
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f275

MACHINE LEARNING APPROACHES FOR

FORECASTING SOFTWARE FLAWS

Miss. Mehnaz M. Sheikh, Mr. Hirendra Hajare

M.Tech Scholar, Assistant Professor

Computer Science and Engineering,

Ballarpur Institute of Technology, Ballarpur, India

Abstract: Predicting software bugs before they happen is really significant for making sure that

software works well and doesn't charge too much to fix. This paper is about using computer programs

to forecast future software glitches by looking at past data. They tried out three different programs to

see which one works best: Naïve Bayes, Decision Tree, and Artificial Neural Networks. They originate

that these programs can predict software problems pretty precisely. They also looked at different kinds

of cyber threats like backdoors, viruses, and exploits, using a dataset called UNSW-NB15. They used

a method called feature selection to pick out the most important things to look at. Then they used a

classification method called EC to figure out what kind of threat it is. Overall, they found that their

method works really well for identifying and classifying threats accurately.

Index Terms - Software Defect, Software testing, Software bug, Prediction model, Artificial Neural

Network, Software defect Prediction (SDP), Software Quality, Decision Tree (DT) , Machine Learning ,

Naïve Bayes(NB).

I. INTRODUCTION

The internet is growing quickly, with billions of users and vast amounts of data being generated every day.

This growth brings challenges in data security and privacy, especially with increasing hacking tools and

techniques. Intrusion Detection Systems (IDS) play a energetic role in identifying and answering to threats

by monitoring network traffic for doubtful activity.

Traditional IDS methods face tasks in acquainting to the unique characteristics of IoT devices and in

efficiently treatment the vast amounts of data. Machine learning algorithms offer a auspicious solution by

automatically learning from data to detect and classify intrusions. However, existing IDSs still struggle

with false alarms and identifying unknown attacks. Improved IDS systems based on machine learning can

address these issues by continuously learning and adapting to new threats. This research focuses on

developing an IDS system that combines feature selection and classification algorithms to improve

accuracy. A novel VFS-EC algorithm is proposed to improve intrusion detection rates and to handle various

challenges. The study's main contributions include:

1. Developing an effective IDS system capable of quickly and accurately detecting all types of attacks

using cross-verified Artificial Neural Networks with Random Forest Classifiers (EC) and the VFS feature

selection approach.

2. Using the UNSW-BoT Dataset to evaluate the proposed IDS system's performance and compare it with

existing models.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f276

In addition to intrusion detection, software bug prediction is another critical aspect of software

development. Predicting faulty modules early can significantly improve software reliability, quality, and

maintenance costs. Machine learning techniques, such as Naïve Bayes, Decision Trees, and Artificial

Neural Networks, are commonly used in software bug prediction. This paper evaluates the capabilities of

these classifiers using different datasets and comparison measures like accuracy, precision, recall, F-

measures, and ROC curves. The paper also discusses related work, provides an overview of selected ML

algorithms, describes datasets and evaluation methodology, presents experimental results, and concludes

with future directions.

The number of active users on the internet has increased to 4.66 billion in recent days, conferring to the

Global Internet Statistics Report generating more than 2 quintillion bytes of data per day. It demonstrates

that the velocity of data access from various sources has accelerated dramatically, as has the development

of techniques and hacking tools. As a result, data security and privacy are required to protect data from

various intrusions or hostile attacks. Because of the speed of data and increased volume, traditional

intrusion detection systems were unable to detect intrusions or assaults in a timely and efficient manner.

Certain computational procedures, on the other hand, are difficult by nature to handle such data,

necessitating advanced intelligent approaches and strong technologies. Intrusion detection systems, or IDS,

play a grave role in identifying attacks. The IDS system will monitor network traffic in order to detect

threats, attacks, or suspicious activity. When this type of activity is detected, it may send an alert to the

appropriate administrator. A change of machine learning techniques can be used to efficiently deal with

the infiltration. Different machine learning techniques can be used to efficiently manage and classify

intrusions or attacks [1-3]. For more than two decades, Intrusion Detection Systems (IDS) have played a

pivotal role in enhancing network and information system security, particularly in safeguarding smart IoT

devices against various attacks. However, traditional IDS methods face challenges when applied to IoT

owing to unique protocol stacks and architectural constraints. Consequently, new solutions are needed,

such as hardware-based applications using network probes, albeit at a substantial resource cost. To address

these challenges, researchers are turning to machine learning algorithms, which can effectively detect

suspicious attacks by analysing network traffic. Despite the advancements, existing IDSs still struggle with

high false alarm rates and the inability to identify unknown attacks. This has led to a focus on developing

IDSs with lower false alarm rates and higher detection rates, with machine learning-based IDS showing

promise due to its ability to extract useful information from large datasets. To contribute to this field, the

study proposes a novel IDS system that combines feature selection with classification algorithms,

leveraging the VFS-EC algorithm to enhance detection accuracy across various attack types. The

effectiveness of the proposed system is evaluated using the UNSW-BoT Dataset, demonstrating improved

categorization performance compared to existing models.

II. RELATED WORK:

Almost all computer software contains defects that introduced during the coding process. Over time, some

of these flaws are being identified, often through quality assurance testing. The later those defects are being

discovered and addressed in the development cycle, the higher the associated costs of fixing them [4; 50].

Consequently, early detection of flaws is paramount.

Testing, as a primary means of identifying flaws or defects, is crucial in software development! Myers et

al. define software tests as executing a program to uncover errors. Testing happens across various levels

like unit testing, function testing, system testing, regression testing, and integration testing, you know. Unit

testing, mainly examines specific code sections and detects defects for cost savings, leading to cost savings,

right? By concentrating on the most error-prone areas, we can save costs sooner than usual, which is

essential.

The process of predicting parts of software susceptible to faults is known as Software Defect Prediction

(SDP). SDP entails using measurements that are derived from sources like the source code and

development process to determine if these metrics might offer insights into defects. Research indicates that

testing-related tend to consume quite a significant portion, anywhere 50% to 80%, of total time [12]. Given

this substantial, it is essential to focus the testing efforts on areas where defects are likely to arise, because

this can possibly result in significant cost savings. SDP has been under study since the 1970s, originally

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f277

simple equations with source code measurements as variables for prediction [17]. Subsequently, the focus

of the prediction techniques shifted towards statistical analysis, expert estimations, as well as Machine

Learning (ML) [8]. Among these approaches, ML has emerged as the most successful method [8, 22].

