 100 MHZ for ¹³C.

2.2 Quantum Computational Method

Theoretical approaches and basis sets should be explored in order to achieve both accuracy and computing efficiency requirements. In tackling the electrical structure of molecules, DFT has proven to be quite effective. In this study, the properties of the examined molecule were calculated using the density functional three parameter hybrid model (DFT/B3LYP) at the 6-311G (d,p) and 6-311++G(d,p) basis sets. All calculations were carried out with the GAUSSIAN 09W program package, using the default convergence criteria and no geometry constraints. By using the GAUSSIAN 09W program package, the Raman scattering activities were calculated.

The expression:

$$I_i = 10^{-12} \times (V_0 - V_i)^4 \times 1 \div V_i \times RA_i \dots (1)$$

where I_i is the Raman intensity, RA_i is the Raman scattering activities, V_i is the normal mode wave number, and V_0 is the excitation laser wave number. The enlarged 6-311++G(d,p) basis set was used to continue computations for the B3LYP functional, which was chosen as the one that yields the most accurate results. The infrared and Raman spectra were interpreted in detail using the results derived at this level of theory.

III. RESULT

3.1 Molecular Geometry

The reactivity, polarity, polarizability, and biological activity of a chemical can all be determined using the structure of the substance. The B3LYP technique with a 6-311++G(d,p) basis set is used to compute the optimal structural characteristics of the target chemical 4- Chloromethyl pyridine Hydrochloride. Fig.1 shows the optimal structure of the chemical with the numbering of atoms. The bond lengths and bond angles estimated for the compound are shown in Table.1. The compound consists of five

IJCRT2404408 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d604

C–C bonds, two C–N bonds, one C–Cl bond, and six C-H bonds. Except for C3–C11, which is 1.49Å because of the presence of Cl, all of the CC values are within the predicted range of $1.39\text{Å} - 1.40\text{\AA}$ [6]. Some of the bond angles are varied C2–C1–N6 (123°), N6–C1–H7 (116°), C1–C2–C3 (118°), C2–C3–C4 (117°), C3–C4–C5 (118°), C4–C5–N6 (123°), C6–C5–H10 (116°), C1–N6–C5 (117°), by the electron-with drawing nature of nitrogen atom and C3–C11–H13 (111°), C3–C11–H14 (111°), C3–C11–C112 (111°), C12–C11–H13 (105°) and C3–C11–H14 (105°) due to the attachment of chloromethyl group [7]. All the other bond angles are in the sp² and sp³ hybridization.

Fig.1 Optimized molecular structure for 4- Chloromethyl pyridine Hydrochloride

	B3LYP/	Bond	B3LYP/	Dihedral Angle	B3LYP/
Bond	6-311++G	Angle	6-311++G	(i)	6-311++G
Length	(d , p)	()	(d , p)		(d , p)
C1–C2	1.3926	C2-C1-N6	123.635	N6-C1-C2-C3	0.0383
C1-N6	1.3364	C2C1H7	120.2196	N6-C1-C2-H8	179.857
C1–H7	1.0862	N6C1H7	116.1453	H7-C1-C2-C3	179.8692
C2–C3	1.3958	C1-C2-C3	118.9985	H7-C1-C2-H8	-0.3121
C2-H8	1.0845	С1-С2-Н8	120.149	C2-C1-N6-C5	-0.0937
C3-C4	1.3958	С3-С2-Н8	120.8523	H7-C1-N6-C5	-179.931
C3-C11	1.4986	C2-C3-C4	117.5922	C1-C2-C3-C4	0.0215
C4-C5	1.3926	C2-C3-C11	121.1933	C1-C2-C3-C11	-179.544
C4-H9	1.0845	C4-C3-C11	121.2131	H8-C2-C3-C4	-179.796
C5-N6	1.3363	C3-C4-C5	118.9968	H8-C2-C3-C11	0.6386
C5-H10	1.0862	C3-C4-H9	120.8546	C2-C3-C4-C5	-0.0225
C11-Cl12	1.8316	C5-C4-H9	120.1484	С2-С3-С4-Н9	179.8035
C11-H13	1.0876	C4-C5-N6	123.6362	C11-C3-C4-C5	179.5428
C11-H14	1.0876	C4-C5-H10	120.2178	С11-С3-С4-Н9	-0.6311
		C6-C5-H10	116.1458	C2-C3-C11-Cl12	-90.1771
		C1-N6-C5	117.1413	С2-С3-С11-Н13	151.7184
		C3-C11-Cl12	111.6529	C2-C3-C11-H14	27.9201
		C3-C11-H13	111.9641	C4-C3-C11-Cl12	90.2732
		C3-C11-H14	111.9511	C4-C3-C11-H13	-27.8313

Table 1 Optimized Geometrical parameter for 4clmpyhycl Computed at B3LYP/6-311++G(d,p).

IJCRT2404408 International Journal of Creative Research Thoughts (IJCRT) <u>www.ijcrt.org</u> d605

	Cl12-C11-H13	105.5484	C4-C3-C11-H14	-151.63
	C3-C11-H14	105.5494	C3-C4-C5-N6	-0.036
	Cl12-C11-H13	109.7964	C3-C4-C5-H10	-179.869
	Cl12-C11-H14	121.1933	H9-C4-C5-N6	-179.863
	H13-C11-H14	121.2131	H9-C4-C5-H10	0.3042
			C4-C5-N6-C1	0.0925
			H10-C5-C6-C1	179.9313

3.2 Mullikan and Natural Charge Analysis

These charges influence the dipole moment, polarizability, and other reactive properties of molecules, they are dispersed throughout the atoms and molecular orbital are computed for molecule 4-Chlromethyl pyridine Hydrochloride. The distribution of positive and negative charges surrounding an atom is crucial for increasing or decreasing the bond length between atoms. The findings of two methods for estimating atom charges, Mullikan Population Analysis (MPA) and Natural Atomic Charges (NAC) are listed in the table. 2. The outcome is depicted in a bar graph in Fig. 2.

