
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403871 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h296

 API TESTING

 ¹Adarsh Dubey, ²Aayush kanthe, ³Nidhi Brahmgotia
1Student,2Student,3Student

1Department of Electronic and Computer Science,
1Shree L.R Tiwari College of Engineering, Thane, India.

Abstract: — This paper deals with different methods to test various API using different techniques. This

technique empowers testers, developers, and quality assurance teams to automate testing procedures, schedule

test runs, and perform data-driven testing, thereby enhancing software quality and reducing testing time and

costs. It includes essential security testing features to uncover vulnerabilities and ensures that APIs are not

only functional but also secure. Rigorous testing is essential to ensure it is reliable, efficient, and functional.

Automated API testing has become an effective way to improve and implement APIs. Moreover, the

framework integrates essential security testing features to uncover vulnerabilities and ensure that APIs adhere

to robust security standards. Detailed reporting capabilities generate comprehensive logs, metrics, and

analytics, aiding in issue identification and performance tracking over time. The paper emphasizes the

importance of API testing in the software development lifecycle and highlights the efficiency of automated

testing in mitigating bugs and discrepancies.

Keyword - API (Application Programming Interface)

I.INTODUCTION

In today's complex software landscape, APIs play a crucial role in facilitating communication and data

exchange between different software components. However, ensuring the reliability and functionality of APIs

presents significant challenges, given the intricacies of modern software architectures. Manual testing of APIs

can be time-consuming and error-prone, underscoring the need for a systematic approach to API testing.

API testing involves validating various aspects of API functionality, including endpoint behaviour, request-

response handling, error management, and security vulnerabilities. Flaws in APIs can have far-reaching

consequences, leading to system failures, security breaches, and application inefficiencies. Therefore,

comprehensive API testing is essential to identify and address potential issues before they impact the overall

software ecosystem.

One of the key benefits of API testing is its ability to execute multiple test cases simultaneously, reducing

testing time while maintaining accuracy. Automated testing frameworks like Apache JMeter enable testers to

simulate diverse user scenarios and execute numerous test cases concurrently. This parallel execution

capability accelerates the testing process and ensures comprehensive coverage of API functionalities.

Moreover, API testing allows testers to evaluate the scalability limits of websites or applications by assessing

performance under different user load conditions. By gradually increasing the number of concurrent users or

requests, testers can determine the maximum threshold of users that the system can handle without

compromising performance. Testers can define specific criteria, such as expected response times or valid data

formats, to generate reports that highlight areas of improvement and potential vulnerabilities. For instance, if

an API request fails due to passing irrelevant or incorrect data, the testing framework can flag this as an

assertion failure, indicating a discrepancy between expected and actual outcomes.

This paper aims to provide a comprehensive guide to API testing with Apache JMeter, covering various

aspects of API testing methodologies, best practices, and advanced techniques using JMeter.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403871 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h297

II. API TESTING TOOL

Apache JMeter Apache JMeter is an open-source software that allows load testing, functional testing and

measuring performance. Although it was originally designed to test Web Applications, it has since expanded

and now offers a wider range of functionalities. All tests in Apache JMeter must have a test plan, a thread

group and at least one sampler. A test plan is the basis of any test and it describes a sequence of steps that

JMeter will execute once it is run. . This tool offers various assertions among which the most popular are

Response and JSON assertions. The HTTP methods that Apache JMeter supports are: GET, POST, HEAD,

PUT, OPTIONS, TRACE, DELETE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE,

LOCK, UNLOCK, REPORT, MKCALENDAR and SEARCH. For load testing, there is a CLI Mode which

allows loading tests from any Java compatible OS. As mentioned earlier, it supports multithreading, and it

offers CI support as well. The thread group offers control over the number of threads/users that will be used

when executing the tests, the ramp–up period (in what time frame should all threads be executed) and the

number of times the test should be executed. Samplers simply send requests to a server and wait for a response.

III. METHODOLOGY

In today's fast-paced world, end-users gravitate towards applications that offer seamless interaction,

efficiency, and swift responsiveness. A sluggish software application, burdened with excessive data

consumption and prolonged loading times, often fails to captivate users' attention and engagement. To address

these challenges and optimize the performance of websites, various testing methodologies and tools are

employed, among which Apache JMeter stands out as a versatile solution. Leveraging JMeter, developers and

testers can assess the responsiveness of web pages and APIs under diverse conditions, such as varying request

frequencies and response times. API testing, a core feature of JMeter, allows for direct evaluation of request-

response pairs, enabling thorough analysis of factors like response time, latency, and load times.

The workflow begins with inputting website URLs or specific web page endpoints into JMeter, initiating the

process of performance evaluation. Through API testing, JMeter captures performance statistics for individual

requests, facilitating the validation of response times and load capacities through assertions. JMeter further

enriches the analysis with its graphical output capabilities, presenting performance data in user-friendly

formats like tables and graphs. The generated performance statistics serve as crucial inputs for performance

metrics analysis, where methodologies are applied to gauge the software application's reliability and

effectiveness. By consolidating multiple API requests into sessions, testers can assess various performance

metrics such as software availability, mean time to failure (MTTF), mean time between failures (MTBF), and

mean time to repair (MTTR). These metrics serve as key indicators of software quality and user experience,

guiding efforts to enhance application performance and responsiveness.