 2.1 Data Mining with Machine Learning

Machine learning (ML) is a subset of artificial intelligence that focuses on enabling computer programs to

learn from data. It attempts to reproduce the human learning process computationally, primarily by

observing patterns, and based on those patterns to generate the whole [24 ML can be broadly divided into

two main types: supervised learning and unsupervised learning. Supervised learning involves learning from

labelled examples, where the outcome of each training sample is known [56, p. 40], while unsupervised

learning involves learning from data without fixed outcomes. In this master thesis, especially in the

classification of samples into two or more groups, the focus on supervised learning is important because

the Problem Report (TR) contains information about files that have been found to be defective the existing

database.

Different algorithm families developed a wide variety of ML algorithms for supervised learning, also

known as classifiers, as evidenced by previous software defect prediction (SDP) research These algorithms

include decision trees, classification rules, neural networks and probabilistic classifiers. Research has

shown that in many cases the J48 decision tree outperforms the OneR algorithm. Again, Shafital. [48]

investigated the use of the ZeroR classification rule algorithm alongside OneR, and found that OneR

generally performs better. When predicting the value of the majority group, OneR outperformed ZeroR

[56, p. 459]. Arisholm and so on. conducted two separate experiments [1, 2] using meta-learners such as

Decorate and AdaBoost with a J48 decision tree. Decorate is shown to exhibit good performance on small

data sets and slightly better on large data sets. However, no specific definitions were given for "small" and

"large" datasets.

 2.2 Association Rule Mining

Software metrics refer to quantitative measurements that provide numerical values or markers for the

attributes of the measured object [18]. An attribute in this context represents an object or characteristic of

an object such as length, life span, or cost. The entity itself can be unique and can include the source code

of an application or function in the software development process. Software metrics can be organized into

different families, each of which focuses on different aspects of software development.

 Static code metrics

Static code parameters are measurements extracted directly from the source code itself, including common

metrics such as signal lines (LOC) and cyclonic complexity Source lines (SLOC) include various metrics,

such as physical LOC (SLOCP). that counts total lines, blank LOC in the case of blank lines (BLOC),

annotated lines f comment-LOC (CLOC) refer to lines with LOC (SLOC-L) logical comments so [41]. The

cyclonic complexity number (CCN), also known as the McCabe metric, linearly measures the complexity

of a module's decision process by counting the number of independent paths each time a path's control flow

splits, such as if, for, while, case, means, &&, ||, or ? in source code [28]. Other static code parameters

include compiler instruction count and data declaration count.

Feature selection methods in machine learning generally fall into two categories: packaging and filtering.

Wrappers use the same ML algorithm to select features, finding the value of different features. However,

filters use heuristics based on data characteristics to consider different features [20]. Filters are useful for

their fast performance and are compatible with any ML algorithm. They can handle large feature sets well.

Generally, however, they must stay clear of the problem of classification. Wrappers, although versatile and

applicable to any classification problem, require the feature selection process to be repeated for each

algorithm used for prediction, since the same algorithm is used for feature selection and distribution.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f278

III. PROPOSED METHODOLOGY

In this phase, we look into the trials of the proposed Intrusion Detection System (IDS) version VFS-EC.

The usual workflow is carefully illustrated in Fig. 1 , which offers a detailed review of the methodology.

Initially, the us-NB15 statistics set is loaded into the system, forming the idea for next evaluation.

Once the records are received, numerous preprocessing steps are done to make sure facts brilliant and

readiness for analysis. This step is essential for cleaning and organizing the statistics set, putting off any

inconsistent or inappropriate statistics that might affect the accuracy of the version

In order to in addition improve the accuracy of the IDS version, a function selection process is implemented

the usage of the proven typical choice (VFS) set of rules. This set of rules intelligently identifies and selects

the most relevant functions from the facts set, streamlining the quest manner and improving universal

overall performance

Once the function is chosen, the Novel EC algorithm is used to classify the irregularities in the statistics

set. This set of rules is in particular designed to correctly discover and classify diverse kinds of inputs,

imparting treasured insights into potential protection dangers

On the prediction aspect, the IDS machine now not humblest detects abnormalities but additionally

identifies the form of attack being accomplished. This capability is vital to rapidly deal with security

breaches and increase suitable countermeasures.

Finally, the performance of the newly developed VFS-EC machine is thoroughly evaluated using numerous

overall performance metrics. These measures include accuracy, precision, bear in mind, and F-measures,

among others. In addition, the overall performance of the VFS-EC model is compared with the present IDS

model to show its superiority.

Figure 1. Flow of the proposed VFS-EC Model

Here, “1” is denote feature is nominated and second “0” is represents feature is rejected.

Figure 2. Feature Selection

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f279

 3.1 VFS Algorithm for Feature Selection

Here, we provide a complete explanation of the proposed method. Feature selection is important for

improving learning performance, reducing computational complexity, and building efficient classification

models. A validated feature selection (VFS) algorithm is used to identify suitable features in the data set

with the aim of optimizing the feature subset for analysis

Typically, each feature in the VFS algorithm is represented as a binary vector of N entries, where N

corresponds to the total number of features in the data set. A value of 0 indicates that the feature is not

selected, while a value of 1 indicates that the feature is selected for inclusion in the subgroup.

Our proposed method simplifies the process to a single equation by simplifying sine and cosine with

additional parameters. Rather than switch between two brands, we recommend always choosing one brand.

Since sine and cosine functions yield values from 1 to +1 in the interval [0, 2π], the choice between them

is particularly arbitrary. Therefore, adopting a single channel does not degrade the performance of the

algorithm.

To strike a balance between exploration and application, we introduce a new equation that includes the

random variables C and r1 . This facilitates effective transitions between detection and control methods.