The carbon atoms C3 in the pyridine ring shows positive (0.081013) NAC value and negative or almost neutral value (-0.04001) MPA value due to the presence of methyl group. In this case NAC prediction is correct compared to MPA. Whereas C5 is attached to the nitrogen atom shows both positive in MPA (0.05993) and NAC (0.205502) due to the electro negative nature of nitrogen atom. In methyl group C11 having less negative MPA (-0.34318) and highly positive (0.465223) NAC because of the attachment of Chlorine atom.

Fig. 2 Mullikan and Natural Charges bar diagram of 4- Chlromethyl pyridine Hydrochloride

Atoms	Mullikan Atomic Charge	Natural atomic Charge
1C	0.5991	0.205485
2C	-0.22566	-0.13723
3C	-0.04001	0.081013
4C	-0.22567	-0.1372
5C	0.05993	0.205502
6N	-0.44459	-0.39974
7H	0.18881	0.019797
8H	0.21354	0.043675
9H	0.21354	0.04366
10H	0.18881	0.019787
11C	-0.34318	0.465223
12Cl	-0.07329	-0.37379
13H	0.21393	-0.01809
14H	0.21393	-0.0181

Table: 2. Mullikan Charges for 4clmpyhycl Computed at B3LYP/6-311++G (d, p) basis set.

3.3 NBO Analysis

NBO is extremely useful for analyzing both intermolecular and intra molecular interactions. The energy gap and stabilization energy between them can also be used to understand the various donor and acceptor orbital that are possible in the molecule, as well as the possibility of electronic transitions between them. According to Weinhold's NBO calculation, hyper conjugation has a stabilizing effect that is caused by electrons moving from bonding to antibonding orbital when these molecular orbital are properly orientated.

The donor-acceptor interactions are investigated using a second-order Fock matrix, from which the stabilization E(2) is determined for each donor and acceptor pair, allowing their electronic transitions to be analyzed using the following relationship [11]:

$$\mathbf{E}^{(2)} = \Delta \mathbf{E}_{ij} = \mathbf{q}_i \frac{F(i,j)2}{Ei - Ej}$$

In the aforementioned connection, the stability energy is inversely proportional to the energy gap, so the larger the stabilization energy value, the higher the probability of a transition. The values for each donor and acceptor orbital, as well as their occupancies and stabilization energies, are computed and listed in Table.3. Based on the distance between the donor and acceptor orbital in terms of energy or $E^{(2)}$ values in this molecule, the top ten transitions are C3–C4 to C5–N6 ($\pi \rightarrow \pi^*$ 27.53 Kcal/mol), C5–N6 to C1–C2 ($\pi \rightarrow \pi^*$ 26.53 Kcal/mol), C1–C2 to C3–C4 ($\pi \rightarrow \pi^*$ 23.71 Kcal/mol), C 1–C2 to C 5 - N 6 $\pi \rightarrow \pi^*$ 17.56 Kcal/mol), C 3 - C4to C 1 - C 2 ($\pi \rightarrow \pi^*$ 17.25 Kcal/mol), C5-C6 to C 3 –C 4 ($\pi \rightarrow \pi^*$ 13.6 Kcal/mol), N 6to C 1 – C2 ($n \rightarrow \sigma^*$ 9.23 Kcal/mol), N 6to C 1 – C 5 ($n \rightarrow \sigma^*$ 9.23 Kcal/mol), N 6to C 1 – C 5 ($n \rightarrow \sigma^*$ 4.72 Kcal/mol). C 3 –C4 to C11–C112 ($\pi \rightarrow \sigma^*$ 6.5 Kcal/mol) and C 1 –H 7to C 5 –N 6 ($\sigma \rightarrow \sigma^*$ 4.72 Kcal/mol). Among these probable transitions of the molecule, the first two transitions are $\pi \rightarrow \pi^*$ transitions, due to the nitrogen atom of the pyridine ring, with considerable high $E^{(2)}$ values, which means these are chemically or biologically the most active sites in the molecule, which coincides with the discussion based on NMR chemical shift values. All the other

transitions in the list are due to then $\sigma \rightarrow \sigma^*$ transitions in the pyridine ring, which are almost equally probable and contribute less to the biological properties.

TABLE 3. Second-order perturbation theory of Fock matrix in NBO basis of 4- Chlromethyl pyridine Hydrochloride

