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 ABSTRACT : Outsourcing image search services to public clouds is an ever-increasing trend. However, 

directly outsourcing image datasets to untrusted clouds introduces privacy concerns. Several secure 

image retrieval schemes have been proposed recently. However, most of them require participation from 

image owners when building secure indexes, which wastes many computational resources of the image 

owners. Several schemes are proposed to solve this problem, but they suffer from low search accuracy 

on large datasets. In this paper, we propose the first secure image retrieval scheme that simultaneously 

solves these two problems. To obtain higher search accuracy, we extract image features via fine-tuned 

convolutional neural networks. Then, the image features are encrypted by using the secure k-Nearest 

Neighbor algorithm. To improve search speed and reduce the cost of image owners, we let cloud servers 

locally build a secure hierarchical index graph by using the encrypted image features. Besides, the secure 

index can be built and updated in parallel. We provide security analysis for the proposed scheme. 

Performance evaluations on the CIFAR-10 dataset show that the proposed scheme is practical. Moreover, 

compared with a recent scheme, our scheme can save more index construction time and cost of image 

owners when building secure indexes. 

 Key Word : Content-based image retrieval, encrypted image retrieval, navigable small world graph, 

secure index. 

I. INTRODUCTION 

With the rapid development of multimedia devices, a great many images are created every day. Image 

retrieval is a promising technology that helps us quickly find the images we are interested in. Content-

based image retrieval (CBIR) plays a vital role in image retrieval. CBIR aims to use the visual content of 

a query image to search similar images from an image database, which is useful in many fields, such as 

remote diagnosis [1], face recognition [2], and online shopping [3]. Concerning the huge storage and the 

complicated maintenance cost, more and more image owners prefer to outsource huge image datasets and 

image search services to public clouds. Then, authorized users can retrieve similar images from the clouds. 

Unfortunately, although the public clouds reduce the cost of the image owners, they also introduce new 

security threats [4]. Since the outsourced image datasets may contain sensitive information, directly 

outsourcing the image datasets to untrusted cloud servers may cause the sensitive images to be stolen by 

commercial The associate editor coordinating the review of this manuscript and approving it for 

publication was Maurizio Tucci. 

opponents, hackers, and cloud providers. Using traditional cryptosystems to protect the images can avoid 

the disclosure of the sensitive information, but the public clouds can no longer provide image search 

services. 
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Researchers have made great efforts to achieve secure image retrieval. The authors of [5]–[9] propose 

several schemes based on feature encryption. Their image owners first extract image features and generate 

an encrypted searchable index. The encrypted index is then outsourced to clouds, such that the clouds can 

search similar images for users. Although these schemes achieve good search efficiency and search 

accuracy, their image owners have to undertake index generation and encryption tasks on their own, which 

consume a lot of computational resources. To combat this problem, Yuan et al. [6] propose a scheme called 

SEISA, in which they build a secure hierarchical index tree by recursively employing a secure k-means 

outsourcing algorithm. This algorithm allows image owners to delegate many computational tasks to 

clouds. However, the algorithm requires the owners to re-encrypt the centroid vectors of new clusters. 

Thus their image owners still consume many computational and communicational resources when the 

clouds build a secure index. 

To tackle this problem, the authors of [10]–[17] introduce several schemes based on image encryption. 

Their image owners encrypt images using some encryption techniques and 

outsourcethemtoclouds.Then,thecloudslocallyextractfeatures from the encrypted images to build a 

searchable index. Theauthorsof[10]–[12]usehomomorphicencryption[18]to encrypt images. Though they 

achieve good search accuracy, the methods are impractical due to high time and space cost. Other works 

[13]–[17] use other special encryption techniques to encrypt images. Despite their success, the algorithms 

suffer low search accuracy since the cloud servers can only extract low-level image features (e.g., color 

histograms). Thus, the above schemes based on image encryption are not suitable for large-scale image 

retrieval. 

In order to realize large-scale secure image retrieval, we focus on the research line based on feature 

encryption. However, as stated above, participation from image owners is still needed during the index 

construction process. To overcome this obstacle, we propose a secure image search scheme which allows 

image owners to fully delegate all computational tasks to clouds when building secure indexes. Our idea 

is to create a proximity graph as our index, which can be built by using encrypted features to find similar 

encrypted images and establishing connections between them. The contributions of our work can be 

summarized as follows: 

1) We propose a simple yet effective secure image search scheme which can greatly reduce the cost of 

image owners when building secure indexes. 

2) To obtain higher search accuracy, we extract image features via fine-tuned Convolutional Neural 

Networks (CNNs). Then, the image features are protected by using the secure k-Nearest Neighbor 

(kNN) algorithm. 

