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Abstract:  Predicting software bugs before they happen is really significant for making sure that 

software works well and doesn't charge too much to fix. This paper is about using computer programs 

to forecast future software glitches by looking at past data. They tried out three different programs to 

see which one works best: Naïve Bayes, Decision Tree, and Artificial Neural Networks. They originate 

that these programs can predict software problems pretty precisely. They also looked at different kinds 

of cyber threats like backdoors, viruses, and exploits, using a dataset called UNSW-NB15. They used 

a method called feature selection to pick out the most important things to look at. Then they used a 

classification method called EC to figure out what kind of threat it is. Overall, they found that their 

method works really well for identifying and classifying threats accurately. 

 

Index Terms - Software Defect, Software testing, Software bug, Prediction model, Artificial Neural 

Network, Software defect Prediction (SDP), Software Quality, Decision Tree (DT) , Machine Learning , 

Naïve Bayes(NB).  

 

I. INTRODUCTION 

 

The internet is growing quickly, with billions of users and vast amounts of data being generated every day. 

This growth brings challenges in data security and privacy, especially with increasing hacking tools and 

techniques. Intrusion Detection Systems (IDS) play a energetic role in identifying and answering to threats 

by monitoring network traffic for doubtful activity. 

Traditional IDS methods face tasks in acquainting to the unique characteristics of IoT devices and in 

efficiently treatment the vast amounts of data. Machine learning algorithms offer a auspicious solution by 

automatically learning from data to detect and classify intrusions.  However, existing IDSs still struggle 

with false alarms and identifying unknown attacks. Improved IDS systems based on machine learning can 

address these issues by continuously learning and adapting to new threats.  This research focuses on 

developing an IDS system that combines feature selection and classification algorithms to improve 

accuracy. A novel VFS-EC algorithm is proposed to improve intrusion detection rates and to handle various 

challenges. The study's main contributions include: 

1. Developing an effective IDS system capable of quickly and accurately detecting all types of attacks 

using cross-verified Artificial Neural Networks with Random Forest Classifiers (EC) and the VFS feature 

selection approach. 

2. Using the UNSW-BoT Dataset to evaluate the proposed IDS system's performance and compare it with 

existing models. 
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In addition to intrusion detection, software bug prediction is another critical aspect of software 

development. Predicting faulty modules early can significantly improve software reliability, quality, and 

maintenance costs. Machine learning techniques, such as Naïve Bayes, Decision Trees, and Artificial 

Neural Networks, are commonly used in software bug prediction. This paper evaluates the capabilities of 

these classifiers using different datasets and comparison measures like accuracy, precision, recall, F-

measures, and ROC curves. The paper also discusses related work, provides an overview of selected ML 

algorithms, describes datasets and evaluation methodology, presents experimental results, and concludes 

with future directions. 

 

The number of active users on the internet has increased to 4.66 billion in recent days, conferring to the 

Global Internet Statistics Report generating more than 2 quintillion bytes of data per day. It demonstrates 

that the velocity of data access from various sources has accelerated dramatically, as has the development 

of techniques and hacking tools. As a result, data security and privacy are required to protect    data from 

various intrusions or hostile attacks. Because of the speed of data and increased volume, traditional 

intrusion detection systems were unable to detect intrusions or assaults in a timely and efficient manner. 

Certain computational procedures, on the other hand, are difficult by nature to handle such data, 

necessitating advanced intelligent approaches and strong technologies. Intrusion detection systems, or IDS, 

play a grave role in identifying attacks. The IDS system will monitor network traffic in order to detect 

threats, attacks, or suspicious activity. When this type of activity is detected, it may send an alert to the 

appropriate administrator. A change of machine learning techniques can be used to efficiently deal with 

the infiltration. Different machine learning techniques can be used to efficiently manage and classify 

intrusions or attacks [1-3]. For more than two decades, Intrusion Detection Systems (IDS) have played a 

pivotal role in enhancing network and information system security, particularly in safeguarding smart IoT 

devices against various attacks. However, traditional IDS methods face challenges when applied to IoT 

owing to unique protocol stacks and architectural constraints. Consequently, new solutions are needed, 

such as hardware-based applications using network probes, albeit at a substantial resource cost. To address 

these challenges, researchers are turning to machine learning algorithms, which can effectively detect 

suspicious attacks by analysing network traffic. Despite the advancements, existing IDSs still struggle with 

high false alarm rates and the inability to identify unknown attacks. This has led to a focus on developing 

IDSs with lower false alarm rates and higher detection rates, with machine learning-based IDS showing 

promise due to its ability to extract useful information from large datasets. To contribute to this field, the 

study proposes a novel IDS system that combines feature selection with classification algorithms, 

leveraging the VFS-EC algorithm to enhance detection accuracy across various attack types. The 

effectiveness of the proposed system is evaluated using the UNSW-BoT Dataset, demonstrating improved 

categorization performance compared to existing models. 