DONOR	TYPE OF BOND	OCCUP ANCY	ACCEPT OR	TYPE OF BOND	OCCUPA NCY	Energy e(2) Kcal/mo l	E(j)- e(i)	F(i,j)
$C^{2}C^{4}$	-	1 62501	C5 N6	-*	0.27109	27 52	0.27	0.077
C_{5} N6	π	1.05581	C_{3} -NO	π*	0.37198	27.55	0.27	0.077
$C = 1 C C^2$	π	1.70738	$C_1 - C_2$	π π*	0.234	20.33	0.32	0.082
C 1 - C 2	π	1.0295	C_{5} N6	π π*	0.34273	17.56	0.28	0.074
$C_1 - C_2$	π	1.0293	C_{3} -NO	π*	0.37198	17.30	0.27	0.001
C_{3} - C_{4}	π	1.03381	$C_1 - C_2$	π π*	0.234	17.25	0.29	0.004
$C_{J} = N_{U}$	n	1.70738	C_{1}	π* σ*	0.34273	0.22	0.32	0.00
N 6	n	1.91741	$C_1 - C_2$	0' c*	0.02303	9.23	0.9	0.083
\mathbf{N} 0	11	1.91/41	$C_{4} - C_{3}$	-*	0.02304	9.25	0.9	0.065
$C_3 - C_4$	π	1.03381	C_{1}	0 [.]	0.03413	0.5	0.55	0.047
C1-H/	σ	1.98193	$C_{3-N_{0}}$	<u>0</u> .	0.01553	4.72	1.00	0.003
$C_2 H_10$	σ	1.98192	CI - NG	σ* _*	0.01553	4.72	1.06	0.063
C2 - H 8	σ	1.97911	$C_3 - C_4$	σ*	0.02463	4.34	1.1	0.062
C 4 - H9	σ	1.97911	$C_2 - C_3$	<u>σ</u> *	0.02462	4.34	1.1	0.062
C2 - H8	σ	1.97911	CI - N 6	σ*	0.01553	4.24	1.07	0.06
C4 - H9	σ	1.97911	C5 - N 6	σ*	0.01553	4.24	1.07	0.06
C4 - C 5	σ	1.98398	C3 - C 11	σ*	0.02774	4.11	1.12	0.061
C1 - C2	σ	1.98398	C3 - C 11	σ*	0.02774	4.1	1.12	0.061
N 6	n	1.91741	C1 - H7	σ*	0.02366	4.04	0.77	0.05
N 6	n	1.91741	C5 - H 10	σ*	0.02367	4.04	0.77	0.05
C 11-H14	σ	1.98565	C3 - C4	σ*	0.02463	3.86	1.11	0.058
C 11 -H13	σ	1.98567	C2 - C3	σ*	0.02462	3.85	1.11	0.058
C 1 - H 7	σ	1.98193	C2 - C3	σ*	0.02462	3.53	1.09	0.055
C5 - H 10	σ	1.98192	C3 - C4	σ*	0.02463	3.53	1.09	0.055
C2 - C3	σ	1.97395	C3 - C4	σ*	0.02463	3.48	1.28	0.06
C3 - C4	σ	1.97395	C2 - C3	σ*	0.02462	3.48	1.28	0.06
Cl 12	n	1.97291	C3 - C 11	σ*	0.02774	3.44	0.73	0.045
C1 - C2	σ	1.98398	C2 - C3	σ*	0.02462	3.08	1.28	0.056
C4 - C5	σ	1.98398	C3 - C4	σ*	0.02463	3.08	1.28	0.056
C11 -Cl12	σ	1.98111	C3 - C4	π*	0.34273	3.01	0.65	0.043
Cl 12	n	1.97851	C11-H13	σ*	0.01701	2.88	0.7	0.04
Cl 12	n	1.97851	C11-H14	σ*	0.01702	2.88	0.7	0.04
C2 - C3	σ	1.97395	C1 - C2	σ*	0.02503	2.66	1.28	0.052
C3 - C4	σ	1.97395	C4 - C5	σ*	0.02504	2.66	1.28	0.052
C2 - C3	σ	1.97395	C4 - H9	σ*	0.01369	2.65	1.14	0.049
C3 - C4	σ	1.97395	C2 - H8	σ*	0.01369	2.65	1.14	0.049
C1 - N 6	σ	1.98655	C5 - H 10	σ*	0.02367	2.19	1.25	0.047
C 5 - N 6	σ	1.98656	C1 - H7	σ*	0.02366	2.19	1.25	0.047
C3 - C11	σ	1.98436	C3 - C4	σ*	0.02463	2.1	1.24	0.046

www.ijcrt.org

C3 - C11	σ	1.98436	C2 - C3	σ*	0.02462	2.09	1.24	0.046
C2 - C3	σ	1.97395	C1 - H7	σ*	0.02366	1.97	1.14	0.042
C 3 - C4	σ	1.97395	C5 - H 10	σ*	0.02367	1.97	1.14	0.042
C2 - C3	σ	1.97395	C3 - C 11	σ*	0.02774	1.87	1.12	0.041
C3 - C4	σ	1.97395	C3 - C 11	σ*	0.02774	1.87	1.12	0.041
C3 - C 11	σ	1.98436	C1 - C 2	σ*	0.02503	1.83	1.24	0.043
C3 - C11	σ	1.98436	C4 - C5	σ*	0.02504	1.83	1.24	0.043
C1 - N6	σ	1.98655	C1 - C2	σ*	0.02503	1.66	1.39	0.043
C5 - N6	σ	1.98656	C4 - C5	σ*	0.02504	1.66	1.39	0.043
C1 - N6	σ	1.98655	C2 - H8	σ*	0.01369	1.51	1.26	0.039
C5 - N6	σ	1.98656	C4 - H9	σ*	0.01369	1.51	1.26	0.039
C1 - C2	σ	1.98398	C1 - N6	σ*	0.01553	1.43	1.25	0.038
C4 - C5	σ	1.98398	C5 - N6	σ*	0.01553	1.43	1.25	0.038
C3 - C4	σ	1.97395	C4 - H9	σ*	0.01369	1.1	1.14	0.032
C2 - C3	σ	1.97395	C2 - H8	σ*	0.01369	1.09	1.14	0.032
С11 -Н 14	σ	1.98565	C3 - C4	π*	0.34273	1.04	0.56	0.024
C1 - C2	σ	1.98398	C2 - H8	σ*	0.01369	0.99	1.15	0.03
C4 - C5	σ	1.98398	C4 - H9	σ*	0.01369	0.99	1.15	0.03
C2 - H8	σ	1.97911	C2 - C3	σ*	0.02462	0.97	1.1	0.029
C4 - H9	σ	1.97911	C3 - C4	σ*	0.02463	0.97	1.1	0.029
C11 - H13	σ	1.98567	C11-Cl12	σ*	0.03413	0.96	0.63	0.022
C 11 -H14	σ	1.98565	C11-Cl12	σ*	0.03413	0.96	0.63	0.022
C1 - C2	σ	1.98398	C1 - H7	σ*	0.02366	0.88	1.14	0.028
C4 - C5	σ	1.98398	C5 - H 10	σ*	0.02367	0.88	1.14	0.028
C1 - N6	σ	1.98655	C5 - N6	σ*	0.01553	0.85	1.36	0.03
C3 - C4	π	1.63581	C11-H14	σ*	0.01702	0.85	0.65	0.023
C5 - N6	σ	1.98656	C1 - N6	σ*	0.01553	0.85	1.36	0.03
C11 -H 13	σ	1.98567	C3 - C4	π*	0.34273	0.84	0.56	0.021
Cl 12	n	1.97291	C11-H13	σ*	0.01701	0.84	0.71	0.022
Cl 12	n	1.97291	C11-H14	σ*	0.01702	0.84	0.71	0.022
Cl 12	n	1.97291	C3 - C4	π*	0.34273	0.81	0.34	0.016
C2 - H8	σ	1.97911	C 1 - C2	σ*	0.02503	0.66	1.09	0.024
C4 - H9	σ	1.97911	C4 - C5	σ*	0.02504	0.66	1.09	0.024
C3 - C4	σ	1.97395	C11-H14	σ*	0.01702	0.63	1.1	0.023
C2 - C3	σ	1.97395	C11-H13	σ*	0.01701	0.62	1.1	0.023