3) To improve search speed, we let clouds employ the Hierarchical Navigable Small World (HNSW) 

graph algorithm to build a secure index without participation from image owners. The construction 

and update algorithms of the secure index can be run in parallel. 

4) We provide security analysis for the proposed scheme. Performance evaluations on the CIFAR-10 

dataset demonstrate that the proposed scheme is efficient. 

The rest of this paper is organized as follows. Section II reviews the related work. Section III describes 

the system model, threat model, design goals, and preliminaries. Section IV elaborates our scheme. Section 

V provides security analysis. Section VI presents the performance evaluations. Finally, we conclude the 

whole paper in Section VII. 

II. RELATED WORK 

Searchable encryption (SE) allows query users to securely retrieve specific information on encrypted 

datasets. Early SE schemes focus on private single keyword retrieval over encrypted documents [19]. 

Afterwards, many SE schemes were proposed to support various search scenarios including multiple 

keywords search [20], conjunctive keywords search [21], distributed search [22], [23] and similarity 

search [24]–[26]. However, most of them are not suitable for encrypted image retrieval tasks. 
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Several secure image retrieval schemes [5]–[17] have been proposed in the past few years. These 

schemes can be divided into two main categories, schemes based on feature encryption and schemes based 

on image encryption. 

In the schemes [5]–[9] based on feature encryption, the image owners first extract image features, 

generate searchable index, encrypt the index and outsource the secure index to cloud servers. Then, the 

cloud servers realize secure image search via the encrypted index. Lu et al. [5] design the first secure 

image retrieval scheme by using order preserving encoding and Min-Hash. In their scheme, the image 

owners establish a secure inverted index to improve search speed. In [6]–[9], the authors propose secure 

image search schemes by using the secure kNN algorithm [24]. Specifically, Yuan et al. [6] extract Fisher 

vectors as image features and use the k-means algorithm to build a hierarchical index tree to boost search 

speed. Li et al. [7] extract CNN features from images and take a category-based hierarchical index tree as 

their index structure. In [8], [9], the authors employ Locality-Sensitive Hashing (LSH) [27] to reduce 

search time. Though the above schemes give good performance on the task of secure image search, they 

are not practical enough since their image owners have to consume a lot of time and computational 

resources when building secure indexes. 

Several schemes [10]–[17] based on image encryption have been proposed to solve the above problem. 

In these schemes, the image owners employ special encryption algorithms to encrypt images and upload 

them to cloud servers. Then, the cloud servers locally deal with feature extraction and index generation. 

In [10]–[12], the authors propose secure image search schemes by using homomorphic encryption [18]. 

However, these schemes introduce huge time and space cost, and require extensive user participation 

during the search phase. Ferreira et al. [13] propose a secure image search scheme which uses probabilistic 

encryption to protect texture information and deterministic encryption to protect color information. In 

[14]–[16], the authors introduce encrypted image search schemes by jointly using stream cipher and 

permutation cipher. Xia et al. [17] propose a secure image retrieval scheme with the help of permutation 

encryption and image segmentation. The above schemes can only extract low-level image representations 

(e.g. color histograms) from encrypted images. Because of the ‘‘semantic gap’’, image retrieval systems 

using low-level features yield low search accuracy [28]. Thus the above schemes are not practical for 

large-scale image retrieval. 

Therefore, despite the success of existing schemes, they either require image owners to undertake index 

generation, or yield low search accuracy. To overcome these problems, we propose a secure image retrieval 

scheme which employs fine-tuned CNNs to extract semantic features and allows clouds to build a secure 

index graph locally to improve search speed. 
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III. PROBLEM FORMULATION 

A. SYSTEM MODEL 

Our system model consists of three types of participants: image owners, query users and a cloud server, 

as illustrated in Figure 1. The image owners extract feature vectors from their images. To ensure data 

privacy, the image owners encrypt their images and feature vectors. Then they outsource all the encrypted 

data to the cloud server. After receiving all the encrypted data, the cloud server uses the encrypted feature 

vectors to build a secure index locally to boost the search speed. Authorized query users can request an 

image decryption key and a query encryption key from the image owners. 

Then,theygenerateencryptedsearchrequestsusingthequery encryption key to send to the cloud server. After 

receiving the encrypted search requests, the cloud server retrieves and returns relevant encrypted images 

to the query users. Finally, the query users decrypt all the encrypted images using the image decryption 

key. 

B. THREAT MODEL 

The cloud server is assumed to be ‘‘honest-but-curious’’ in our system. In other words, the cloud server 

correctly performs our protocol, but tries to learn some private information. In addition, we assume that 

the image owners and the query users are fully trusty. Therefore, the image owners and the query users do 

not collude with the cloud server. Finally, according to the available data to the cloud server, we consider 

the known ciphertext model, also known as the ciphertext-only model. That is, the cloud server can only 

obtain all the encrypted images, the corresponding encrypted feature vectors, the encrypted search requests 

and the secure index structure. 