 

 

II. RELATED WORK: 

Almost all computer software contains defects that introduced during the coding process. Over time, some 

of these flaws are being identified, often through quality assurance testing. The later those defects are being 

discovered and addressed in the development cycle, the higher the associated costs of fixing them [4; 50]. 

Consequently, early detection of flaws is paramount. 

Testing, as a primary means of identifying flaws or defects, is crucial in software development! Myers et 

al. define software tests as executing a program to uncover errors. Testing happens across various levels 

like unit testing, function testing, system testing, regression testing, and integration testing, you know. Unit 

testing, mainly examines specific code sections and detects defects for cost savings, leading to cost savings, 

right? By concentrating on the most error-prone areas, we can save costs sooner than usual, which is 

essential. 

The process of predicting parts of software susceptible to faults is known as Software Defect Prediction 

(SDP). SDP entails using measurements that are derived from sources like the source code and 

development process to determine if these metrics might offer insights into defects. Research indicates that 

testing-related tend to consume quite a significant portion, anywhere 50% to 80%, of total time [12]. Given 

this substantial, it is essential to focus the testing efforts on areas where defects are likely to arise, because 

this can possibly result in significant cost savings. SDP has been under study since the 1970s, originally 
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simple equations with source code measurements as variables for prediction [17]. Subsequently, the focus 

of the prediction techniques shifted towards statistical analysis, expert estimations, as well as Machine 

Learning (ML) [8]. Among these approaches, ML has emerged as the most successful method [8, 22]. 

         2.1 Data Mining with Machine Learning 

Machine learning (ML) is a subset of artificial intelligence that focuses on enabling computer programs to 

learn from data. It attempts to reproduce the human learning process computationally, primarily by 

observing patterns, and based on those patterns to generate the whole [24 ML can be broadly divided into 

two main types: supervised learning and unsupervised learning. Supervised learning involves learning from 

labelled examples, where the outcome of each training sample is known [56, p. 40], while unsupervised 

learning involves learning from data without fixed outcomes. In this master thesis, especially in the 

classification of samples into two or more groups, the focus on supervised learning is important because 

the Problem Report (TR) contains information about files that have been found to be defective the existing 

database. 

 

Different algorithm families developed a wide variety of ML algorithms for supervised learning, also 

known as classifiers, as evidenced by previous software defect prediction (SDP) research These algorithms 

include decision trees, classification rules, neural networks and probabilistic classifiers. Research has 

shown that in many cases the J48 decision tree outperforms the OneR algorithm. Again, Shafital. [48] 

investigated the use of the ZeroR classification rule algorithm alongside OneR, and found that OneR 

generally performs better. When predicting the value of the majority group, OneR outperformed ZeroR 

[56, p. 459]. Arisholm and so on. conducted two separate experiments [1, 2] using meta-learners such as 

Decorate and AdaBoost with a J48 decision tree. Decorate is shown to exhibit good performance on small 

data sets and slightly better on large data sets. However, no specific definitions were given for "small" and 

"large" datasets. 

 

         2.2 Association Rule Mining 

 

Software metrics refer to quantitative measurements that provide numerical values or markers for the 

attributes of the measured object [18]. An attribute in this context represents an object or characteristic of 

an object such as length, life span, or cost. The entity itself can be unique and can include the source code 

of an application or function in the software development process. Software metrics can be organized into 

different families, each of which focuses on different aspects of software development. 

 

 Static code metrics 

 

Static code parameters are measurements extracted directly from the source code itself, including common 

metrics such as signal lines (LOC) and cyclonic complexity Source lines (SLOC) include various metrics, 

such as physical LOC (SLOCP). that counts total lines, blank LOC in the case of blank lines (BLOC), 

annotated lines f comment-LOC (CLOC) refer to lines with LOC (SLOC-L) logical comments so [41]. The 

cyclonic complexity number (CCN), also known as the McCabe metric, linearly measures the complexity 

of a module's decision process by counting the number of independent paths each time a path's control flow 

splits, such as if, for, while, case, means, &&, ||, or ? in source code [28]. Other static code parameters 

include compiler instruction count and data declaration count. 

 

Feature selection methods in machine learning generally fall into two categories: packaging and filtering. 