3.4 HOMO-LUMO

The chemical stability of a molecule is determined by the number of occupied molecular orbital (HOMO) and the number of unoccupied molecular orbital (LUMO), both of which are referred to as Frontier molecular orbital FMO [12]. The HOMO and LUMO values are proportional to the molecule's ionisation potential and electron affinity. Using the molecule's optimal structure, the energies of LUMO + 3, LUMO + 2, LUMO + 1, LUMO, and HOMO - 3, HOMO - 2, HOMO - 1, HOMO, as well as the associated energy gaps, are calculated. In Fig. 3, the simulated FMOs illustrate the presence of intra molecular charge transfer (ICT) within the molecule and the two-dimensional structure of the energy gaps between HOMO - 3, HOMO - 2, HOMO - 1, LUMO + 1, LUMO is depicted. The energy band gap is the difference in energy between HOMO and LUMO. The values of global molecular reactivity descriptors like electronegativity (χ), hardness (η), softness (S), and electrophilicity index (ω) anticipated for

the titled molecule are determined by this energy gap. Table. 4 shows that the computed energy of HOMO, HOMO - 1, HOMO - 2, and HOMO - 3 are -0.27404, -0.27618, -0.31000, and -0.32130 eV respectively, and the energies of LUMO, LUMO + 1, LUMO + 2, and LUMO + 3 are -0.00580, 0.00935, 0.00955 and 0.07647eV respectively. The energy gap between HOMO-LUMO is -0.27984 eV. The electronegativity, which is the measure of an atom's attraction to an electron in a covalent bond is 0.13992 eV. The molecules have a chemical hardness of 0.13412 eV and a softness of 0.53648 eV. This molecule is highly reactive because it shows high global softness [13].

Fig. 3 Theoretically predicted HOMO- LUMO picture of 4- Chlromethyl pyridine Hydrochloride

Table 4 HOMO, LUMO, global electronegativity, global hardness and softness, global electrophilicity

 index of 4clmpyhycl

Parameters	Gas
E _{HOMO} (ev)	-0.27404
E _{LUMO} (ev)	-0.00580
$\Delta E_{\text{HOMO-LUMO gap}}$ (ev)	-0.27984
Electronegativity (χ)	0.13992
Global hardness (η)	0.13412
Global softness (S)	0.53648
Electrophilicity Index(@)	0.07298

3.5 Molecular Electrostatic Potential (MEP)

In terms of colour grading, the MEP displays molecular size, shape, as well as positive, negative, and neutral electrostatic potential regions, and is highly valuable in molecular structure study with its physicochemical property relationship [14]. Potential mapping knowledge of electron density across the molecule is provided by molecular electrostatics. This provides a full description of the intermolecular interaction of in the compound with aims by indicating electron density in different sections of the molecule such as electrophilic and nucleophilic bases in the mixture. The MEPs generally exhibit a blue colour for the maximum positive region, which prefers the location for nucleophilic attack symptoms, and a red colour for the maximum negative region, which prefers the site for electrophilic attack symptoms. In the region with the MEPs, the values of the electrostatic potential at the surface are shown by different colours (from red to blue) for varied data (from the maximum negative to a positive value). The colour of the potential changes from red to blue. In Fig.4, the hues in the titled compound line up between -4.505e-2 (dark red) and 4.505e-2 (dark blue). Blue and red were used to depict the strongest attraction and repulsion, respectively. The MEP map shows that the spots with negative potential are nitrogen atoms (6N). The negative region of these results clearly demonstrates the compound's biological action.

Fig. 4 Map indicating the electrostatic potential of 4- Chlromethyl pyridine Hydrochloride

3.6 Drug likeness

The compound 4-Chlromethyl pyridine Hydrochloride's pharmaceutical potential was estimated and analysed using commonly used drug likeness parameters and molecular docking procedures. Drug similarity factors are extremely useful for estimating the early pharmacokinetic features required for medication distribution success, even if they cannot predict whether a given molecule will exhibit biologically active or not [4,15]. Using Lipinski, Ghose and Veber's rule, the drug likeness of a titled compound is investigated. The following drug similarity metrics are commonly used for the initial assessment of pharmacokinetic qualities: MlogP, number of hydrogen bond donors and acceptors (HBD and HBA, respectively), number of rotatable bonds, total polar surface area (TPSA), and molar refractivity. The computed values are listed in the Table.5. The radar diagram of the drug and the pie chart for the drug likeness are shown in Fig.5. If a chemical is to be used as an oral medication, it should not have hydrogen bond donor values greater than 5

or hydrogen bond acceptor values greater than 10. This molecule has a donor value of zero and an acceptor value of two. Another Lipinski criterion states that the Octanal-Water Purification Factor LogP of a good medicinal molecule should not be greater than 5. It is only found in the current molecule at 1.15. According to the final Lipinski rule, the molecular mass should not be greater than 500 Dalton. In this case, the molecular weight is only 127.57 g/mol. As a result, the current molecule 4- Chlromethyl pyridine Hydrochloride meets all Lipinski criteria.