Figure 1: Performance Analysis Process

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403871 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h298

IV. PROPOSED WORK

Adding Thread Group: Initially, create new Thread Groups in Apache JMeter to simulate concurrent users

accessing the API. Specify the number of threads (users) and ramp-up period to simulate realistic user

behavior.

Adding HTTP Request Defaults: Now, create an HTTP request under this Thread Group and give a suitable

name to this request . Add the protocol for this web connection (like “https” in this scenario). Set server name

or domain name of the webpage (like “www.weatherview.com”). We can also give the relative path for the

web page.

Adding HTTP Sampler: Configure HTTP samplers to send various types of HTTP requests (e.g., GET,

POST, PUT, DELETE) to the API endpoints. In these we are using excel sheets to provide data inputs to the

websites by parameterizing the file name/path using CSV(Comma-separated values) Data Set Config.

Adding listener and Visualizers: Add any listener to listen the process of JMeter and show output to the

user. Here for this example let us add “View Results Tree” listener to capture the output of the web request.

Graph Result, Summary Report, etc. are some of the listeners.

Running Test: Execute the test plan in Apache JMeter to simulate user interactions and API calls. Monitor

system performance metrics such as response time, latency, throughput, and error rate during test execution.

Analyzing Results: Analyses test results to identify performance bottlenecks, scalability issues, and errors in

API responses. Using built-in listeners and visualizers in Apache JMeter we can view and interpret test results

graphically. These also helps us to calculate MTTR (Mean Time to Response), MTTF (Mean Time to Failure).

Iteration and Refinement: Refine the test plan iteratively based on insights gained from test execution. These

helps us to provide multiple test case to analyses the behavior of website performance.

Scripting Dynamic User Scenarios: Utilize scripting languages such as Beanshell or JavaScript to simulate

dynamic user scenarios. Script user authentication, session management, and data correlation to mimic real-

world API interactions.

Generate Reports: Configure Apache JMeter to generate comprehensive test reports based on predefined

conditions. Customize report formats, metrics, and thresholds to meet specific reporting requirements. For

example., In weatherview.com website we can provide condition like generated test output for cities where

temperatures is above 35°C.The report for these condition will be generated.

Assertions Elements: Assertions in Apache JMeter validate whether the returned values match the expected

outcomes. When an assertion fails, it indicates a discrepancy and marks the corresponding sampler as failed

in the test results displayed in listeners. For instance, providing unrelated data, like a non-existent city name,

will trigger an assertion failure. This ensures that only valid and relevant data is used for testing, enhancing

the accuracy and reliability of the test results.

Timers: Timers in Apache JMeter regulate the timing between requests, simulating user behavior during

performance testing. By adding timers, delays can be introduced between requests to mimic realistic user

interactions. For example, after querying weather data for a city, a timer can simulate the time a user takes to

read the information before making another request. Timers help replicate real-world scenarios, ensuring more

accurate performance testing results.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403871 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h299

Performance Results: We can evaluate web application response time (captured by JMeter) as following:

Figure 2: Sample Response time

Figure 3: Sample HTTP request data

V. RESULT DISCUSSION

Manual Response Time:

Action: Navigate to the weather website and search for weather information for New York City.

Manual Response Time: 6.5 seconds (time taken from initiating the search until weather information is

displayed).

JMeter Response Time:

Thread Group: Configured with 10 users and 100 loops. (means each user will execute 100 test cases like

Mumbai, New York, Moscow, London…).

HTTP Request: Simulated search action for weather information for New York City.

JMeter Results: Average Response Time: 4.2 seconds (recorded by JMeter across all iterations).

These showcase that JMeter allows you to generate results for multiple inputs simultaneously (here we

implement 10 users * 100 loops = 1000 requests) whereas manual testing typically involves testing one input

at a time.

We can also evaluate various types of software testing to ensure more system performance concepts of these

analysed performance metrics using JMeter.

JMeter Response data: Figure 3, which displays the HTTP response output as an example. The current HTTP

request demonstrates the comprehensive information provided by the website. For instance, when querying

weather data for Mumbai, the response includes details such as temperature, minimum temperature, maximum

temperature, humidity, sea level, wind speed, and other relevant parameters. This illustrates the extensive

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403871 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h300

range of data accessible through the API endpoint, showcasing the depth of information available for analysis

and testing purposes.

We can also evaluate various types of software testing to ensure more system performance concepts of these

analysed performance metrics using JMeter.

Scalability testing: The objective of scalability testing is to determine the software application's effectiveness

in "scaling up" to support an increase in user load. It helps plan capacity in addition to your software system.

Load testing: It checks the application's ability to perform under anticipated user loads. The objective is to

identify performance bottlenecks before the software application goes live.