Wrappers use the same ML algorithm to select features, finding the value of different features. However, 

filters use heuristics based on data characteristics to consider different features [20]. Filters are useful for 

their fast performance and are compatible with any ML algorithm. They can handle large feature sets well. 

Generally, however, they must stay clear of the problem of classification. Wrappers, although versatile and 

applicable to any classification problem, require the feature selection process to be repeated for each 

algorithm used for prediction, since the same algorithm is used for feature selection and distribution. 
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III. PROPOSED METHODOLOGY 

 

In this phase, we look into the trials of the proposed Intrusion Detection System (IDS) version VFS-EC. 

The usual workflow is carefully illustrated in Fig. 1 , which offers a detailed review of the methodology. 

Initially, the us-NB15 statistics set is loaded into the system, forming the idea for next evaluation. 

 

Once the records are received, numerous preprocessing steps are done to make sure facts brilliant and 

readiness for analysis. This step is essential for cleaning and organizing the statistics set, putting off any 

inconsistent or inappropriate statistics that might affect the accuracy of the version 

 

In order to in addition improve the accuracy of the IDS version, a function selection process is implemented 

the usage of the proven typical choice (VFS) set of rules. This set of rules intelligently identifies and selects 

the most relevant functions from the facts set, streamlining the quest manner and improving universal 

overall performance 

 

Once the function is chosen, the Novel EC algorithm is used to classify the irregularities in the statistics 

set. This set of rules is in particular designed to correctly discover and classify diverse kinds of inputs, 

imparting treasured insights into potential protection dangers 

 

On the prediction aspect, the IDS machine now not humblest detects abnormalities but additionally 

identifies the form of attack being accomplished. This capability is vital to rapidly deal with security 

breaches and increase suitable countermeasures. 

 

Finally, the performance of the newly developed VFS-EC machine is thoroughly evaluated using numerous 

overall performance metrics. These measures include accuracy, precision, bear in mind, and F-measures, 

among others. In addition, the overall performance of the VFS-EC model is compared with the present IDS 

model to show its superiority. 

 

 
Figure 1. Flow of the proposed VFS-EC Model 

 

 

Here, “1” is denote feature is nominated and second “0” is represents feature is rejected. 

 
Figure 2.  Feature Selection 
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    3.1 VFS Algorithm for Feature Selection 

Here, we provide a complete explanation of the proposed method. Feature selection is important for 

improving learning performance, reducing computational complexity, and building efficient classification 

models. A validated feature selection (VFS) algorithm is used to identify suitable features in the data set 

with the aim of optimizing the feature subset for analysis 

 

Typically, each feature in the VFS algorithm is represented as a binary vector of N entries, where N 

corresponds to the total number of features in the data set. A value of 0 indicates that the feature is not 

selected, while a value of 1 indicates that the feature is selected for inclusion in the subgroup. 

 

Our proposed method simplifies the process to a single equation by simplifying sine and cosine with 

additional parameters. Rather than switch between two brands, we recommend always choosing one brand. 

Since sine and cosine functions yield values from 1 to +1 in the interval [0, 2π], the choice between them 

is particularly arbitrary. Therefore, adopting a single channel does not degrade the performance of the 

algorithm. 

 

To strike a balance between exploration and application, we introduce a new equation that includes the 

random variables C and r1 . This facilitates effective transitions between detection and control methods. 

Equation (1) below shows the updated position, which ensures that the algorithm is efficient enough to lead 

to a search location. 

 

                                                                                                                         

 
 

In this equation C is defined as the product of the constants b, d, where b usually takes integer values in 

the range [1, 5] S1 represents the field of advance locations or direction of motion, where dist means 

random variable from 0 to 2π, also the weighting variable representing the variance between the current 

position and its previous position is a random value. The d parameter is used to select different search 

approaches, whether involving sine functions or not, based on different random values. In addition, the task 

of d weights fixes a value greater than 1, thus influencing the selection process. 

 

Algorithm 1: Verified Selected Features (VFS) . 

 

EXPLANATIONS: 

- Number of searches 

- Dataset validation 

- The snowflake 

- Maximum number of iterations 

- The upper limit 

- Lower limit 

 

SOURCES: 

- Vector of 20 optimal solutions 

 

1. Start a general search (X) . 

2. Calculate the cost function of each agent (fit), and select the agent with the best position (Best_pos). 

3. Set t = 2 

4. WHEN a ( t ≤ max_iter ) IS 

    a. set s = t * (s / maximum) . 

    b. For each factor (X), from dimension (j) DO 

        - Obtained random variable dist ∈ [0, 2π]. 