According to the Ghose rule, a molecule's molecular refractivity should be between 40 and 130, and its atom count should be between 20 and 70. The current molecule is made up of only 14 atoms and has a refractivity of 34. Veber's rule states that a molecule should not have more than ten rotatable bonds, but there are only one in this case. The molecule has a surface area of 12.89 Å². As a result, it can be concluded that the current molecule, 4- Chlromethyl pyridine Hydrochloride, meets all of the requirements for a superior oral drug.

Fig.5 Radar Diagram of the drug and pie chart for druglikeness

Drug likeness parameters	Values
Number of Hydrogen bond donor (HBD)	0
Number of Hydrogen bond acceptor (HBA)	1
Number of Rotatable bond	1
Topological polar surface area(TPSA)	12.89 Ų
Molecular Exact mass	127.57 g/mol
Molar Refractivity	34
Number of Heavy atom	8
Number of aromatic heavy atoms	6
MLogP	1.15

Table 5 The computed values for drug likeness

3.6.1. Molecular Docking:

Molecular docking is an effective technique for anticipating the molecular mechanism of proteinligand interactions which include binding to a receptor with known three-dimensional structures [15,16]. Auto Dock 1.5.6 has been used to get inside into probable protein-ligand interactions and to identify the binding affinity of the molecules. Lamackian Genetic Algorithm (LGA) is used for molecular docking analysis. The binding protein from target proton was specified of grid size 90 x 90 x 90Å with the aid of

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

Autogrid. Table .6, shows the list of the docking results, including residues, hydrogen bonds, and the total number of bonds. The binding pose for the titled compound is illustrated in Fig.6. The ligand was docked into the functional site of the respective protein and its docking energy was examined to get a minimum value. Ligand was docked at active site 1HD2 of receptor. 1HD2 is a Human peroxiredoxin 5, More than 40 antioxidant enzymes in the peroxiredoxin family have evolved to be stable across a wide range of organisms, including bacteria, yeasts, protozoa, plants, and vertebrates. Peroxiredoxins work in collaboration with other antioxidant enzymes and non-enzymatic antioxidants to regulate the levels of reactive oxygen species (ROS) in cells and tissues and protect them from oxidative damage. Peroxiredoxin 5 (PRDX5), also known as PrxV/AOEB166/PMP20, is an unique antioxidant enzyme capable of inhibiting that is widely expressed in mammalian tissues. Peroxiredoxin can be directed intracellularly to the cytosol, peroxisomes, and mitochondria, implying that it may play an important antioxidant role in these major ROS-producing organelles, peroxisomes and mitochondria, as well as in the regulation of signal transduction given its location in the cytosol. The Protein 1HD2 is docked at bond residue LEU 96 at a distance 3.0 Å.

Fig.6 Binding pose of 4- Chlromethyl pyridine Hydrochloride

Sl. No.	Parameter	Result
1.	Compound name	4-Chloromethyl pyridine hydrochloride
2.	Protein ID	1HD2
3.	Bond Residue	LEU 96
4.	Distance (Å)	3.0
5.	RMSD	61.952 Å
6.	Binding energy	-3.40 kcal/mol
7.	Inhibition constant k _i	3.20 mM
8.	Total internal energy	-0.11 kcal/mol
9.	Intermolecular energy	-3.70 kcal/mol
10.	Vdw + Hbond + desolv energy	-3.65 kcal/mol
11.	Electrostatic energy	-0.05 kcal/mol
12.	Torsional energy	0.30 kcal/mol
13.	Ligand efficiency	-0.5
14.	Unbound energy	-0.11 kcal/mo
15.	Cavity size	335

Table 6 The Docking analysis binding pose of 4- Chlromethyl pyridine Hydrochloride

3.6.2 RAMACHANDRA PLOT

The Ramachandran plot is one method of identifying the protein's favorable regions for docking with ligand by examining the distribution of torsion angles in the protein structure. It depicts the dihedral angles of the amino acid residues in a protein in two dimensions. They are useful when using the PASS online predictor to select proteins for docking studies. The Ramachandran plot represented the protein discovered through docking analysis. The protein is identified through docking analysis, the Ramachandran plot with bioavailability of the molecule and the chart was created. The diagram is illustrated in Figures 7. The red area of the diagram represents the advantageous region where the angles of amino acid residues are flexible. The prohibited zones are denoted in black. The figure clearly shows that for the designated protein, a larger proportion of residues and a smaller proportion of residues appear within the permitted red and forbidden regions, respectively. The Ramachandran plot's conclusion supports the preferred proteins of 1HD2 has a structurally viable for docking and drug design.

Fig.7 Bioavailability of 4-BromoMethyl(Benzonitrile) & Ramachandra plot

IV. Discussion

4.1. ¹H and ¹³C NMR chemical shift

The Table.3 shows experimental and theoretical values for the titled compound's Carbon (¹³C) and Proton (¹H) NMR. The experimental ¹³C and ¹H NMR data were recorded in DMSO (Dimethyl Sulfoxide) solvent and are shown in Fig.8. Chemical shift values in both gaseous and liquid phases are shown in Table 7. The GIAO (Gauge Invariant Atomic Orbital) method is used to calculate the theoretical ¹³C and ¹H chemical transformation for the optimal geometry. In the case of the Pyridine ring, the values 1C, 3C, and 5C are highly deshielded. The deshielded value in 1C (153 ppm) and 5C (153 ppm) results from the electronegative nature of the Nitrogen atom, while 3C is attached to the methyl group. Because of the presence of a chlorine atom and a pyridine ring on either side, the chemical shift of aliphatic chain 11C is shielded (77.36 ppm). The aromatic hydrogen atoms are within the expected range. However, the aliphatic chain 13H and 14H values (4.96 and 4.71 ppm) decrease due to the attachment of the chlorine atom in the titled molecule.