C. DESIGN GOALS 

The goals of our secure image retrieval scheme are described as follows: 

1) Security Guarantee: The private information of all the encrypted data cannot be learned by the cloud 

server. 

1) Fine-tuned Convolutional Neural Network (CNN) Feature Extraction: CNN models have achieved 

much better results than traditional methods (e.g., SIFT) in many image-related tasks [29]. It has 

been shown that the fully connected layers of AlexNet [30] provide high-level visual feature 

representations of images. However, the high-dimensional feature vectors are inefficient for image 

search. In recent years, in order to reduce the storage and the computational cost, a series of 

dimension reduction methods [3], [31]–[33] are proposed to generate more compact feature 

representations. Lin et al. [3] propose to embed a new latent layer with less neurons between the F7 

and the F8 layers of the pre-trained AlexNet, and then fine-tune the new CNN model. Finally, the 

feature representations of images are extracted from the latent layer, and then transformed to binary 

hash codes. The experimental results in [3] show that their method outperforms several state-of-the-

art methods, e.g., LSH [27], ITQ [34], CNNH [31]. 

2) Hierarchical Navigable Small World (HNSW) Graph: A navigable small world (NSW) graph [35] is 

an approximate Delaunay graph [36] with nodes corresponding to the stored objects and edges 

connecting each node with several nodes who are most similar to it in a given metric space. By 

starting from an entry point and searching the NSW graph greedily, we can obtain approximate kNN 

results. A HNSW graph [37] is a mutil-layer NSW graph similar to the skip list structure. We can 

regard the upper layers of the HNSW graph as some express lanes which can speed up searches. That 

is, an upper layer randomly selects nodes from its lower layer, and takes them as the stations of an 

express lane, therefore, we can skip some nodes in the upper layer to make searches faster. The 

authors in [37] demonstrate the search complexity of the HNSW graph is O(log(N)). More specific 

algorithm description will be presented in Section IV-C. 
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IV. SECURE IMAGE SEARCH SCHEME 

A. IMAGE FEATURE EXTRACTION 

A new fully connected layer with a custom size is embedded between the F7 and the F8 layers of the pre-

trained AlexNet [30]. The image owners fine-tune the new CNN model using their training image set to 

learn domain specific image representations. Then, the parameters of all layers of this model are updated 

using the backpropagation algorithm. The image owners feed their images to the fine-tuned CNN model 

to extract image features from the new layer. Thus, the CNN model becomes our image feature extractor. 

For retrieval accuracy, we do not transform the feature vectors to binary hash codes like [3]. The image 

owners also share the image feature extractor to authorized query users. Finally, any authorized query user 

can extract feature vectors from his/her query images using the same fine-tuned CNN model. 

In fact, our feature extraction algorithm is not limited to AlexNet and can also employ other advanced 

CNN models such as VGGNet [38]. It is noteworthy that multi-label image retrieval is a more practical 

and challenging task in the CBIR field.Inordertosolvemulti-labelimageretrievaltasks,recent studies [39], 

[40] propose some CNN models for learning hash functions that preserve multi-layer semantic similarity 

between multi-label images. By inserting a new fully connected layer to these models and using these 

models as our feature extractors, our scheme can achieve secure multi-label image retrieval. 

Fine-tuning neural networks and extracting features may consume a lot of computing resources. In 

recent years, researchers have proposed to use fully homomorphic encryption to offload expensive neural 

network computing on public clouds while protecting privacy [41]–[43]. Thus, fine-tuning models and 

extracting features are not longer big burdens to image owners. 

B. FEATURE ENCRYPTION METHOD 

In this subsection, we will introduce the encryption technology of feature vectors. We protect the feature 

vectors by using the Asymmetric Scalar-product Preserving 

Encryption(ASPE)algorithm[24]whichsupportskNNcomputation on encrypted feature vectors. We 

describe the core content of the ASPE algorithm as follows. 

1) Key: Two (n + 1)×(n + 1) invertible random matrices {M1,M2} and an (n + 1)-bit binary random 

vector S. 

2) Data encryption: For an n-dimension database point p, the data owner first extends it to P =  

p2
i ,p1,p2,...,pn, and then splits P into two random vectors P1 and P2 according to S as: If S[i] = 0, P1[i] 

and P2[i] are set randomly such that P1[i] + P2[i] = P[i]; otherwise, P1[i] and 

P2[i] are set equal to P[i]. Finally, p is encrypted as 

P . 

