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1.ABSTRACT: 

 In this chapter projective-bounded set has been defined. A necessary and sufficient condition has 

been given when a set  is . We also define strong projective convergence and strong 

projective continuity. Some theorems have been established concerning these notions. We have also 

considered a case of family of functions when projective convergence and strong projective convergence 

coincide.  
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2. Definitions: 

We use the idea of ‘Norm’ for the study of the subject-matter suggested by the heading of this chapter, so 

we begin with the definition of ‘Norm’. 

 A linear space  is said to be normed1 if to each element  there corresponds a non-negative 

number  which is called the norm of , and is such that 

(i)  for each  

                                                           
1Cooke, R.G. “Linear operator” Macmillan, London 1953, p-35 
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(ii)  if and only if  

(iii) , for every scalar , and 

(iv)  for every  

In , the norm is given by 

 

In , the norm is given by 

 

 

3.Projective bounded sets: 

 

for every  in a set  in  and every  in , where  is a positive constant depending on , then we 

say that the set  is projective-bounded (p-bd) relative to , or . When , we 

say that  is  in , or . [cf. Infinite Matrices and Sequence Spaces, 293] 

 if  and we take a set  in  to be the family  with  then we say that 

 is  if 

 

for all  and every  in  

It is obvious from the definition of   given in 3.2, and that of 

 given above, that  does not necessarily imply 

 since even if 

 

tends to finite limit as if may not be necessarily bounded as  runs through . But, unlike this, 

in the case of sequence spaces (see Infinite Matrices and Sequence Space, 293) 
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 always implies . 

Theorem (3.I): A set  is  if and only if,  for every  in , where . 

Proof: Let  in  and  be any function in  where  . 

That the condition is sufficient follows at once from Holder’s inequality 

 

We now prove the necessity of the condition. 

If  is  then 

 

for every  in  and every  in .  is a number for every  in  and every  in , 

therefore, , and so, by equation (3.1) 

 

for each  in , as  runs through the set . 

 Hence it follows from equation (3.2), by the Banach-Steinhaus Theorem on uniform boundedness. 

[see Cooke, (1), 319-20, Zaanen, (1), 135, or Banach and Steinhaus, (1)] that 

 

for every  in  and every  in . 

Now, for each  in , 

 

is a bounded linear functional on . 

So, it follows from equation (3.3), by definition of the norm of a bounded linear functional [see Cooke, 

(2), 350, or Zaanen, (1), 138], that  
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for every  in  ; and also, for each  in  we have 

 

for all  in  with  ; i.e., 

 

for all given   with . 

But, 

 

for all  in   with . 

Hence, by equations (3.5) and (3.6), we have 

 

Therefore, by equations (3.4) and (3.7), 

 

for every  in , and thus the condition is necessary. 

In     ,  

 

and in , 

 

Hence, we have 

Corollary 1: If , a set  is  if and only if, 
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for every in . [cf. Infinite Matrices and Sequence Space, 298(10.4.IV), and 299, (10.4.V)] 

corollary 2: A set  is  in  if and only if,  for almost all  and every  in . (  

is the same for all the functions   in the set ). [cf. Infinite Matrices and Sequence Space, 298, 

(10.4.III)]. 

4.  Strong projective convergence and strong projective continuity 

If , and  in  satisfies the condition that to every  and every  set  in  

corresponds a positive number  such that 

 

for every g in  and all , then  is said to be strong projective convergent ( ) 

relative to , or  when , we say that  is  in , or . 

[cf. Infinite Matrices and Sequence Space, 302]. 

If , and  in  satisfies the condition that to every  and every  set  in  

corresponds a positive number  such that equation (4.40) holds for every  in  and all non-

negative  such that , then  is said to be strong projective continuous 

( ) relative to , or  when , we say that  is 

 in , or . 

 By taking  to consist of one function only, we see from the definitions that 

 implies , and that  implies 

. 

Theorem (4.I): Every parametric convergent family in  is  in . 

Proof: We have  . Let  be a  set in ; then by theorem (3.I), cor.1, 

 

for every  in . 

Let  belong to  and be parametric convergent , then corresponding to every , we 

can choose a positive number  such that, for almost all  
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for all  . 

Hence by equations (4.2) and (4.3), 

 

for every  in  and all , for every  

therefore  is  in  . 

Theorem (4.II): Every family  in , such that , is . 

Then proof is similar to that of (4.4.I). 

Theorem (4.III): For every parametric convergent family in  and 

 coincide. [cf., Infinite Matrices and Sequence Space, 304, (10.5, II)]. 

Proof: We have . If   is a  set in , then, by theorem (3.I), cor 2, 

 

for every  in  and almost all . 

Let  belong to  and be , and suppose that it is . Then, since  is normal 

and  is , we can taking  for all , for every  determine a positive number 

 such that 

 

 

for all  

Hence by equations (4.4) and (4.5), 

 

for every  in  and all . 

Therefore  is . 

http://www.ijcrt.org/


www.ijcrt.org                                                   © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT2403329 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c631 
 

Also  implies . 

Hence the result follows. 

Theorem (4.IV): For every family  in , such that            and 

 coincide. 

The proof is similar to that of (4.III) 

Theorem (4.V): when  is normal and is such that sections of functions in it belong to it, then the 

necessary and sufficient condition that  in  should be  is that, to every  and 

every  set  in , these corresponds a positive number  such that 

 

for every  in  and all . [cf. Infinite Matrices and Sequence Space, 303, (10.5.I)]. 

Proof: It follows from the definition of  that the condition is sufficient. 

To prove that it is necessary, we construct the sections 

 

of every  in , and consider the set  which consists of all functions  such that  

 

By hypothesis,  is such that sections of functions in it belong to it, so ; also  is 

normal, therefore 

 for all   
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for every ; hence  is  in . 

Consequently, if  is  

 

for all  for every . 

Given any two fixed number , 

We choose the signs of  so that  is non-negative. 

Then we have, for all , 

 

for every   and every  in ; the result thus follows. 

In (4.V), unlike the case of sequence spaces [see Infinite Matrices and Sequence Space, 303, (10.5, I)], we 

have to make the additional hypothesis that  is normal and is such that sections of functions in it 

belong to it, because sections of a sequence always belong to the sequence space , where as the sections 

of a function do not necessarily belong to the function space , since a section of a function is not 

necessarily essentially bounded, but functions in  are, by definition essentially bounded. 
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