Fig. 8 a), b) Theoretical and c), d) Experimental ¹³ C and ¹H NMR spectra for 4- Chlromethyl pyridine Hydrochloride

	Gas	CDCl ₃	Experimental
Atom	B3LYP/6-	B3LYP/6-	CDCl ₃
	311++G(d,p)GIAO	311++G(2d,p)GIAO	
	(ppm)	(ppm)	
1C	155.124	155.106	153
2C	124.219	125.633	126.11
3C	151.379	153.06	153
4C	125.078	125.516	126.11
5C	156.769	156.422	153
11C	54.2714	54.8591	77.36
7H	8.7104	8.7104	8.852
8H	6.9991	7.2638	7.260
9Н	7.6758	7.7576	7.978
10H	8.881	8.8576	8.852
13H	4.7952	4.96344	4.799
14H	4.5049	4.7146	4.799
7H	8.7104	8.7104	8.852
8H	6.9991	7.2638	7.260

Table. 7. Calculated both ¹H and ¹³C NMR Chemical shifts (ppm) of 4clmpyhycl

4.2 Vibrational Assignments

All of the fundamental vibrational frequencies were calculated and empirically observed. The calculated frequencies were scaled with the suggested scaling factor, and the results were compared to the experimental values. The selected molecule has 14 atoms and 36 fundamental modes, all of which may be recognised in the IR and Raman spectrum. Theoretically computed FT-Raman and FT-IR spectra for the molecule are shown in Fig.9. The Calculated Vibrational frequencies are listed in Table.8

4.2.1 CH Vibrations

In phenyl rings, the CH fundamental frequencies are usually in the range of 3100 to 3000cm⁻¹, and they indicate the ring's aromatic character. CH vibrations in the pyridine ring have been seen in this molecule at 3180, 3177, 3158, 3154 cm⁻¹ in FT-IR and 3136, 3133, 3110, 3105 cm⁻¹ in FT-Raman, with estimated values of 3134, 3133, 3111, and 3108 cm⁻¹. Because of the chloromethyl group and the presence of a Nitrogen atom in the pyridine ring, these values are greater than expected. A similar range of 3000-2900 cm⁻¹ is expected for the aliphatic chain. However, the FT-IR values are 3054, 2960 cm⁻¹, the FT-Raman values are 3100, 3090, 3052 cm⁻¹, and the computed values are 3106, 3052 cm⁻¹. Several results are higher than expected due to the presence of the N atom [8].

4.2.2 CC Vibrations

CC double bonds should be between 1600 and 1500 cm⁻¹ in diameter, while single bonds should be between 1500 and 1400 cm⁻¹ [9]. Stretching vibrations of the CC type were identified in this molecule at 1612, 1423, 1267, 1229, and 840 cm⁻¹. Then the titled molecule having 1630, 1402, 1274, 1236, 867cm⁻¹, and 1640, 1444, 1277, 1253, 857 cm⁻¹ respectively, are the experimental CC vibrations of FT-IR and FT-Raman. These lower numbers demonstrate that N atom affects these modes.

4.2.3 CN Vibrations

The frequency of the C-N bond stretching vibrational mode is generally combined with other vibrational modes and can be found in the wave number in the range of 1382 - 1266 cm⁻¹ [10]. The computed values for 1582 and 996 cm⁻¹ are revealed in this molecular analysis. In FT-IR and FT-Raman, the experimental CN stretching vibration was observed at 1591, 1057 cm⁻¹ and 1621, 1014 cm⁻¹, respectively. Because of the electronegative character of the Nitrogen atom, the readings are greater and lower than expected.

Fig.9 a), b) Theoretical and c), d) Experimental (FT-IR and RAMAN) spectra for 4- Chlromethyl pyridine Hydrochloride

Table: 8. Observed method B3LYP/6-311++G (d, p) level calculated Vibrational frequencies of