        - Random variable loading 
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        - Create a random variable C = b * rand() . 

        - update the rank of the result: 

            - If (C<s) THEN 

                - Set m = Get_rand_position() % Get random position [lb, ub] from search position. 

                - Transform X(j) = (1 - r1) * X(j) + (r1) * m 

            - however 

                - update X(j) = Best_pos(j) + s*(sin(dist)) *abs(weight* Best_pos(j) - X(j)); 

            - ENDIF 

    c. Calculate a new cost function (fit) for each agent (X), and determine the agent with the best position 

(Best_pos). 

    d. Increase t 

5. END TIME A 

 

END ALGORITHM 

 

Algorithm 1 shows the VFS algorithm, which is described in detail here. Initially, the algorithm randomly 

determines the locations of solutions under the search area. It then loops for the maximum number of 

iterations to find the best feature subset. 

 

At each iteration, the algorithm calculates the fitness score (Fit) for each solution using the specified cost 

function, which is usually performed to evaluate the effectiveness of the feature subset and then determines 

the best solution (Best_pos) at of the population based on the highest fitness score. 

 

The solution is updated using Equation (1). This equation simplifies both diversification and 

intensification processes by controlling for two parameters, (s_1) and (d). The value of (s_1) decreases 

with each iteration, while (d) is a random number ranging from 0 to 1. If (d < s_1), then diversification is 

pursued; otherwise, they want to reinforce it. These update parameters ensure a balanced transition between 

the two methods. 

 

The variables used in the algorithm are proportional to the number of objects in the data set. This variable 

is constrained in [0, 1], where a value close to 1 indicates that the corresponding feature is likely to be 

selected for classification 

 

In the fitness calculation for individual solutions, each variable is a determining boundary for inclusion. 

In particular, Equation (4) defines the fitness score (f_{ij}) for a feature based on its value (X_{ij}), with 

a threshold of 0.5:1. 

[ f_{ij} = \begin {entry} 1, & \text{if } X_{ij} > 0.5  0, & text{else} end{entry} ]. 

 

Where the update position of the solution violates the constraints ([0, 1]), a simple truncation rule is used 

as v. 

 

 

         3.2 CLASSIFIER:  

 The K-Nearest Neighbours (KNN) algorithm is applied in software bug prediction using machine learning 

by first selecting suitable features from software metrics datasets and then using these features such as lines 

of code, complexity measures, and developer experience, traditional KNN classifiers. During training, the 

KNN algorithm memorizes the entire dataset and calculates the distance between data points based on the 

chosen distance metric, usually Euclidean distance If a new software module needs to be classified as faulty 

or not error a, KNN identifies K nearest neighbours from the training set. The implementation is evaluated 

using metrics such as accuracy, precision, recall, and F1-score to verify its effectiveness in predicting 

software errors which great accuracy. 

 

K-Nearest Neighbor (KNN) classification works by calculating transition weights based on the proximity 

of data points through a trial-and-error process. It’s like trying different weights until you find the best 

match. In this study, KNN is used as part of the fitness task because it is actually good at sorting topics into 

classes. 
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Now, let’s talk fitness business. Imagine trying to make the best choices from several options. It’s like 

picking players for a sports team – you want them to be right but also not too much. Thus, the fitness 

function examines each feature set and scores it. These scores are calculated using a formula (Equation 3) 

that considers the number of classifier errors (classification error), the number of selected features (D), and 

the total number of features (N) There were also two parameters α and β, which tells us that the accuracy, 

. And how important are the number of parts? 

 

                                                                                                                                           

 
 

The mutation agent introduces new traits not present in the ancestor, helping to produce new individuals. 

It takes data representations such as binary, real, or integer formats and includes many mutation methods. 

Mutations generally involve selecting one or more bits at random and changing their values based on a 

predetermined probability. Equation 4 is a representation of the mutation process, which is similar to that 

shown 

 

                                                                                                                                            

 
 

The analysis used the VFS algorithm for feature selection (as shown in Figure 2 ). Initially, the algorithm 

initializes the location, evaluates the search agent with the objective function, and updates the optimal 

solution and location again. This approach helps explore possible solutions, and can identify the most 

important features. 

 

 

    3.3 EC ALGORITHM USED TO CLASSIFY IDENTIFIED INTRUSION 

This integrated model uses artificial neural network (ANN) modeling along with random forest 

segmentation and k-fold cross-validation. Unlike many other models, this method does not require 

hyperparameter adjustments, so it is particularly suitable for large data sets with low memory requirements 

The quality of random forest classification is evaluated by cross-validation, a remodeling is considered. 