3) Query encryption: For an n-dimension query point q, the query user first randomly selects a positive 

number r, and then extends q to Q = (r,rq1,rq2,...,rqn). Then Q is split into two random vectors Q1 

and Q2 according to S as: If S[i] = 0, Q1[i] and Q2[i] are set equal to Q[i]; otherwise, Q1[i] and Q2[i] 

are set randomly such that Q1[i] + Q2[i] = Q[i]. Finally, q is encrypted as Q . 

4) Euclidean distance (ED) comparison: Let P0
a and P0

b be the encrypted values of the data points pa 

and pb. We can determine whether pa is closer to a query point q than pb by checking whether P0
a 

0, where Q0 is the encrypted value of the query point q. The computation is given as 

follows. 

P0a  Q0 

 Q0 
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T 

= (Pa − Pb) · Q 

 = 0.5r [ED(Pb,Q) − ED(Pa,Q)]. (1) 

C. SECURITY DESIGN 

In this subsection, we elaborate our encrypted image retrieval scheme. It is worth noting that images can 

be encrypted by using the Advanced Encryption System (AES) before outsourced to the cloud server. Our 

scheme consists of 6 blocks:GenKey,EncData,EncQuery,BuildIndex,Searchand Update. We present the 

detailed description of each algorithm as follows. 

 GenKey: The image owner creates a secret key 

SK = kimg,S,M , where kimg is used for image encryption, S is an (n + 1)-bit random vector, M1 and M2 

are (n + 1)×(n + 1)invertiblerandommatrices.Then,theimage owner shares the secret key to authorized 

query users. 

EncData: The image owner extracts feature vectors from his/her images via an image feature extractor. 

To ensure data privacy, the image owner: (1) encrypts the images using the AES algorithm; (2) encrypts 

the feature vectors using the data encryption algorithm of the ASPE algorithm. The encrypted feature 

vectors, which we refer to as the encrypted index vectors, will be associated with the nodes of our secure 

index. 

EncQuery: The query users extract feature vectors from their query images via the same image feature 

extractor. Then, the query users generate encrypted query vectors by using the query encryption algorithm 

of the ASPE algorithm. Encrypted query vectors are also named as encrypted search requests. In order to 

build the secure index, the image owner also needs to generate encrypted query vectors for searching the 

nearest nodes in the secure index. 

BuildIndex:Theimageownersendstheencryptedimages, the corresponding encrypted index vectors and 

the encrypted query vectors to the cloud server. After receiving all the encrypted data, the cloud server 

builds a secure HNSW index graph locally to increase search speed. As illustrated in Figure 2, each layer 

of the secure HNSW index graph is a secure NSW graph, where nodes are coresponding to encrypted 

index vectors and edges are formed between 

 

FIGURE 2. A search example of our secure HNSW graph. 

similar nodes. The nodes of higher layer graphs are the subsets of lower ones, such that traversing the 

higher layer graphs are much faster than traversing the lower ones. 

In this paragraph, we introduce some notations. We use 
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Ni i,P
0
i,Q

0
i,Neighborsi[0...MaxLi],EImgIdi

 to denote a node, where i is its index. Each node 

contains five values: (1) the maximum layer of the node, denoted as MaxLi, (2) an encrypted index vector, 

denoted as P0
i, (3) an encrypted query vector, denoted as Q0

i, (4) the neighbor nodes of it at each layer 

from the 0th layer to its maximum layer, denoted as Neighborsi[0...MaxLi] (initially filled with MaxLi + 1 

empty arrays), specifically, its neighbor nodes at layer h is denoted by Neighborsi[h]. (5) the id of its 

corresponding encrypted image, denoted as EImgIdi. 

Here, we present the search algorithm of a secure NSW graph, which is an important building block of 

our secure index construction algorithm. For an encrypted query vector Q0, the search algorithm starts 

from an entry node to employ Breadth-First Traversal to find k nearest nodes to Q0. The pseudo-code for 

searching a secure NSW graph is shown in Algorithm 1. The search algorithm is a combination of Breadth-

First Traversal and greedy algorithm. Specifically, as shown in Eq. 1, given two nodes a and b and the 

encrypted query vector Q0, we can determine which node is closer to Q0. Then we create a result set and 

a candidate set, noting that the size of the result set is fixed to k. Each time the algorithm selects the nearest 

node NC from the candidate set to Q0. Then, for every neighbor node Ni of NC, the algorithm selects the 

furthest node NF from the result set to Q0, and adds Ni to the result set and the candidate set if Ni is closer 

to Q0 than NF. The process is repeated until the candidate set is empty or NF is closer to Q0 than NC. Note 

that the algorithm may reach a local minimum rather than a global minimum, thus the algorithm may not 

return the true k nearest nodes. Increasing the number of returned nodes k leads to higher search accuracy 

at the cost of longer search time. 