Stress testing: It involves testing an application under extreme workloads to see how it handles high traffic

or data processing. The objective is to identify the breaking point of an application.

Volume testing: Under Volume Testing large no. of. Data is populated in a database and the overall software

system's behaviors is monitored. The objective is to check software application's performance under varying

databases.

Spike testing: It tests the software's reaction to sudden large spikes in the load generated by users.

Comparison with Earlier research: This research paper focused on improvement of two aspects which are

following:

 -More accurate

- Better report generation / representation

- Better performance management

- Increase user Traffic

We can differentiate earlier research with this research as per following table:

Table 1: Research work Comparison

Earlier Research Proposed Work

Only one input can be provided Multiple Input can be provided

Accuracy was around 85%

while working with more than

on thread.

JMeter accuracy is around 90%

because response time also include

certificate installation time to ensure

real time behaviour.

Sites crash when multiple users

log in at a same time.

Defines the traffic limit the website

can handle.

VI. CONCLUSION

This research paper delves into the realm of API testing methodologies, emphasizing the significance of

rigorous testing to ensure the reliability, security, and performance of software applications. Through the

exploration of different techniques and tools, such as Apache JMeter, testers and developers can streamline

the testing process, automate procedures, and enhance software quality while reducing testing time and costs.

By leveraging Apache JMeter, testers can conduct comprehensive API testing, validate response times,

identify performance bottlenecks, and simulate real-world user interactions. The integration of essential

security testing features in JMeter enhances the overall testing process, ensuring that APIs not only function

as intended but also adhere to robust security standards. Moreover, detailed reporting capabilities provided

by JMeter enable stakeholders to gain insights into performance metrics, track issues, and make informed

decisions for software optimization and improvement.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403871 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h301

In summary, this research contributes to the understanding of automated API testing methodologies and

highlights the efficiency and effectiveness of tools like Apache JMeter in ensuring software reliability and

functionality.

VII. REFERENCE

[1] Amid, Man Zhang, Andrea Arcuri, “Testing RESTful APIs”, Association for Computing Machinery,

November 2023

[2] Adeel, Cagatay Catal, Deepti Mishra, Mohammad Ahmad, “RESTful API Testing Methodologies:

Rationale, Challenges, and Solution Directions”, MDPI , Volume :33, Issue 1, April 2022

[3] Sherine George, Nagaraja G.S,” Automated Framework for API Testing”, IRJET, Volume: 07 Issue:05,

May 2020

[4] Prerna Sanjay Wavhule, Rutuja Vasant Nagarkar, Bhushan Bharat Johare “Automated API Testing:

Technologies, Challenges, and Future Directions”, IJARIIE, 2023

[5] Alberto Martin-Lopez, “AI-driven web API testing”, International Conference on Software

Engineering(ICSE), June 2020

[6] Goshu, Y.Y. and Daniel Kitaw, D. (2017) „Performance measurement and its recent challenge: a literature

review‟, International Journal of Business Performance Management, May 2016.

[7] David Maplesden, Ewan Tempero, John Hosking, John C. Grundy, “Performance Analysis for Object-

Oriented Software: A Systematic Mapping”, Volume: 41, Issue: 7 , January 2015.

[8] Isha Arora, Vikram Bali, “A Brief Survey on Web Application Performance Testing Tools Literature

Review”, International Journal of Latest Trends in Engineering and Technology, May 2015.

[9] Pooja Ahlawat and Sanjay Tyagi, “A Comparative Analysis of Load Testing Tools Using Optimal

Response Rate”, Volume 3, Issue: 5, May 2013.

[10] Eljona Proko and Ilia Ninka, “Analyzing and Testing Web Application Performance”, Dept. of Computer

Science, Vol.3, Issue: 10, October 2013.

[11] Muhammad Abid Jamil, Muhammad Arif, Normi Sham Awang Abubakar, Akhlaq Ahmad, “Software

Testing Techniques: A Literature Review”, 6th International Conference on Information and Communication

Technology for The Muslim World, 2016.

[12] Sukhdev Singh Ghuman, "Software Testing Techniques", International Journal of Computer Science and

Mobile Computing, Vol. 3, Issue: 10 ,October 2014.

[13] Reenu Bhatia, Anita Ganpati, “Performance Evaluation of JMeter, LoadComplete and WAPT”,

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December 2016.

[14] Shikha Dhiman, Pratibha Sharma, “Performance Testing: A Comparative Study and Analysis of Web

Service Testing Tools”, IJCSMC, Vol. 5, Issue. 6, pg.507 – 512, June 2016.

[15] Avritzer and E.J. Weyuker, "Deriving Workloads for Performance Testing" Software-Practice and

Experience, vol. 26, no. 6, pp. 613-633, June 1996.

http://www.ijcrt.org/
https://dl.acm.org/toc/tosem/2024/33/1
https://dl.acm.org/toc/tosem/2024/33/1
https://www.researchgate.net/profile/Alberto-Martin-Lopez?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uRG93bmxvYWQiLCJwYWdlIjoicHVibGljYXRpb24ifX0