Equation (1) below shows the updated position, which ensures that the algorithm is efficient enough to lead

to a search location.

In this equation C is defined as the product of the constants b, d, where b usually takes integer values in

the range [1, 5] S1 represents the field of advance locations or direction of motion, where dist means

random variable from 0 to 2π, also the weighting variable representing the variance between the current

position and its previous position is a random value. The d parameter is used to select different search

approaches, whether involving sine functions or not, based on different random values. In addition, the task

of d weights fixes a value greater than 1, thus influencing the selection process.

Algorithm 1: Verified Selected Features (VFS) .

EXPLANATIONS:

- Number of searches

- Dataset validation

- The snowflake

- Maximum number of iterations

- The upper limit

- Lower limit

SOURCES:

- Vector of 20 optimal solutions

1. Start a general search (X) .

2. Calculate the cost function of each agent (fit), and select the agent with the best position (Best_pos).

3. Set t = 2

4. WHEN a (t ≤ max_iter) IS

 a. set s = t * (s / maximum) .

 b. For each factor (X), from dimension (j) DO

 - Obtained random variable dist ∈ [0, 2π].

 - Random variable loading

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f280

 - Create a random variable C = b * rand() .

 - update the rank of the result:

 - If (C<s) THEN

 - Set m = Get_rand_position() % Get random position [lb, ub] from search position.

 - Transform X(j) = (1 - r1) * X(j) + (r1) * m

 - however

 - update X(j) = Best_pos(j) + s*(sin(dist)) *abs(weight* Best_pos(j) - X(j));

 - ENDIF

 c. Calculate a new cost function (fit) for each agent (X), and determine the agent with the best position

(Best_pos).

 d. Increase t

5. END TIME A

END ALGORITHM

Algorithm 1 shows the VFS algorithm, which is described in detail here. Initially, the algorithm randomly

determines the locations of solutions under the search area. It then loops for the maximum number of

iterations to find the best feature subset.

At each iteration, the algorithm calculates the fitness score (Fit) for each solution using the specified cost

function, which is usually performed to evaluate the effectiveness of the feature subset and then determines

the best solution (Best_pos) at of the population based on the highest fitness score.

The solution is updated using Equation (1). This equation simplifies both diversification and

intensification processes by controlling for two parameters, (s_1) and (d). The value of (s_1) decreases

with each iteration, while (d) is a random number ranging from 0 to 1. If (d < s_1), then diversification is

pursued; otherwise, they want to reinforce it. These update parameters ensure a balanced transition between

the two methods.

The variables used in the algorithm are proportional to the number of objects in the data set. This variable

is constrained in [0, 1], where a value close to 1 indicates that the corresponding feature is likely to be

selected for classification

In the fitness calculation for individual solutions, each variable is a determining boundary for inclusion.

In particular, Equation (4) defines the fitness score (f_{ij}) for a feature based on its value (X_{ij}), with

a threshold of 0.5:1.

[f_{ij} = \begin {entry} 1, & \text{if } X_{ij} > 0.5 0, & text{else} end{entry}].

Where the update position of the solution violates the constraints ([0, 1]), a simple truncation rule is used

as v.

 3.2 CLASSIFIER:

 The K-Nearest Neighbours (KNN) algorithm is applied in software bug prediction using machine learning

by first selecting suitable features from software metrics datasets and then using these features such as lines

of code, complexity measures, and developer experience, traditional KNN classifiers. During training, the

KNN algorithm memorizes the entire dataset and calculates the distance between data points based on the

chosen distance metric, usually Euclidean distance If a new software module needs to be classified as faulty

or not error a, KNN identifies K nearest neighbours from the training set. The implementation is evaluated

using metrics such as accuracy, precision, recall, and F1-score to verify its effectiveness in predicting

software errors which great accuracy.

K-Nearest Neighbor (KNN) classification works by calculating transition weights based on the proximity

of data points through a trial-and-error process. It’s like trying different weights until you find the best

match. In this study, KNN is used as part of the fitness task because it is actually good at sorting topics into

classes.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f281

Now, let’s talk fitness business. Imagine trying to make the best choices from several options. It’s like

picking players for a sports team – you want them to be right but also not too much. Thus, the fitness

function examines each feature set and scores it. These scores are calculated using a formula (Equation 3)

that considers the number of classifier errors (classification error), the number of selected features (D), and

the total number of features (N) There were also two parameters α and β, which tells us that the accuracy,

. And how important are the number of parts?

The mutation agent introduces new traits not present in the ancestor, helping to produce new individuals.

It takes data representations such as binary, real, or integer formats and includes many mutation methods.

Mutations generally involve selecting one or more bits at random and changing their values based on a

predetermined probability. Equation 4 is a representation of the mutation process, which is similar to that

shown

The analysis used the VFS algorithm for feature selection (as shown in Figure 2). Initially, the algorithm

initializes the location, evaluates the search agent with the objective function, and updates the optimal

solution and location again. This approach helps explore possible solutions, and can identify the most

important features.

 3.3 EC ALGORITHM USED TO CLASSIFY IDENTIFIED INTRUSION

This integrated model uses artificial neural network (ANN) modeling along with random forest

segmentation and k-fold cross-validation. Unlike many other models, this method does not require

hyperparameter adjustments, so it is particularly suitable for large data sets with low memory requirements

The quality of random forest classification is evaluated by cross-validation, a remodeling is considered.

The EC method improves the accuracy of the intrusion classification, contributing to the development of

more robust algorithms. A random forest segmentation with multiple decision trees predicts outcomes by

collectively voting for the best option. Overall, it outperforms individual decision trees.

Fig 3: EC Algorithm

The feature selection process continues its execution through the search space without any particular stop.

Different generation strategies and analytical methods influence the selection of reference decisions. Stop

criteria based on subgroup generation require reaching a maximum number of objects or generations. Based

on the search methods, the feature selection stops if the new function does not yield a good subset or when

an optimal subset is found according to the search criteria, the feature selection process stops by selecting

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f282

the features subset correctly are returned to the machine learning process. A generalized algorithm for

feature selection is described below, representing the data set (D), the search technique (S), the evaluation

measure (M), the stop criterion (Sc), and the optimal subset of features (F optimal). is, updating the best

subset (F optimal) until the stopping criterion is met and finally the best subsets are returned.