The EC method improves the accuracy of the intrusion classification, contributing to the development of 

more robust algorithms. A random forest segmentation with multiple decision trees predicts outcomes by 

collectively voting for the best option. Overall, it outperforms individual decision trees. 

 

 
Fig 3: EC Algorithm 

 

The feature selection process continues its execution through the search space without any particular stop. 

Different generation strategies and analytical methods influence the selection of reference decisions. Stop 

criteria based on subgroup generation require reaching a maximum number of objects or generations. Based 

on the search methods, the feature selection stops if the new function does not yield a good subset or when 

an optimal subset is found according to the search criteria, the feature selection process stops by selecting 
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the features subset correctly are returned to the machine learning process. A generalized algorithm for 

feature selection is described below, representing the data set (D), the search technique (S), the evaluation 

measure (M), the stop criterion (Sc), and the optimal subset of features (F optimal). is, updating the best 

subset (F optimal) until the stopping criterion is met and finally the best subsets are returned. 

 

 

The aim of the study is to investigate and evaluate three supervised machine learning (ML) algorithms: 

Naive Bayes (NB), Artificial Neural Network (ANN), and Decision Tree (DT), especially prediction 

focusing on their performance accuracy and power over software errors. The study provides a comparative 

analysis of these selected ML algorithms to demonstrate their effectiveness in this context. Supervised 

machine learning algorithms work through implication functions that distinguish correlations and 

dependencies between known inputs and outputs of labelled training data This function enables the 

prediction of effects values for additional inputs based on patterns obtained from training data. 

 

3.4. Naive Bayes (NB) 

 

Naive Bayes is a forthright and well-organized probabilistic classifier based on Bayes theorem with the 

assumption of independence between features. NB is not an algorithm but a family of algorithms with the 

common principle of assuming the class is self-governing of the presence or absence of a particular object 

or of other objects. Naive Bayes (NB) is a popular machine learning algorithm used in software bug 

prediction. In software bug prediction, Naive Bayes is often used as a classification algorithm. Its 

implementation determines whether a software module or component is prone to faults based on different 

features and attributes. 

 

Naive Bayes algorithms are based on the Bayes theorem and make a strong assumption of feature 

independence, which means that each feature contributes independently to the probability of a particular 

outcome (in this case the presence or absence of errors) Despite this simplifying assumption, none of Bayes 

generally works well in practice is known for its simplicity, efficiency and efficiency in large data 

applications in 

 

Naive Bayes in software bug prediction is trained on historical data including elements extracted from 

software artifacts (such as source code criteria, complexity measures, and code churn), labels indicating 

whether an artifact is bug-free or not Once trained once, then new software or unknown artifact values 

using the Naive Bayes model Can be predicted based on potential errors Overall, Naive Bayes is a valuable 

tool in software bug forecasting, providing insight into the likelihood of software artifacts and bugs and 

helping software developers prioritize testing and maintenance efforts 

 

3.5. Artificial Neural Networks (ANNs) 

 

Artificial neural networks are computational models inspired by organic neurons. ANNs are nonlinear 

classifiers that can model complex relationships between inputs and outputs. They have an interconnected 

set of controls called neurons that organize to produce outputs. Each connection between neurons carries a 

signal, and each neuron calculates its output using a nonlinear function of the sum of all inputs. Artificial 

neural networks (ANNs) have indeed been used in software bug prediction tasks. In this context, ANNs 

are used to analyse various software objects, such as source code files or modules, and determine whether 

they contain bugs or How ANNs are commonly used in software bug prediction is: 

 

1. Data Collection and Maintenance: Collects historical data on software artifacts and labels indicating 

their error status (either error or no error) Attributes are extracted from these artifacts, which software 

metrics, code complexity measures, and others are included Relevant features can also be included. The 

data are then pre-processed and divided into training and test sets. 

 

2. Network Architecture Design: Designed neural network. It specifies the number of layers, the number 

of neurons in each layer, and the activation functions used. The input layer of the network retrieves the 

omitted features, and the output layer provides predictions of possible errors in software artifacts 
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3. Training of the network: The neural network is trained using the training dataset. During training, the 

network learns how to map the inputs to the corresponding error codes. This is usually done using 

backpropagation and other optimization algorithms, where the weights of the network are adjusted 

iteratively to reduce the prediction error. 

 

4. Validation and testing: After training, the performance of the neural network is tested using a separate 

validation data set. This helps to examine the generalizability of the model to unseen data and its 

functionality. Various analytical parameters such as precision, accuracy, recall, and F1-score are used to 

measure the performance of neural networks. 