The construction process of the secure HNSW index graph is quite straightforward. At the initial stage 

of the process,  

 

Algorithm 1 SecureGraphSearch 

 

Input: layer of secure HNSW graph h, entry point NEP, encrypted query vector Q0, number of nodes to 

return k 

Output: k nodes nearest to Q0 

/* CandidateHeap is a min heap, in which the root element is the node nearest to Q0. ResultHeap is a 

max heap, in which the root element is the node furthest to Q0. An element of CandidateHeap and 

ResultHeap is a tuple that can be compared based on its second attribute value. */ 

1 VisitedList ← NEP; 

2 distEP ← −NEP.P0 · Q0; 

3 Element ← (NEP,distEP); 

4 CandidateHeap.push(Element); 

5 ResultHeap.push(Element); 6 while |CandidateHeap| > 0 do 
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the cloud server just creates a node for the first encrypted index vector and the corresponding encrypted 

query vector, and takes the node as the entry point of the secure HNSW index graph. Then, the cloud 

server continuously inserts new nodes to the secure index. That is, every new node is connected to its 

nearest nodes in the secure index graph. The pseudo-code for the insertion algorithm is presented in 

Algorithm 2. Specifically, for every encrypted index vector and the corresponding encrypted query vector, 

the cloud server creates a new node and randomly selects a maximum layer MaxLayer with an 

exponentially decaying probability distribution. Then, the insertion process for the node is divided into 

two phases: accelerated search phase and insertion phase. 

During the accelerated search phase, the cloud server starts from the entry point of the secure HNSW 

index graph and 

 

Input: secure HNSW index graph SIGraph, encrypted index vector P0, encrypted query vector Q0, 

encrypted image id EImgId, maximum number of established connections M, maximum number of 

established connections at the 0th layer Mlayer0, candidate number ef , normalization factor mL Output: 

update SIGraph by inserting new node 

1 NEP ← SIGraph.Entrypoint; 

2 L ← NEP.MaxL; 

3 MaxLayer ← b−ln(random(0,1)) × mLc; 4 Neighbors ← MaxLayer + 1 empty arrays; 

5 Nnew ← MaxLayer,P0,Q0,Neighbors,EImgId; 

6 for l ← L downto MaxLayer + 1 do 

7 NEP ← SecureGraphSearch(l,NEP,Q0,1); 

8 for l ← min(L,MaxLayer) downto 0 do 

9 ResultHeap ← SecureGraphSearch(l,NEP,Q0,ef ); 

10 friends ← top M nearest nodes from ResultHeap to 

Q0; 

11 for Ni ∈ friends do 

12 Nnew.Neighbors[l] ← Nnew.Neighbors[l] ∪ Ni; 

13 Ni.Neighbors[l] ← Ni.Neighbors[l] ∪ Nnew; 

14 neighbors ← Ni.Neighbors[l]; 

15 if l == 0 then 

7  N C  dist C   CandidateHeap  GetRoot () ; 

8  N F  dist F   ResultHeap  GetRoot () ; 

9 if dist C  dist F then 
10 breakwhile; 

11 for N i  N C  Neighbors [ h ] do 
12 if N i   VisitedList then 
13 VisitedList  VisitedList  N i ; 
14  N F  dist F   ResultHeap  GetRoot ; () 

15 dist i  N i  P   Q  ; 
16 if dist F  dist i or  ResultHeap   k then 
17 element   N i  dist i  ; 
18 CandidateHeap  push ( element ; ) 

19 ResultHeap  push ( element ; ) 
20 if  ResultHeap   k then 
21 ResultHeap  pop () ; 

22 return ResultHeap ; 

Algorithm2 InsertNode 
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16 if |neighbors| > Mlayer0 then 17 Ni.Neighbors[l] ← 

ShrinkNeighbors(Ni,neighbors); 

18 else 

19 if |neighbors| > M then 20 Ni.Neighbors[l] ← 

ShrinkNeighbors(Ni,neighbors); 

21 NEP ← get the nearest node from friends to Q0; 

22 if MaxLayer > L then 

23 SIGraph.entrypoint ← Nnew; 

24 Function ShrinkNeighbors(Ncurrent,Neighbors): 

/* ResultHeap is a max heap, in which the root element is the node furthest to Ncurrent. An element 

of ResultHeap is a tuple that can be compared based on its second 

 attribute value. */ 

25 ResultHeap ← ∅; 

26 for Ni ∈ Neighbors do 

27 Element ← Ni,−Ni.P
0 · Ncurrent. ; 

28 ResultHeap.push(Element); 

29 ResultHeap.pop(); 30 return ResultHeap; 

uses the secure NSW graph search algorithm to search the nearest node to the encrypted query vector in 

the top layer. Then, the cloud server takes it as the entry point of the next layer and follows the same 

process. The process is repeated until reaching MaxLayer. 