The aim of the study is to investigate and evaluate three supervised machine learning (ML) algorithms:

Naive Bayes (NB), Artificial Neural Network (ANN), and Decision Tree (DT), especially prediction

focusing on their performance accuracy and power over software errors. The study provides a comparative

analysis of these selected ML algorithms to demonstrate their effectiveness in this context. Supervised

machine learning algorithms work through implication functions that distinguish correlations and

dependencies between known inputs and outputs of labelled training data This function enables the

prediction of effects values for additional inputs based on patterns obtained from training data.

3.4. Naive Bayes (NB)

Naive Bayes is a forthright and well-organized probabilistic classifier based on Bayes theorem with the

assumption of independence between features. NB is not an algorithm but a family of algorithms with the

common principle of assuming the class is self-governing of the presence or absence of a particular object

or of other objects. Naive Bayes (NB) is a popular machine learning algorithm used in software bug

prediction. In software bug prediction, Naive Bayes is often used as a classification algorithm. Its

implementation determines whether a software module or component is prone to faults based on different

features and attributes.

Naive Bayes algorithms are based on the Bayes theorem and make a strong assumption of feature

independence, which means that each feature contributes independently to the probability of a particular

outcome (in this case the presence or absence of errors) Despite this simplifying assumption, none of Bayes

generally works well in practice is known for its simplicity, efficiency and efficiency in large data

applications in

Naive Bayes in software bug prediction is trained on historical data including elements extracted from

software artifacts (such as source code criteria, complexity measures, and code churn), labels indicating

whether an artifact is bug-free or not Once trained once, then new software or unknown artifact values

using the Naive Bayes model Can be predicted based on potential errors Overall, Naive Bayes is a valuable

tool in software bug forecasting, providing insight into the likelihood of software artifacts and bugs and

helping software developers prioritize testing and maintenance efforts

3.5. Artificial Neural Networks (ANNs)

Artificial neural networks are computational models inspired by organic neurons. ANNs are nonlinear

classifiers that can model complex relationships between inputs and outputs. They have an interconnected

set of controls called neurons that organize to produce outputs. Each connection between neurons carries a

signal, and each neuron calculates its output using a nonlinear function of the sum of all inputs. Artificial

neural networks (ANNs) have indeed been used in software bug prediction tasks. In this context, ANNs

are used to analyse various software objects, such as source code files or modules, and determine whether

they contain bugs or How ANNs are commonly used in software bug prediction is:

1. Data Collection and Maintenance: Collects historical data on software artifacts and labels indicating

their error status (either error or no error) Attributes are extracted from these artifacts, which software

metrics, code complexity measures, and others are included Relevant features can also be included. The

data are then pre-processed and divided into training and test sets.

2. Network Architecture Design: Designed neural network. It specifies the number of layers, the number

of neurons in each layer, and the activation functions used. The input layer of the network retrieves the

omitted features, and the output layer provides predictions of possible errors in software artifacts

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f283

3. Training of the network: The neural network is trained using the training dataset. During training, the

network learns how to map the inputs to the corresponding error codes. This is usually done using

backpropagation and other optimization algorithms, where the weights of the network are adjusted

iteratively to reduce the prediction error.

4. Validation and testing: After training, the performance of the neural network is tested using a separate

validation data set. This helps to examine the generalizability of the model to unseen data and its

functionality. Various analytical parameters such as precision, accuracy, recall, and F1-score are used to

measure the performance of neural networks.

5. Prediction: Once a neural network is trained and validated, it can be used to predict the probability of

bugs in new software products. Developers can insert additional features of a new product into the trained

model, and the web page comes up with a prediction of whether the product is likely to be faulty

Overall, ANN offers a powerful and flexible approach to software defect prediction, enabling the automatic

identification of potential problem areas in software products by using ANN, organizations can improve

their software quality control and reduce the potential for defects in their software products.

3.6. Decision Tree (DT)

Decision tree is a extensively used learning technique in data mining. It uses a planning and prediction

system in which the observation of the item acts as a branch to reach the target value of the item in the

document. The DT consists of decision nodes, with many branches, and leaf nodes representing the final

decision. The decision process involves a tree structure based on the features of the input data. Decision

trees are often used in software bug forecasting because they provide an interpretable model and can handle

statistical and classification data efficiently as here are some common uses of Decision Trees in software

bug forecasting:

1. Data Collection and Preparation: As with other machine learning techniques, the first steps include

historical data collection of software artifacts and labels indicating their bug status (bug or bug-free)

Features Excluded from these artifacts, such as software metrics, code complexity measures, other related

features and features. The data are then preprocesses and divided into training and test sets.

2. Model Training: Decision trees are trained using a set of training data. During training, the algorithm

divides the data set iteratively based on the factor that provides the best separation between samples with

and without errors This process continues until certain stability criteria are met, hear as a maximum tree

depth or a minimum number of leaf nodes to obtain.

3. Model Analysis: After a decision tree is trained, its performance is tested using a separate validation data

set. This helps in assessing the generalizability of the model and its performance on unobserved data.

Various analytical metrics such as accuracy, precision, recall, and F1-score are used to measure the

performance of decision tree models.

4. Interpretation: One of the main advantages of decision trees is that they can be interpreted. The resulting

tree structure can be easily visualized and understood by domain experts, providing insight into factors

affecting software error prediction.

Prediction: In addition to training and evaluation, decision tree modeling can be used to predict the

probability of bugs in new software products. Developers can input features of a new product into the

trained model, and the decision tree produces predictions of the likelihood of artifacts being faulty

Overall, decision trees offer a flexible and interpretable method for software defect prediction, making

them especially useful for applications where transparency and common sense are important by using

decision trees implementation, organizations can improve their software quality control and reduce

potential defects in their software products.