 

5. Prediction: Once a neural network is trained and validated, it can be used to predict the probability of 

bugs in new software products. Developers can insert additional features of a new product into the trained 

model, and the web page comes up with a prediction of whether the product is likely to be faulty 

 

Overall, ANN offers a powerful and flexible approach to software defect prediction, enabling the automatic 

identification of potential problem areas in software products by using ANN, organizations can improve 

their software quality control and reduce the potential for defects in their software products. 

 

3.6. Decision Tree (DT) 

 

Decision tree is a extensively used learning technique in data mining. It uses a planning and prediction 

system in which the observation of the item acts as a branch to reach the target value of the item in the 

document. The DT consists of decision nodes, with many branches, and leaf nodes representing the final 

decision. The decision process involves a tree structure based on the features of the input data. Decision 

trees are often used in software bug forecasting because they provide an interpretable model and can handle 

statistical and classification data efficiently as here are some common uses of Decision Trees in software 

bug forecasting: 

 

1. Data Collection and Preparation: As with other machine learning techniques, the first steps include 

historical data collection of software artifacts and labels indicating their bug status (bug or bug-free) 

Features Excluded from these artifacts, such as software metrics, code complexity measures, other related 

features and features. The data are then preprocesses and divided into training and test sets. 

 

2. Model Training: Decision trees are trained using a set of training data. During training, the algorithm 

divides the data set iteratively based on the factor that provides the best separation between samples with 

and without errors This process continues until certain stability criteria are met, hear as a maximum tree 

depth or a minimum number of leaf nodes to obtain. 

 

3. Model Analysis: After a decision tree is trained, its performance is tested using a separate validation data 

set. This helps in assessing the generalizability of the model and its performance on unobserved data. 

Various analytical metrics such as accuracy, precision, recall, and F1-score are used to measure the 

performance of decision tree models. 

 

4. Interpretation: One of the main advantages of decision trees is that they can be interpreted. The resulting 

tree structure can be easily visualized and understood by domain experts, providing insight into factors 

affecting software error prediction. 

Prediction: In addition to training and evaluation, decision tree modeling can be used to predict the 

probability of bugs in new software products. Developers can input features of a new product into the 

trained model, and the decision tree produces predictions of the likelihood of artifacts being faulty 

 

Overall, decision trees offer a flexible and interpretable method for software defect prediction, making 

them especially useful for applications where transparency and common sense are important by using 

decision trees implementation, organizations can improve their software quality control and reduce 

potential defects in their software products. 

 

Specifically, naïve Bayes relies on probabilistic cognitive, artificial neural networks mimic biological 

neural networks to capture composite associations, and decision trees formulate hierarchical decision rules 
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to allocate data Learning objectives to evaluate and compare the performance of such these algorithms are 

performed in software fault prediction tasks are to provide insights into their effectiveness and suitability 

for this particular application 

 

IV. EXISTING METHODOLOGY 

    4.1 Existing System  

    

     Several existing systems use machine learning (ML) techniques to predict software bugs. Here are a 

few examples: 

 

1. NASA Metrics Data Program (MDP): This software is one of the first and best-known data sets for 

error prediction analysis. It contains software metrics data collected from various NASA projects, as well 

as a list of whether each module contains errors. Researchers have used this dataset to develop and evaluate 

ML models for error prediction. 

 

2. PROMISE Repository: The PROMISE repository provides a collection of data specially collected for 

software engineering research. These data sets include various aspects of software development including 

bug prediction. Researchers often use data sets from the PROMISE repository to benchmark and compare 

different ML algorithms to determine errors. 

 

3. Grecko and Madey ski Dataset: This dataset compiled by Jureczko and Madeyski contains software 

metrics data from open source projects with labels indicating bug proneness It has been widely used in bug 

prediction research and support in ML-based bug development prediction models Given. 

 

4. Bug Prediction Challenge Datasets: Many bug prediction challenge datasets have been released as part 

of research competitions over the years. These datasets typically contain software metrics data from real-

world projects, with labels indicating a bug. Researchers use this list to evaluate the performance of their 

ML models in a competitive environment. 

 

5. Commercial tools: Some companies offer commercial error prediction software using ML techniques. 

These tools are often included in software development environments to give developers insight into 

potential bugs in their code. Examples include Microsoft’s Code Defect Prediction Tool and IBM’s 

Rational Software Analyzer. 