During the insertion phase, the cloud server starts from the entry point of MaxLayer and searches the ef 

nearest nodes to the encrypted query vector. Then, the cloud server adds connections between the top M 

nearest nodes and the inserted node at current layer. Then, the cloud server takes the nearest node as the 

entry point of the next layer and follows the same process. The process is repeated until reaching the 0th 

layer. Note that during the insertion phase, we set a threshold M for the number of neighbors of every node 

at current layer to prevent search slowdowns. Specifically, when the number of neighbors of a node is 

greater than M, we use its encrypted query vector to get the top M nearest nodes as its neighbors. In 

particular, we set a special threshold Mlayer0 > M for the 0th layer to improve search accuracy. 

Search: When receiving an encrypted search request Q0, the cloud server retrieves k similar encrypted 

images via the secure HNSW index graph. Figure 2 shows an example of a search using our secure index. 

The search algorithm also contains an accelerated search phase which is similar to that of the insertion 

algorithm. The only difference is that the accelerated search phase of the search algorithm stops when 

reaching the first layer. Then, the cloud server starts from the entry point found in the first layer and 

employs Algorithm 1 to search the k nearest nodes to Q0 in the 0th layer. Finally, the cloud server will 

return the corresponding encrypted images of the k nodes to the query user. 

Update: Our scheme supports two update operations: insertion and deletion. To insert a new image, the 

image owner encrypts the image, generates its encrypted index vector and encrypted query vector, and 

then uploads them to the cloud server. Finally, the cloud server inserts the encrypted data to the secure 

index by using Algorithm 2. Note that the image owner can also use the new image to fine-tune his/her 

CNN models as needed. To delete an image, the cloud server first finds the node that belongs to the image, 

and then deletes the connections between the node and its neighbors at each layer from its maximum layer 

to the 0th layer. Finally, the cloud deletes the node from the index. Unlike previous scheme [5]–[9], the 
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update algorithms of our secure index not only allow image owners to be offline, but also can be done in 

parallel, since the update processes of different nodes rarely access the same neighbor nodes. The parallel 

updates can make better use of cloud resources to improve update efficiency. 

V. SECURITY ANALYSIS 

In this section, we analyze the security of the proposed scheme under the threat model described in Section 

III-B. 

1) Data Privacy: Our scheme employs the AES algorithm to encrypt all the outsourced images. This 

makes it almost impossible for an attacker to obtain the contents of the outsourced images. The image 

features also need to be protected, since they may reveal some image contents. Our scheme employs 

the ASPE algorithm to encrypt every feature vector. Under the known ciphertext model, the cloud 

server or other attackers cannot learn any private information of the encrypted feature vectors as long 

as the secret key of the ASPE algorithm iskept confidential,as provedin [24].Besides, byusing the 

randomly splitting procedure, the ASPE algorithm also provides data unlinkability such that the 

encrypted results are different even for the same feature vector. Data unlinkability effectively 

prevents the cloud server or other attackers from learning some useful statistical information. 

2) Index Privacy: Our secure index graph consists of a series of nodes. Each node need to permanently 

preserve an encrypted index vector and a corresponding encrypted query vector. The privacy of the 

encrypted feature vectors is well protected by the ASPE algorithm. However, the cloud server knows 

the neighbor relationships in our secure index graph. Almost all secure indexes leak the similar 

relationships between the encrypted images. The leakage of the similar relationships is a compromise 

for search efficiency. 

VI. PERFORMANCE EVALUATION 

In this section, we present the performance evaluations of our scheme. We investigate the performance of 

the proposed scheme on feature extraction, feature encryption, secure index outsourcing, search efficiency, 

update efficiency, and storage consumption. To demonstrate the performance of our scheme, we 

implement the feature extraction algorithm using pytorch [44] and the rest algorithms using C++. In 

previous schemes [5]–[9] based on feature encryption, SEISA [6] is the only one that provides the secure 

index outsourcing algorithm. We implement the secure index outsourcing, search, and update algorithms 

used in SEISA, and compare ours with them. To fairly compare the search accuracy of these two secure 

indexes, we use the same image features generated by our feature extraction algorithm to build these two 

secure indexes, respectively. We run the experiments on a computer running Windows 10 with AMD 

Ryzen5 1600X Six-Core Processor CPU @ 3.6 GHz, NVIDIA Geforce GTX 1070Ti GPU and 8 GB of 

RAM. 

A. EVALUATION METRIC, DATASETS AND PARAMETERS 

We use Precision at k (P@k) as the performance metric. We compute the P@k for each query as 

 rel(i) 

 P@k = , (2) 

k 

where k is the number of returned images; rel(i) is an indicator function returning 1 if the image at rank i 

is a relevant image, and 0 otherwise. 