Specifically, naïve Bayes relies on probabilistic cognitive, artificial neural networks mimic biological

neural networks to capture composite associations, and decision trees formulate hierarchical decision rules

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f284

to allocate data Learning objectives to evaluate and compare the performance of such these algorithms are

performed in software fault prediction tasks are to provide insights into their effectiveness and suitability

for this particular application

IV. EXISTING METHODOLOGY

 4.1 Existing System

 Several existing systems use machine learning (ML) techniques to predict software bugs. Here are a

few examples:

1. NASA Metrics Data Program (MDP): This software is one of the first and best-known data sets for

error prediction analysis. It contains software metrics data collected from various NASA projects, as well

as a list of whether each module contains errors. Researchers have used this dataset to develop and evaluate

ML models for error prediction.

2. PROMISE Repository: The PROMISE repository provides a collection of data specially collected for

software engineering research. These data sets include various aspects of software development including

bug prediction. Researchers often use data sets from the PROMISE repository to benchmark and compare

different ML algorithms to determine errors.

3. Grecko and Madey ski Dataset: This dataset compiled by Jureczko and Madeyski contains software

metrics data from open source projects with labels indicating bug proneness It has been widely used in bug

prediction research and support in ML-based bug development prediction models Given.

4. Bug Prediction Challenge Datasets: Many bug prediction challenge datasets have been released as part

of research competitions over the years. These datasets typically contain software metrics data from real-

world projects, with labels indicating a bug. Researchers use this list to evaluate the performance of their

ML models in a competitive environment.

5. Commercial tools: Some companies offer commercial error prediction software using ML techniques.

These tools are often included in software development environments to give developers insight into

potential bugs in their code. Examples include Microsoft’s Code Defect Prediction Tool and IBM’s

Rational Software Analyzer.

These existing frameworks and datasets allow researchers and practitioners interested in applying ML

methods to software defect prediction By using these resources, organizations can improve the quality of

their software improve processes and reduce the possibility of defects in their software products.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f285

 4.2 Limitations of Existing System

Since I have no specific information about the existing framework you describe, I will provide some general

boundaries that can be attached to software bug prediction systems These limitations may vary depending

on method and techniques the method of production. Here are a few general restrictions:

1. Limited Feature Set: Existing systems are using limited features or metrics to predict faults. This may

overlook important sources of errors. The inclusion of additional relevant parameters can improve the

accuracy and efficiency of forecasts.

2. Lack of data: The quality and fullness of the training system data can significantly affect its performance.

Irregularities in the historical data, lack of standards, or incorrect error records can lead to biased or

unreliable forecasts.

3. Challenges in Feature Selection: It is important to select more useful and relevant features for accurate

error prediction. If the existing system lacks effective selection instruments, it may add unnecessary or

unnecessary features, resulting in reduced forecast accuracy or overfitting

4. Insufficient training data: The amount and type of training data can affect the system’s ability to

generalize and make accurate predictions. If the existing system has limited or imbalanced training data, it

may struggle to capture patterns and underlying processes related to error occurrence

4.3 Proposed System

Based on the limitations of the existing system, here's a proposed system for software defect

prediction:

1. Enhanced feature set: Expand the feature set used for defect prediction by incorporating additional

relevant metrics and attributes. This can include code complexity, code churn, code coverage, developer

experience, historical defect data, and any other domain-specific factors that can influence defect

occurrence.

2. Robust data preprocessing: Implement thorough data preprocessing techniques to handle missing values,

outliers, and data inconsistencies. This includes imputation methods for missing data, outlier detection and

treatment, and normalization or scaling of the data to ensure consistency and improve model performance.

3. Advanced feature selection: Employ advanced feature selection techniques to identify the most

informative and relevant features for defect prediction. This can include correlation analysis, information

gain, feature importance analysis using machine learning algorithms, or domain expertise-driven feature

selection methods.

4. Ensemble modeling: Utilize ensemble learning techniques to combine multiple machine learning models

for defect prediction. Ensemble methods such as random forests, gradient boosting, or stacking can help

improve prediction accuracy and reduce the impact of individual model biases.

5. Incorporate cross-validation: Apply cross-validation techniques during model training and evaluation to

obtain more reliable and robust performance estimates. This involves splitting the data into multiple

subsets, training and testing the model on different subsets, and aggregating the results to assess the model's

generalization ability.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f286

6. Adaptability and incremental learning: Design the system to handle evolving software by implementing

mechanisms for incremental learning. This allows the system to incorporate new data and adapt the model

over time without retraining the entire system from scratch.

7. Explainable models: Select machine learning algorithms that offer interpretability, such as decision trees

or logistic regression. This enables better understanding and explanation of the factors contributing to the

predictions, increasing the system's transparency and trustworthiness.

8. Resource allocation optimization: Develop algorithms or rules to optimize the allocation of testing and

debugging resources based on the predictions. Consider incorporating cost-sensitive learning techniques

that factor in the potential impact and severity of defects to prioritize efforts effectively.

9. Continuous improvement and monitoring: Implement a feedback loop to continuously monitor the

performance of the system, collect new data, and periodically retrain the models. This ensures that the

system remains up to date and adapts to changes in the software and defect patterns.

 4.4 Advantages of Proposed System

 The proposed system for software defect prediction offers several advantages over the existing system.

Here are some key advantages:

1. Improved prediction accuracy: By expanding the feature set, implementing advanced feature selection

techniques, and using ensemble modeling, the proposed system can enhance the accuracy of defect

predictions. The inclusion of applicable metrics and the combination of multiple models help capture more

complex patterns and dependencies, leading to more reliable predictions.

2. Better adaptability to evolving software: The proposed system incorporates mechanisms for incremental

learning, allowing it to handle evolving software systems. By incorporating new data and adapting the

models over time, the system can maintain its predictive performance as the software evolves, ensuring its

relevance and effectiveness.

3. Enhanced resource allocation: The system optimizes resource allocation by considering the predictions and

severity of flaws. By efficiently allocating testing and debugging resources, the proposed system helps

prioritize efforts, leading to more effective defect detection and resolution. This can result in better overall

software quality and reduced development and maintenance costs.

4. Interpretable predictions: By selecting machine learning algorithms that offer interpretability, the proposed

system provides explanations for the factors contributing to defect predictions. This enhances the system's

transparency and trustworthiness, allowing developers and stakeholders to understand and validate the

predictions, leading to better decision-making.