 

These existing frameworks and datasets allow researchers and practitioners interested in applying ML 

methods to software defect prediction By using these resources, organizations can improve the quality of 

their software improve processes and reduce the possibility of defects in their software products. 
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  4.2 Limitations of Existing System 

Since I have no specific information about the existing framework you describe, I will provide some general 

boundaries that can be attached to software bug prediction systems These limitations may vary depending 

on method and techniques the method of production. Here are a few general restrictions: 

1. Limited Feature Set: Existing systems are using limited features or metrics to predict faults. This may 

overlook important sources of errors. The inclusion of additional relevant parameters can improve the 

accuracy and efficiency of forecasts. 

2. Lack of data: The quality and fullness of the training system data can significantly affect its performance. 

Irregularities in the historical data, lack of standards, or incorrect error records can lead to biased or 

unreliable forecasts. 

3. Challenges in Feature Selection: It is important to select more useful and relevant features for accurate 

error prediction. If the existing system lacks effective selection instruments, it may add unnecessary or 

unnecessary features, resulting in reduced forecast accuracy or overfitting 

4. Insufficient training data: The amount and type of training data can affect the system’s ability to 

generalize and make accurate predictions. If the existing system has limited or imbalanced training data, it 

may struggle to capture patterns and underlying processes related to error occurrence 

 

4.3 Proposed System 

Based on the limitations of the existing system, here's a proposed system for software defect 

prediction: 

1. Enhanced feature set: Expand the feature set used for defect prediction by incorporating additional 

relevant metrics and attributes. This can include code complexity, code churn, code coverage, developer 

experience, historical defect data, and any other domain-specific factors that can influence defect 

occurrence. 

2. Robust data preprocessing: Implement thorough data preprocessing techniques to handle missing values, 

outliers, and data inconsistencies. This includes imputation methods for missing data, outlier detection and 

treatment, and normalization or scaling of the data to ensure consistency and improve model performance. 

3. Advanced feature selection: Employ advanced feature selection techniques to identify the most 

informative and relevant features for defect prediction. This can include correlation analysis, information 

gain, feature importance analysis using machine learning algorithms, or domain expertise-driven feature 

selection methods. 

4. Ensemble modeling: Utilize ensemble learning techniques to combine multiple machine learning models 

for defect prediction. Ensemble methods such as random forests, gradient boosting, or stacking can help 

improve prediction accuracy and reduce the impact of individual model biases. 

5. Incorporate cross-validation: Apply cross-validation techniques during model training and evaluation to 

obtain more reliable and robust performance estimates. This involves splitting the data into multiple 

subsets, training and testing the model on different subsets, and aggregating the results to assess the model's 

generalization ability. 
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6. Adaptability and incremental learning: Design the system to handle evolving software by implementing 

mechanisms for incremental learning. This allows the system to incorporate new data and adapt the model 

over time without retraining the entire system from scratch. 

7. Explainable models: Select machine learning algorithms that offer interpretability, such as decision trees 

or logistic regression. This enables better understanding and explanation of the factors contributing to the 

predictions, increasing the system's transparency and trustworthiness. 

8. Resource allocation optimization: Develop algorithms or rules to optimize the allocation of testing and 

debugging resources based on the predictions. Consider incorporating cost-sensitive learning techniques 

that factor in the potential impact and severity of defects to prioritize efforts effectively. 

9. Continuous improvement and monitoring: Implement a feedback loop to continuously monitor the 

performance of the system, collect new data, and periodically retrain the models. This ensures that the 

system remains up to date and adapts to changes in the software and defect patterns. 

 

     4.4  Advantages of Proposed System    

       The proposed system for software defect prediction offers several advantages over the existing system. 

Here are some key advantages: 

1. Improved prediction accuracy: By expanding the feature set, implementing advanced feature selection 

techniques, and using ensemble modeling, the proposed system can enhance the accuracy of defect 

predictions. The inclusion of applicable metrics and the combination of multiple models help capture more 

complex patterns and dependencies, leading to more reliable predictions. 

2. Better adaptability to evolving software: The proposed system incorporates mechanisms for incremental 

learning, allowing it to handle evolving software systems. By incorporating new data and adapting the 

models over time, the system can maintain its predictive performance as the software evolves, ensuring its 

relevance and effectiveness. 

3. Enhanced resource allocation: The system optimizes resource allocation by considering the predictions and 

severity of flaws. By efficiently allocating testing and debugging resources, the proposed system helps 

prioritize efforts, leading to more effective defect detection and resolution. This can result in better overall 

software quality and reduced development and maintenance costs. 