4clmpyhycl

Experimental frequency (cm ⁻¹)			B3LYP/6-311++G (d,p)			
F	T-IR	FT-RAMAN		Unscal ed (cm ⁻¹)	Scaled (cm ⁻¹)	PED %
	3180	3136		3179	3134.494	v CH45
	3177	3133		3178	3133.508	v CH45
	3158	3110		3156	3111.816	v CH48
	3154	3105		3153	3108.858	vCH43
	3054	3100		3151	3106.886	v CH45
-	2960	3090	Y	30 <mark>96</mark>	3052.656	v CH50
-	1630	1640		16 <mark>35</mark>	1612.11	v CC17
	1591	1621		1605	1582.53	v NC25
		1521		1524	1502.664	β HCN24
	1496	1483		1489	1468.154	β НСН93
	1402	1444		1444	142 <mark>3.784</mark>	v CC13
	1320	1373		1365	134 <mark>5.8</mark> 9	β HCN21
	~~~	1292		1297	1278.842	γ CHCH98
	1274	1277		1286	1267.996	v CC18
	1236	1253		1247	1229.542	v CC14
		1229		1236	1218.696	β HCC11
	1187	1157		1167	1150.662	β HCC75
	1105	1100		1108	1092.488	β HCC12
	1081	1086		1092	1076.712	β HCC21
	1057	1014		1011	996.846	v NC19
	1014	1009		1001	986.986	γ CCNH37
	946	976		979	965.294	γ CCNH33
	913	909		918	905.148	v CC10
		890		881	868.666	τ HCCN34
	867	857		852	840.072	v CC10
	824	828		826	814.436	v CC21
	781	770		761	750.346	τ HCCN19

www.ijcrt.org		© 2024 I	JCRT   Volume 12	, Issue 4 April 2024   ISSN: 2320-28
696	670	683	673.438	v CC10
642	658	682	672.452	v ClC58
	579	572	563.992	β CCC27
464	493	491	484.126	v CC10
	383	383	377.638	τ CNCC15
	307	325	320.45	β CCC80
	273	269	265.234	v ClC10
	111	110	108.46	τ CCCC62
		34	33.524	τ CCCCl98

## 82

#### **4.3 UV-Visible Analysis**

As illustrated in Fig. 10, the titled molecule has a chloromethyl functional group linked to the Pyridine ring. The change in charge distribution at the molecular orbitals at the sites 5C-6N & 1C-6N, where the N atom is embedded in the benzene ring, forming a Pyridine ring, and at 3C-11C, where the Cl is attached to the methyl group, is expected to cause changes in the structural, physico-chemical, and biological properties of the molecule. Theoretical electronic absorption spectra of 4-Choloromethyl pyridine hydrochloride is calculated in Table.9.

According to the UV table, the major electronic transitions can happen at wavelengths 261, 245, 230,206, 197, 195, 192, 188, 187 nm in gas phase, and at wavelenths 251, 235, 230, 206, 194, 193, 187.7 and 187.4nm correspondingly in solvent- ethanol phase. 0.0042, & 0.0000 0.0322, 0.0119, 0.0048, 0.0075, 0.0659, 0.0029, 0.0045, 0.0810 are the oscillator strengths that show peak intensity in the UV spectrum for the gas phase ten transitions in the appropriate order. The first two transitions, 0.0042 and 0.0000, imply that they will be faint and not visible in the spectrum. The third, seventh, and tenth transitions, with oscillator strengths of 0.0322, 0.0659, and 0.0810, imply that they will be quite prominent in the spectrum, whereas the first two, with wavelengths of 230 and 195 nm, are owing to transitions between adjacent CC bonds in the pyridine ring. The last one, at 187 nm, could be caused by transitions near the N atom in the pyridine ring. The oscillator strengths in the solvent phase are 0.0051, 0.0001, 0.0508, 0.0212, 0.0852, 0.0599, 0.1437, 0.0079, 0.0409, 0.067, indicating that only the third, fifth, and seventh transitions will be visible in the UV spectrum at wavelengths of 230, 194, and 187 nm, respectively. The bonds involved are identical to those observed in the gas phase. However, the experimental spectrum presented in Fig.6 reveals two notable peaks at 283, 243 nm, the first is definitely an  $\pi$ -  $\sigma$ * transition, which must be focused on the N atom in the pyridine ring, and the second is due to the  $\pi - \pi^*$  transition, which is theoretically expected around 230 nm.



Fig.10 a) Theoretical and b) Experimental UV-visible spectra for 4- Chlromethyl pyridine Hydrochloride

	Experime			
λ (nm)	n-tal	E(eV)	( <b>f</b> )	Major contribution
	value			
GAS				
261.15		4.7476	0.0042	HOMO->LUMO (98%)
245.46		5.0511	0.0000	HOMO->LUMO+1 (99%)
230.33		5.3829	0.0322	HOMO-1->LUMO (73%)
206.23		6.0119	0.0119	HOMO-2->LUMO (64%)
197.06		6.2917	0.0048	HOMO->LUMO+2 (65%)
195.63		6.3378	0.0075	HOMO-3->LUMO (66%)
193.54		6.4062	0.0659	HOMO-4->LUMO (61%)
192.54		6.4394	0.0029	HOMO-1->LUMO+2 (94%)
188.35		6.5825	0.0045	HOMO->LUMO+3 (87%)
187.42		6.6155	0.0810	HOMO-2->LUMO+1 (48%)
solvent				
251.5	243	4.9298	0.0051	HOMO->LUMO (88%)
285.31	283	5.2689	0.0001	HOMO->LUMO +1 (87%)
230.83		5.3712	0.0508	HOMO-1->LUMO (68%)
206.79		5.9955	0.0212	HOMO-2->LUMO (66%)
194.84		6.3635	0.0852	HOMO-3->LUMO (55%)
193.26		6.4155	0.0599	HOMO-4->LUMO (50%)
187.73		6.6044	0.1437	HOMO-2->LUMO+1 (57%)
187.42		6.6153	0.0079	HOMO-1->LUMO+2 (46%)
186.62		6.6436	0.0409	HOMO-1->LUMO+2 (44%)

Table: 9. Theoretical el	ectronic absorption spectra	of <mark>4clmp</mark>	yhycl absorpt	tion wavelength $\lambda$ (nm),
excitation energies E (eV)	and oscillator strengths (f)	using TD-	-DFT/B3LYP	/6-311++G (d, p) method.

www.ijcrt.org		© 2024 IJCRT	Volume 12, Issue 4 April 2024   ISSN:	2320-2882
183.9	6.7418	0.067	HOMO-1->LUMO+3 (27%)	

## V. CONCLUSION

The bond angles are in the sp² and sp³ hybridization. The Natural Population Analysis Charge (NAC) prediction is correct compared to Mullikan Population Analysis (MPA). Whereas C5 is attached to the nitrogen atom shows both positive in MPA (0.05993) and NAC (0.205502) due to the electro negative nature of nitrogen atom. In methyl group C11 having less negative MPA (-0.34318) and highly positive (0.465223) NAC because of the attachment of Chlorine atom. The aromatic hydrogen atoms are within the expected range. However, the aliphatic chain 13H and 14H values decreased due to the attachment of the chlorine atom in the titled molecule. The titled molecule constitutes the three types of stretching modes, C-C, C-H, C-N vibrational are differ from the excepted range, because of the electronegative character of the Nitrogen atom, the readings are greater and lower than expected. In NBO analysis, the most probable transitions of the molecule are  $\pi \rightarrow \pi^*$  transitions, due to the nitrogen atom of the pyridine ring. In UV-Visible analysis, the enhanced experimental UV absorption at 243nm and 283nm due to  $\pi \rightarrow \pi^*$  transition in the pyridine ring, due to CN the  $\pi$  and  $\pi^*$  orbitals, can be considered as an indicator to the enhanced biological activities of the molecule.