We evaluate the proposed scheme on the CIFAR-10 dataset [45]. The CIFAR-10 dataset has a total of 

60000 images, categorized into 10 distinct object categories. Each class consists of 5000 training images 

and 1000 testing images. In our experiments, the 50000 training images are used to fine-tune the CNN 

models to get feature extractors, and the 10000 testing images are used to evaluate the performance of our 

search and update algorithms. 
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Here, we give the parameter settings for our experiments. We investigate the performance of our 

schemes for different feature dimensions by setting the size h of the newly added latent layer of our CNN 

model to {64,128,256,512,1024}, respectively. For the HNSW graph algorithm, Malkov et al. [37] suggest 

that the reasonable range of the number of established connections M is 5-100. Increasing M leads to 

longer indexing time but better search accuracy. We choose M and Mlayer0 to be 10 and 20, respectively. 

The parameter ef of the insertion algorithm is set to 150 to get nicer search quality. The normalization 

factor mL is set to 1/ln(M) to achieve the optimum overlap between the neighbor nodes of the same node 

on different layers. For the secure hierarchical k-means index tree, we use the same settings as Yuan et al. 

[6]. Specifically, we set the parameter T to 100. That is, each time we can use the secure k-means 

outsourcing algorithm to cluster images into 100 groups. 

B. SETUP EVALUATION 

1) FEATURE EXTRACTION 

We fine-tune the CNN models with different h on the training images. Each model is trained for 50,000 

iterations. On the average, the process of fine-tuning a model takes 2 hours. The memory costs of the fine-

tuned models are 218MB, 219MB, 221MB, 225MB, and 233MB, respectively as h varies. Increasing 

feature dimensions leads to little growth of memory cost. When the fine-tuned models work as feature 

extractors, on the average, the feature extraction process of one image takes 5ms. 

2) FEATURE ENCRYPTION 

The image owners and the query users employ the ASPE algorithm to encrypt their image features. The 

computation of generating an encrypted index vector or an encrypted search request is mainly two 

multiplications of an (n + 1)×(n + 1) matrix and an (n + 1)-dimension vector. Figure 3 shows the encryption 

time w.r.t. different feature dimensions. As can be seen, increasing the feature dimensions results in more 

encryption time. 

3) SECURE INDEX CONSTRUCTION 

As stated in Section I, SEISA builds a hierarchical index tree by recursively using the secure k-means 

outsourcing algorithm. Thus it still requires participation from the image owners. On the other hand, by 

using the secure HNSW graph algorithm, our secure index construction algorithm allows the cloud server 

to build a secure index locally without requiring participation from the image owners. 

Figure 3 shows the comparison of the construction cost of our scheme with that of SEISA on the CIFAR-

10 dataset w.r.t. different feature dimensions. As can be seen, our scheme requires less construction time 

than SEISA. In particular, 

to 128). 

 

FIGURE 3. System setup cost: (a) Encryption cost of a feature vector of different dimensions; (b) 

Secure index construction cost on the CIFAR-10 dataset w.r.t. different dimensions; (c) Secure index 

construction cost on extended datasets with different sizes (the dimensions of feature vectors are fixed 
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when the image features have 1024 dimensions, the index construction time of SEISA is 8 times as long 

as ours. This is because their index outsourcing algorithm requires the image owners to re-encrypt the 

centroid vectors of clusters, and the encryption and decryption cost of high-dimensional feature vectors is 

expensive. 

To validate the scalability of the proposed scheme, we expand the CIFAR-10 dataset by using 

Augmentor [46] which provides different image transformation operations, e.g., flipping, rotating and 

zooming. Specifically, we specify a probability for each operation we need and add these operations one 

by one to create an image generation pipeline. By executing the pipeline, we expand the dataset to different 

sizes ranging from 100K to 500K. We then feed the extended datasets to the fine-tuned CNN model to 

extract 128-dimensional feature vectors to evaluate the performance of our secure index construction 

algorithm. 

Figure 3 shows the comparison of the construction time of our scheme with that of SEISA on the five 

datasets. As can be seen, the construction time for the two schemes is 

proportionaltothesizeofthedatasets.Atthesametime,itisobvious that our scheme is faster than SEISA on the 

five datasets. And as the size of the datasets increases, the gap between the two schemes increases. This 

implies the potential of our scheme on even larger datasets. Besides, the performance of our index 

construction algorithm can be further improved by utilizing parallel computing as shown in Figure 3. 

C. SEARCH EVALUATION 

We evaluate the search cost of our secure index graph w.r.t. feature dimensions and the sizes of datasets. 