4. Interpretable predictions: By selecting machine learning algorithms that offer interpretability, the proposed 

system provides explanations for the factors contributing to defect predictions. This enhances the system's 

transparency and trustworthiness, allowing developers and stakeholders to understand and validate the 

predictions, leading to better decision-making. 

5. Nonstop improvement and monitoring: The proposed system incorporates a feedback loop that allows for 

continuous monitoring of the system's performance. By collecting new data and periodically retraining the 

models, the system can adapt and improve over time. This ensures that the defect prediction capabilities 

remain up to date and aligned with the changing software and defect patterns. 

6. Reduced false positives and false negatives: Through the combination of progressive feature selection 

techniques, ensemble modeling, and improved accuracy, the proposed system aims to minimize false 
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positives (predicting defects that don't occur) and false negatives (failing to predict actual defects). This 

helps avoid unnecessary rework and ensures that potential issues are identified and addressed proactively. 

      Overall, the proposed system offers improved prediction accuracy, flexibility, resource allocation, 

interpretability, and continuous upgrading compared to the existing system. These advantages contribute 

to enhanced software quality, reduced development     costs, and more efficient allocation of testing and 

debugging resources. 

 

V. UML Description  

 

     5.1 Use Case Diagram 

Use case diagrams act as visual representations of system functionality from the users’ perspective. They 

play an important role in identifying the types of roles involved, which may be users, systems, or external 

agencies, and how they interact with the      system         Provide scenarios illustrating those interactions 

this provides a clear understanding of the system actions and roles played by various tasks Emphasis is 

placed on required activities or tasks. Overall, functional diagrams provide a comprehensive overview of 

system   operations and help stakeholders understand the scope and objectives of the system. 

 

Figure 4. Use Case Diagram a software defect prediction system 

 

     5.2 Class Diagram 

A study diagram is a visual representation that provides insight into the static structure of a system. They 

help visualize the structure of the system by identifying the component classes and their properties and 

methods, and class diagrams show the relationships between these classes, such as associations, 

dependencies, synthesis, and integration. By presenting this information in graphical form, class diagrams 

provide a clearer understanding of the structure of system classes, how they interact with each other and 

are a valuable tool for them developers and designers for visualizing the system, planning its execution, 

ensuring accuracy and scalability. Overall, class diagrams play a important role in interactive the static 

structure of the system and facilitating effective teamwork among sponsors involved in its development. 
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Figure 5. Class Diagram a software defect prediction system 

 

VI. RESULT 

     6.1 Screen shots 

 

 
 

Figure 6.  Dataset for Feature of a software defect prediction system.  
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Figure 7.  Dataset-1 for Feature of a software defect prediction system.  

 

 

 

 

 
 

Figure 8.  Dataset-2 for Feature of a software defect prediction system.  

 

 
 

Figure 9. Dataset-3 for Feature  of a software defect prediction system.  

 

 
 

Figure 10. Accuracy and Confusion for Feature  of a software defect prediction system. 
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Figure 11. Accuracy and Confusion for Feature  of a software defect prediction system. 

 

 

 

 

 
 

Figure 12.  Accuracy and Confusion for Feature of a software defect prediction system. 

 

 
 

 

Figure 13.  Accuracy and Defects for Feature of a software defect prediction system. 
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Figure 14.  Feature of a software defect prediction system.  

 

 
 

Figure 15.  T-distributed neighbor embedding (t-SNE) of a software defect prediction system. 
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Figure 16.  Principal Component Analysis test of a software defect prediction system. 

 

 

VII. CONCLUSION 

In summary, software bug prediction systems prove invaluable for software development teams to 

proactively identify and address potential bugs in their projects Use historical bug data and apply machine 

learning techniques to establish patterns in data across software modules or objects f capability analysis 

Providing improved accuracy, efficiency, and resource allocation compared to traditional methods, the 

system enables teams to focus on their trial and error effort where necessary, ultimately improving software 

quality, reducing defects Accuracy, efficiency, flexibility, scalability, user-friendliness Designed with 

these objectives in mind, the system leads software development teams needs Integrate UML diagrams, 

including usage diagrams, class diagrams to help visualize and understand the structure and structure of 

the system With modules related to data a collection, preprocessing, feature extraction, model training, 

prediction generation, and resource ho allocation , the framework provides solutions for fault forecasting 

and management Furthermore, visualization and reporting help stakeholders interpret fault forecasting and 

they are used properly. Overall, a well-designed software bug prediction system contributes significantly 

to software quality, resource efficiency, and the overall effectiveness of the software development process 

by addressing potential bugs the immediate action. 
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