5. Nonstop improvement and monitoring: The proposed system incorporates a feedback loop that allows for

continuous monitoring of the system's performance. By collecting new data and periodically retraining the

models, the system can adapt and improve over time. This ensures that the defect prediction capabilities

remain up to date and aligned with the changing software and defect patterns.

6. Reduced false positives and false negatives: Through the combination of progressive feature selection

techniques, ensemble modeling, and improved accuracy, the proposed system aims to minimize false

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f287

positives (predicting defects that don't occur) and false negatives (failing to predict actual defects). This

helps avoid unnecessary rework and ensures that potential issues are identified and addressed proactively.

 Overall, the proposed system offers improved prediction accuracy, flexibility, resource allocation,

interpretability, and continuous upgrading compared to the existing system. These advantages contribute

to enhanced software quality, reduced development costs, and more efficient allocation of testing and

debugging resources.

V. UML Description

 5.1 Use Case Diagram

Use case diagrams act as visual representations of system functionality from the users’ perspective. They

play an important role in identifying the types of roles involved, which may be users, systems, or external

agencies, and how they interact with the system Provide scenarios illustrating those interactions

this provides a clear understanding of the system actions and roles played by various tasks Emphasis is

placed on required activities or tasks. Overall, functional diagrams provide a comprehensive overview of

system operations and help stakeholders understand the scope and objectives of the system.

Figure 4. Use Case Diagram a software defect prediction system

 5.2 Class Diagram

A study diagram is a visual representation that provides insight into the static structure of a system. They

help visualize the structure of the system by identifying the component classes and their properties and

methods, and class diagrams show the relationships between these classes, such as associations,

dependencies, synthesis, and integration. By presenting this information in graphical form, class diagrams

provide a clearer understanding of the structure of system classes, how they interact with each other and

are a valuable tool for them developers and designers for visualizing the system, planning its execution,

ensuring accuracy and scalability. Overall, class diagrams play a important role in interactive the static

structure of the system and facilitating effective teamwork among sponsors involved in its development.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f288

Figure 5. Class Diagram a software defect prediction system

VI. RESULT

 6.1 Screen shots

Figure 6. Dataset for Feature of a software defect prediction system.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f289

Figure 7. Dataset-1 for Feature of a software defect prediction system.

Figure 8. Dataset-2 for Feature of a software defect prediction system.

Figure 9. Dataset-3 for Feature of a software defect prediction system.

Figure 10. Accuracy and Confusion for Feature of a software defect prediction system.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f290

Figure 11. Accuracy and Confusion for Feature of a software defect prediction system.

Figure 12. Accuracy and Confusion for Feature of a software defect prediction system.

Figure 13. Accuracy and Defects for Feature of a software defect prediction system.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f291

Figure 14. Feature of a software defect prediction system.

Figure 15. T-distributed neighbor embedding (t-SNE) of a software defect prediction system.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f292

Figure 16. Principal Component Analysis test of a software defect prediction system.

VII. CONCLUSION

In summary, software bug prediction systems prove invaluable for software development teams to

proactively identify and address potential bugs in their projects Use historical bug data and apply machine

learning techniques to establish patterns in data across software modules or objects f capability analysis

Providing improved accuracy, efficiency, and resource allocation compared to traditional methods, the

system enables teams to focus on their trial and error effort where necessary, ultimately improving software

quality, reducing defects Accuracy, efficiency, flexibility, scalability, user-friendliness Designed with

these objectives in mind, the system leads software development teams needs Integrate UML diagrams,

including usage diagrams, class diagrams to help visualize and understand the structure and structure of

the system With modules related to data a collection, preprocessing, feature extraction, model training,

prediction generation, and resource ho allocation , the framework provides solutions for fault forecasting

and management Furthermore, visualization and reporting help stakeholders interpret fault forecasting and

they are used properly. Overall, a well-designed software bug prediction system contributes significantly

to software quality, resource efficiency, and the overall effectiveness of the software development process

by addressing potential bugs the immediate action.

REFERENCES

1. Altuntas¸, E.; Turan, S.L. Awareness of secondary school students about renewable energy sources. Renew.

Energy 2018, 116, 741–748. [CrossRef]

2. Sami, B.S. An Intelligent Power Management Investigation for Stand-alone Hybrid System Using Short-

time Energy Storage. Int. J. Power Electron. Drive Syst. (IJPEDS) 2017, 8, 367. [CrossRef]

3. Waghmare, M.S.S.; Waghmare, A.P. Supervisory Control and Data Acquisition System (Scada) in

Construction Industries. J. Adv. Sch. Res. Allied Educ. 2018, 15, 203–208. [CrossRef]

http://www.ijcrt.org/
http://doi.org/10.1016/j.renene.2017.09.034
http://doi.org/10.1016/j.renene.2017.09.034
http://doi.org/10.11591/ijpeds.v8.i1.pp367-375
http://doi.org/10.11591/ijpeds.v8.i1.pp367-375
http://doi.org/10.29070/15/56815
http://doi.org/10.29070/15/56815

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f293

4. Mon, A.W.; Oo, M.Z.; Kyu, M.T. Design and Implementation of Supervisory Control and Data Acquisition

Based Manufacturing System Using PID Control. Int. J. Sci. Res. Publ. (IJSRP) 2018, 8, 427–431.

[CrossRef]

5. Yan, G.; Liu, J.; Huang, B. Limits of control performance for distributed networked control systems in

presence of communication delays. Int. J. Adapt. Control. Signal Process. 2018, 32, 1282–1293.