Figure 4 shows the comparison of the search cost of our scheme with that of SEISA on the CIFAR-10 

dataset w.r.t. different feature dimensions when top 10 encrypted images are retrieved. And Figure 4 shows 

the search cost of the two schemes on the extended datasets when the image features have 128 dimensions 

and top 10 encrypted images are retrieved. From the figures, we can know that our scheme is a little slower 

than SEISA. This is because a secure hierarchical k-means tree can be regard as the optimal version of our 

secure index graph. 

 

FIGURE 4. Search cost: (a) Search time on the CIFAR-10 dataset w.r.t. different dimensions; (b) 

Search time on extended datasets with different sizes (the dimensions of feature vectors are fixed to 

128). 

TABLE 1. Retrieval precision on the CIFAR-10 dataset when feature vectors have 128 dimensions and 

top k images are retrieved. 

 

In thehierarchical k-means tree, thenodes of higherlayersare obtained by calculating the mean vectors of 

their leaf nodes. However, in the HNSW graph, the nodes of higher layers are 

selectedrandomlyfromthelowerones.Thusoursecureindex graph may not be optimal. However, our scheme 
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can still be practical on large datasets. In particular, when the dataset has 500K images, our scheme takes 

63.2 µs to finish a 10-NN search and SEISA takes 53.1 µs. 

To evaluate the accuracy of our scheme, we fix the dimensions of the image feature vectors to 128 and 

range the number of retrieved images from 200 to 1000. The search accuracy of the two schemes are 

reported in Table 1. As we can see, the search accuracy of our scheme is a little lower than SEISA. We 

argue that the small value of the parameter M leads to a high possibility of the search process falling into 

a local minimum and thus resulting in lower accuracy. Table 1 also shows that the search accuracy can be 

improved by increasing the value of M. 

 

FIGURE 5. Insertion cost: (a) Insertion cost on the CIFAR-10 dataset w.r.t. different dimensions; (b) 

Insertion cost on extended datasets with different sizes (the dimensions of feature vectors are fixed to 

128). 

TABLE 2. Storage consumption on extended datasets with different sizes (the dimensions of feature 

vectors are fixed to 128). 

 

D. UPDATE EVALUATION 

As described in [6], the update algorithms of SEISA require the image owners to re-encrypt 2(logT (N) − 

2) feature vectors. On the other hand, our scheme allows the cloud server to update the secure HNSW 

index graph locally without any involvement from the image owners. Thus our scheme saves more 

computational and communicational cost for the image owners. 

Figure 5 shows the comparison of the cost for our secure index to add 10,000 new images with that of 

SEISA on the CIFAR-10 dataset w.r.t. different feature dimensions. It can be seen that when the image 

features are high-dimensional, our scheme is much faster than SEISA. This is because the image owners 

in SEISA need to re-encrypt 2(logT (N) − 2) image features, and the encryption and decryption of the high-

dimensional feature vectors are time-consuming. 

Figure 5 shows the comparison of the cost for our secure index to add 10,000 new images with that of 

SEISA on the extended datasets when the features have 128 dimensions. As can be seen, our scheme is 

slower than SEISA. This is because the insertion algorithms of the two schemes both use their search 

algorithms, and our search algorithm is slower than their (as can be seen in Figure 4). Besides, the 

performance of our insertion algorithm can be greatly improved by using parallel computing as shown in 

Figure 5. 

E. STORAGE CONSUMPTION OF INDEX 

Table 2 shows the storage consumption of our scheme and that of SEISA on the extended datasets when 

the image features have 128 dimensions. Compared with SEISA, our scheme takes about 2× storage 

consumption. The main storage consumption of SEISA comes from the encrypted index vectors of the 

nodes of their index. However, each node in our scheme also needs to save an encrypted query vector. As 
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described in our insertion algorithm, the encrypted query vector of a node is used to make the number of 

neighbors of the node not exceed M and Mlayer0. 

VII. CONCLUSION 

In this paper, we present an encrypted image retrieval scheme that significantly reduces the computational 

and communicational cost of the image owners when building the secure indexes. We use short CNN 

feature vectors to obtain higher search accuracy and lower storage. To ensure high search speed and reduce 

the cost of the image owners, a secure HNSW index graph is built locally by the cloud server. In the 

research line based on feature encryption, we believe that this is the first scheme that enables cloud servers 

to build and update secure indexes locally without participation from image owners. Our secure index can 

also be used as a building block in other secure retrieval fields. We have confirmed that the proposed 

scheme is secure against the known ciphertext model. The experimental results on the CIFAR-10 dataset 

show that our scheme is efficient. In the future, we intend to further improve the efficiency of our scheme. 

Transforming high-dimensional CNN features into short binary codes is the trend of image retrieval. Thus, 

efficient encryption schemes that support computation of Hamming distance on encrypted data will be our 

focus. 
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