## VI. ABBREVIATIONS

XRD	X-ray diffraction
DFT	Density Function Theory
NMR	Nuclear Magnetic Resonance
FTIR	Fourier-transform infrared spectroscopy
NBO	Natural Bonding Orbital
HOM	O Highest Occupied Molecular Orbital
LUMO	D Lowest Unoccupied Molecular Orbital
MEP	Molecular Electrostatic Potential



## VII. ACKNOWLEDGMENT

The authors would like to express their gratitude to Pondicherry University's Central Instruments Facility for providing the instrumentation.

## REFERENCES

#### Journals:

T.-L. Ho, M. Fieser, L. Fieser, 4-Picolyl chloride hydrochloride, Fieser Fieser's Reagents Org.
 Synth. (2006) 3971. https://doi.org/10.1002/9780471264194.fos08300.

[2] S. Tighadouini, R. Benabbes, M. Tillard, D. Eddike, K. Haboubi, K. Karrouchi, S. Radi, Synthesis, crystal structure, DFT studies and biological activity of (Z)-3-(3-bromophenyl)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxyprop-2-en-1-one, Chem. Cent. J. 12 (2018) 1–11. https://doi.org/10.1186/s13065-018-0492-

4.

[3] Y. Liu, J. Zhang, T. Feng, Y. Li, Synthesis, structure-fluorescence relationships and density functional theory studies of novel naphthalimide-piperazine-pyridine-based polystyrene sensors for Hg(ii) detection, RSC Adv. 10 (2020) 25281–25289. https://doi.org/10.1039/d0ra04557h.

[4] F. Akman, K. Sarac, Molecular structure, vibration properties and quantum chemical calculations of
 4-(chloromethyl)-7-methoxycoumarin and 4-(chloromethyl)-7-methyl-coumarin, Nat. Sci. Discov. 2 (2016)
 2–9. https://doi.org/10.20863/nsd.78025.

[5] K.M. Al-Ahmary, M.M. Habeeb, S.H. Aljahdali, Synthesis, spectroscopic studies and DFT/TD-DFT/PCM calculations of molecular structure, spectroscopic characterization and NBO of charge transfer complex between 5-amino-1,3-dimethylpyrazole (5-ADMP) with chloranilic acid (CLA) in different solvents, J. Mol. Liq. 277 (2019) 453–470. https://doi.org/10.1016/j.molliq.2018.12.072.

[6] A.O. Zacharias, A. Varghese, K.B. Akshaya, M.S. Savitha, L. George, DFT, spectroscopic studies, NBO, NLO and Fukui functional analysis of 1-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene) thiosemicarbazide, J. Mol. Struct. 1158 (2018) 1–13. https://doi.org/10.1016/j.molstruc.2018.01.002.

[7] O. Noureddine, S. Gatfaoui, S.A. Brandan, A. Sagaama, H. Marouani, N. Issaoui, Experimental and DFT studies on the molecular structure, spectroscopic properties, and molecular docking of 4-phenylpiperazine-1-ium dihydrogen phosphate, J. Mol. Struct. 1207 (2020) 127762. https://doi.org/10.1016/j.molstruc.2020.127762.

[8] S. Sevvanthi, S. Muthu, M. Raja, S. Aayisha, S. Janani, PES, molecular structure, spectroscopic (FT-IR, FT-Raman), electronic (UV-Vis, HOMO-LUMO), quantum chemical and biological (docking) studies on a potent membrane permeable inhibitor: dibenzoxepine derivative, Heliyon. 6 (2020) e04724. https://doi.org/10.1016/j.heliyon.2020.e04724.

[9] M.S. Almutairi, K. Jayasheela, S. Periandy, A.R. Al-Ghamdi, S. Sebastian, S. Xavier, A.A. Kadi, A.S. Abdelhameed, M.I. Attia, Structural, spectroscopic, Hirshfeld surface and charge distribution analysis of 3-(1H-imidazole-1-yl)-1-phenylpropan-1-ol complemented by molecular docking predictions: An integrated experimental and computational approach, J. Mol. Struct. 1196 (2019) 578–591. https://doi.org/10.1016/j.molstruc.2019.07.003.

[10] K. Jayasheela, L.H. Al-Wahaibi, S. Periandy, H.M. Hassan, S. Sebastian, S. Xavier, J.C. Daniel, A.A. El-Emam, M.I. Attia, Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent, J. Mol. Struct. 1159 (2018) 83–95. https://doi.org/10.1016/j.molstruc.2018.01.042.

 [11] R. Yankova, S. Genieva, G. Dimitrova, Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite, J. Mol. Struct. 1141 (2017) 668–677. https://doi.org/10.1016/j.molstruc.2017.04.004.

[12] K. Govindarasu, E. Kavitha, Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4'-Nitrobiphenyl by density functional theory, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 122 (2014) 130–141. https://doi.org/10.1016/j.saa.2013.10.122. [13] S. Aayisha, T.S. Renuga Devi, S. Janani, S. Muthu, M. Raja, R. Hemamalini, Structural (PES), AIM, spectroscopic profiling (FT-IR, FT-Raman, NMR and UV), HOMO-LUMO and docking studies of 2,2-dimethyl-N-(2-pyridinyl)propanamide – a DFT approach, Chem. Data Collect. 24 (2019) 100287. https://doi.org/10.1016/j.cdc.2019.100287.

[14] M. Raja, R. Raj Muhamed, S. Muthu, M. Suresh, Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide, J. Mol. Struct. 1141 (2017) 284–298. https://doi.org/10.1016/j.molstruc.2017.03.117.

[15] M.H. Rahuman, S. Muthu, B.R. Raajaraman, M. Raja, H. Umamahesvari, Investigations on 2-(4-Cyanophenylamino) acetic acid by FT-IR,FT-Raman, NMR and UV-Vis spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui function) and molecular docking studies, Heliyon. 6 (2020) e04976. https://doi.org/10.1016/j.heliyon.2020.e04976.

[16] C.S. Abraham, S. Muthu, J.C. Prasana, S.J. Armaković, S. Armaković, F. Rizwana B., B.G. Ben, Spectroscopic profiling (FT-IR, FT-Raman, NMR and UV-Vis), autoxidation mechanism (H-BDE) and molecular docking investigation of 3-(4-chlorophenyl)-N,N-dimethyl-3-pyridin-2-ylpropan-1-amine by DFT/TD-DFT and molecular dynamics: A potential SSRI drug, Comput. Biol. Chem. 77 (2018) 131–145. https://doi.org/10.1016/j.compbiolchem.2018.08.010.