[CrossRef]

6. Gil Noh, S.; Choi, W.Y.; Kook, K.S. Operating-Condition-Based Voltage Control Algorithm of Distributed

Energy Storage Systems in Variable Energy Resource Integrated Distribution System. Electronics 2020,

9, 211. [CrossRef]

7. Ilo, A. Are the Current Smart Grid Concepts Likely to Offer a Complete Smart Grid Solution? Smart Grid

Renew. Energy 2017, 8, 252–263. [CrossRef]

8. Wang, P.; Ma, L.; Xue, K. Multitarget tracking in sensor networks via efficient information-theoretic

sensor selection. Int. J. Adv. Robot. Syst. 2017, 14, 1–9. [CrossRef]

9. Jagannath, R. Detection, estimation and grid matching of multiple targets with single snapshot

measurements. Digit. Signal Process. 2019, 92, 82–96. [CrossRef]

10. Wang, B.; Dehghanian, P.; Zhao, D. Chance-Constrained Energy Management System for Power Grids

with High Proliferation of Renewables and Electric Vehicles. IEEE Trans. Smart Grid 2019, 11, 2324–

2336. [CrossRef]

11. Lee, J.-H. Energy-Efficient Clustering Scheme in Wireless Sensor Network. Int. J. Grid Distrib. Comput.

2018, 11, 103–112. [CrossRef]

12. Stensrud, L.; Ohrn, B.; Loken, R.; Hurzuk, N.; Apostolov, A. Testing of Intelligent Electronic Device (IED)

in a digital substation. J. Eng. 2018, 2018, 900–903. [CrossRef]

13. Mesaric´, P.; Ðukec, D.; Krajcar, S. Exploring the Potential of Energy Consumers in Smart Grid Using

Focus Group Methodology. Sustainability 2017, 9, 1463. [CrossRef]

14. Jokar, P.; Leung, V. Intrusion Detection and Prevention for ZigBee-Based Home Area Networks in Smart

Grids. IEEE Trans. Smart Grid 2016, 9, 1800–1811. [CrossRef]

15. Karaca, O.; Kamgarpour, M. Core-Selecting Mechanisms in Electricity Markets. IEEE Trans. Smart Grid

2019, 11, 2604–2614. [CrossRef]

16. Satish, M. An Integrated Cloud Based Smart Home Management System. Int. J. Res. Appl. Sci. Eng.

Technol. 2017, 5, 2140–2145. [CrossRef]

17. Sebastian, J.; Hsu, Y.-L. Talking to the home: IT infrastructure for a cloud-based robotic home smart-

assistant. Gerontechnology 2018, 17, 102. [CrossRef]

18. Zuo, L. Energy Harvesting Tiles Could Transform Footsteps into Power. Sci. Trends 2018. [CrossRef]

19. Singh, K.; Kumar, M.N.; Mishra, S. Load Flow Study of Isolated Hybrid Microgrid for Village

Electrification. Int. J. Eng. Technol. 2018, 7, 232–234. [CrossRef]

20. Datta, D.; Sheikh, R.I.; Sarkar, S.K.; Das, S.K. Robust Positive Position Feedback Controller for Voltage

Control of Islanded Microgrid. Int. J. Electr. Components Energy Convers. 2018, 4, 50. [CrossRef]

http://www.ijcrt.org/
http://doi.org/10.29322/IJSRP.8.7.2018.p7968
http://doi.org/10.29322/IJSRP.8.7.2018.p7968
http://doi.org/10.1002/acs.2913
http://doi.org/10.1002/acs.2913
http://doi.org/10.3390/electronics9020211
http://doi.org/10.3390/electronics9020211
http://doi.org/10.4236/sgre.2017.87017
http://doi.org/10.4236/sgre.2017.87017
http://doi.org/10.1177/1729881417728466
http://doi.org/10.1177/1729881417728466
http://doi.org/10.1016/j.dsp.2019.05.008
http://doi.org/10.1016/j.dsp.2019.05.008
http://doi.org/10.1109/TSG.2019.2951797
http://doi.org/10.1109/TSG.2019.2951797
http://doi.org/10.14257/ijgdc.2018.11.10.09
http://doi.org/10.14257/ijgdc.2018.11.10.09
http://doi.org/10.14257/ijgdc.2018.11.10.09
http://doi.org/10.1049/joe.2018.0172
http://doi.org/10.1049/joe.2018.0172
http://doi.org/10.3390/su9081463
http://doi.org/10.3390/su9081463
http://doi.org/10.1109/TSG.2016.2600585
http://doi.org/10.1109/TSG.2016.2600585
http://doi.org/10.1109/TSG.2019.2958710
http://doi.org/10.1109/TSG.2019.2958710
http://doi.org/10.1109/TSG.2019.2958710
http://doi.org/10.22214/ijraset.2017.10315
http://doi.org/10.22214/ijraset.2017.10315
http://doi.org/10.22214/ijraset.2017.10315
http://doi.org/10.4017/gt.2018.17.s.099.00
http://doi.org/10.4017/gt.2018.17.s.099.00
http://doi.org/10.31988/SciTrends.14094
http://doi.org/10.31988/SciTrends.14094
http://doi.org/10.14419/ijet.v7i2.23.11925
http://doi.org/10.14419/ijet.v7i2.23.11925
http://doi.org/10.11648/j.ijecec.20180401.16
http://doi.org/10.11648/j.ijecec.20180401.16

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f294

21. Amri, Y.; Setiawan, M.A. Improving Smart Home Concept with the Internet of Things Concept Using

RaspberryPi and NodeMCU. IOP Conf. Series: Mater. Sci. Eng. 2018, 325, 012021. [CrossRef]

22. Mahapatra, B.; Nayyar, A. Home energy management system (HEMS): Concept, architecture,

infrastructure, challenges and energy management schemes. Energy Syst. 2019, 13, 643–669. [CrossRef]

23. Al Essa, M.J.M. Home energy management of thermostatically controlled loads and photovoltaic-battery

systems. Energy 2019, 176, 742–752. [CrossRef]

24. Wu, J.; Yang, T.; Wu, D.; Kalsi, K.; Johansson, K.H. Distributed Optimal Dispatch of Distributed Energy

Resources Over Lossy Communication Networks. IEEE Trans. Smart Grid 2017, 8, 3125–3137.

[CrossRef]

25. Han, X.; Heussen, K.; Gehrke, O.; Bindner, H.W.; Kroposki, B. Taxonomy for Evaluation of Distributed

Control Strategies for Distributed Energy Resources. IEEE Trans. Smart Grid 2018, 9, 5185–5195.

[CrossRef]

26. Afzal, M.; Huang, Q.; Amin, W.; Umer, K.; Raza, A.; Naeem, M. Blockchain Enabled Distributed Demand

Side Management in Community Energy System with Smart Homes. IEEE Access 2020, 8, 37428–37439.

[CrossRef]

27. Jeya Mala, D.; Eswaran, M.; Deepika Malar, N. Intelligent vulnerability analyzer—A novel dynamic

vulnerability analysis framework for mobile based online applications. Commun. Comput. Inf. Sci. 2018,

805–823. [CrossRef]

28. Miraoui, M.; El-Etriby, S.; Abid, A.Z.; Tadj, C. Agent-Based Context-Aware Architecture for a Smart

Living Room. Int. J. Smart Home 2016, 10, 39–54. [CrossRef]

29. Wang, Y.; Xu, Y.; Tang, Y. Distributed aggregation control of grid-interactive smart buildings for power

system frequency support. Appl. Energy 2019, 251, 113371. [CrossRef]

30. Cormane, J.; Nascimento, F.A. Spectral Shape Estimation in Data Compression for Smart Grid Monitoring.

IEEE Trans. Smart Grid 2016, 7, 1214–1221. [CrossRef]

31. Maitra, S. Smart Energy meter using Power Factor Meter and Instrument Transformer. Commun. Appl.

Electron. 2016, 4, 31–37. [CrossRef]

32. Rocha, H.R.O.; Honorato, I.H.; Fiorotti, R.; Celeste, W.C.; Silvestre, L.J.; Silva, J.A.L. An artificial

intelligence based scheduling algorithm for demand-side energy management in Smart Homes. Appl.

Energy 2021, 282, 116145. [CrossRef]

33. Dai, R.; Liu, G.; Wang, Z.; Kan, B.; Yuan, C. A Novel Graph-Based Energy Management System. IEEE

Trans. Smart Grid 2019, 11, 1845–1853. [CrossRef]

34. Chhaya, L.; Sharma, P.; Kumar, A.; Bhagwatikar, G. IoT-Based Implementation of Field Area Network

Using Smart Grid Communication Infrastructure. Smart Cities 2018, 1, 176–189. [CrossRef]

35. Aleksic, S. A Survey on Optical Technologies for IoT, Smart Industry, and Smart Infrastructures. J. Sens.

Actuator Netw. 2019, 8, 47. [CrossRef]

36. Yousif, M. Convergence of IoT, Edge and Cloud Computing for Smart Cities. IEEE Cloud Comput. 2018,

5, 4–5. [CrossRef]

http://www.ijcrt.org/
http://doi.org/10.1088/1757-899X/325/1/012021
http://doi.org/10.1088/1757-899X/325/1/012021
http://doi.org/10.1007/s12667-019-00364-w
http://doi.org/10.1007/s12667-019-00364-w
http://doi.org/10.1016/j.energy.2019.04.041
http://doi.org/10.1016/j.energy.2019.04.041
http://doi.org/10.1109/TSG.2017.2720761
http://doi.org/10.1109/TSG.2017.2720761
http://doi.org/10.1109/TSG.2017.2682924
http://doi.org/10.1109/TSG.2017.2682924
http://doi.org/10.1109/ACCESS.2020.2975233
http://doi.org/10.1109/ACCESS.2020.2975233
http://doi.org/10.1007/978-981-10-8660-1_60
http://doi.org/10.1007/978-981-10-8660-1_60
http://doi.org/10.14257/ijsh.2016.10.5.05
http://doi.org/10.14257/ijsh.2016.10.5.05
http://doi.org/10.1016/j.apenergy.2019.113371
http://doi.org/10.1016/j.apenergy.2019.113371
http://doi.org/10.1109/TSG.2015.2500359
http://doi.org/10.1109/TSG.2015.2500359
http://doi.org/10.5120/cae2016652015
http://doi.org/10.5120/cae2016652015
http://doi.org/10.5120/cae2016652015
http://doi.org/10.1016/j.apenergy.2020.116145
http://doi.org/10.1016/j.apenergy.2020.116145
http://doi.org/10.1109/TSG.2019.2943815
http://doi.org/10.1109/TSG.2019.2943815
http://doi.org/10.3390/smartcities1010011
http://doi.org/10.3390/smartcities1010011
http://doi.org/10.3390/jsan8030047
http://doi.org/10.3390/jsan8030047
http://doi.org/10.3390/jsan8030047
http://doi.org/10.1109/MCC.2018.053711660
http://doi.org/10.1109/MCC.2018.053711660

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT2403628 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f295

37. Yaghmaee, M.H.; Leon-Garcia, A.; Moghaddassian, M.; Moghaddam, M.H.Y. On the Performance of

Distributed and Cloud-Based Demand Response in Smart Grid. IEEE Trans. Smart Grid 2018, 9, 5403–

5417. [CrossRef]

38. Rahmani, R.; Li, Y. A Scalable Digital Infrastructure for Sustainable Energy Grid Enabled by Distributed

Ledger Technology. J. Ubiquitous Syst. Pervasive Networks 2020, 12, 17–24. [CrossRef]

39. Almehizia, A.A.; Al-Masri, H.M.K.; Ehsani, M. Integration of Renewable Energy Sources by Load

Shifting and Utilizing Value Storage. IEEE Trans. Smart Grid 2019, 10, 4974–4984. [CrossRef]

40. Donaldson, D.L.; Jayaweera, D. Effective solar prosumer identification using net smart meter data. Int. J.

Electr. Power Energy Syst. 2020, 118, 105823. [CrossRef]

http://www.ijcrt.org/
http://doi.org/10.1109/TSG.2017.2688486
http://doi.org/10.1109/TSG.2017.2688486
http://doi.org/10.5383/JUSPN.12.02.003
http://doi.org/10.5383/JUSPN.12.02.003
http://doi.org/10.1109/TSG.2018.2871806
http://doi.org/10.1109/TSG.2018.2871806
http://doi.org/10.1016/j.ijepes.2020.105823
http://doi.org/10.1016/j.ijepes.2020.105823

