

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

A BRIEF STUDY OF PROJECTIVE BOUNDED SETS, STRONG PROJECTIVE CONVERGENCE, STRONG PROJECTIVE CONTINUITY

In this chapter projective-bounded set has been defined. A necessary and sufficient condition has been given when a set X is $\sigma_{\mathrm{p}}(\mathrm{f})$ - bounded. We also define strong projective convergence and strong projective continuity. Some theorems have been established concerning these notions. We have also considered a case of family of functions when projective convergence and strong projective convergence coincide.

Keyword: Norm, projective bounded set, strong projective convergence and strong projective continuity.

2. Definitions:

We use the idea of 'Norm' for the study of the subject-matter suggested by the heading of this chapter, so we begin with the definition of 'Norm'.

A linear space L is said to be normed ${ }^{1}$ if to each element $f \in L$ there corresponds a non-negative number $\|f\|$ which is called the norm of f, and is such that
(i) $\|f\| \geq 0$ for each $f \in L$
(ii) $\|f\|=0$ if and only if $f=0$
(iii) $\|a f\|=|a|\|f\|$, for every scalar a, and
(iv) $\|f+\mathrm{g}\| \leq\|f\|+\|g\|$ for every $f, g \in L$

In $\sigma_{\mathrm{p}}(\mathrm{f}), 1 \leq \mathrm{p}<\infty$, the norm is given by

$$
\|f\|_{p}=\left(\int_{0}^{\infty}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

In $\sigma_{\infty}(\mathrm{f})$, the norm is given by
$\|f\|_{\infty}=\underset{x \in[0, \infty)}{\operatorname{ess} \sup }|f(x)|$

3.Projective bounded sets:

If $\alpha^{*}(f) \geq \beta(f)$, and if $\left|\int_{0}^{\infty} f(x) g(x) d x\right| \leq K(g)$
for every f in a set X in $\alpha(f)$ and every g in $\beta(f)$, where $K(g)$ is a positive constant depending on g, then we say that the set X is projective-bounded (p-bd) relative to $\beta(f)$, or $\alpha(f) \beta(f)-$ bd. When $\beta(f)=\alpha^{*}(f)$, we say that X is $\mathrm{p}-\mathrm{bd}$ in $\alpha(\mathrm{f})$, or $\alpha(\mathrm{f}) \beta(\mathrm{f})-\mathrm{bd}$. [cf. Infinite Matrices and Sequence Spaces, 293]
if $\alpha^{*}(f) \geq \beta(f)$, and we take a set X in $\alpha(f)$ to be the family $f_{3}(x)$ with $\lambda \in[0, \infty)$, then we say that $\mathrm{f}_{\lambda}(\mathrm{x})$ is $\alpha(\mathrm{f}) \beta(\mathrm{f})-\mathrm{bd}$ if
$\left|\int_{0}^{\infty} f_{\lambda}(x) g(x) d x\right| \leq K(g)$
for all $\lambda \in[0, \infty)$ and every g in $\beta(f)$.
It is obvious from the definition of $\alpha(\mathrm{f}) \beta(\mathrm{f})$-convergence given in 3.2, and that of $\alpha(\mathrm{f}) \beta(\mathrm{f})$-boundedness given above, that $\alpha(\mathrm{f}) \beta(\mathrm{f})$-convergence does not necessarily imply $\alpha(f) \beta(f)$ - boundedness, since even if
$\int_{0}^{\infty} f_{\lambda}(x) g(x) d x$
tends to finite limit as $\lambda \rightarrow \infty$, if may not be necessarily bounded as λ runs through $[0, \infty)$. But, unlike this, in the case of sequence spaces (see Infinite Matrices and Sequence Space, 293)
$\alpha \beta$ - convergence always implies $\alpha \beta$ - boundedness.
Theorem (3.I): A set X is $\sigma_{\mathrm{p}}(\mathrm{f})-$ bd if and only if, $\|f\|_{\mathrm{p}} \leq \mathrm{M}$ for every f in X , where $1 \leq \mathrm{p} \leq \infty$.

Proof: Let $\mathrm{f} \in \mathrm{X}$ in $\sigma_{\mathrm{p}}(\mathrm{f})$, and g be any function in $\sigma_{\mathrm{p}}^{*}(\mathrm{f})=\sigma_{\mathrm{q}}(\mathrm{f})$, where $\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=1$.

That the condition is sufficient follows at once from Holder's inequality
$\left|\int_{0}^{\infty} f(x) g(x) d x\right| \leq\|f\|_{p} *\|g\|_{q}$
We now prove the necessity of the condition.
If X is $\sigma_{p}(f)-b d$, then
$\left|F_{f}(g)\right|=\left|\int_{0}^{\infty} f(x) g(x) d x\right| \leq K(g)$
therefore, $\left\|\mathrm{F}_{\mathrm{f}}(\mathrm{g})\right\|=\left|\mathrm{F}_{\mathrm{f}}(\mathrm{g})\right|$, and so, by equation (3.1)
$\left\|\mathrm{F}_{\mathrm{f}}(\mathrm{g})\right\| \leq \mathrm{K}(\mathrm{g})$
for each g in $\sigma_{q}(f)$, as f runs through the set X.
Hence it follows from equation (3.2), by the Banach-Steinhaus Theorem on uniform boundedness. [see Cooke, (1), 319-20, Zaanen, (1), 135, or Banach and Steinhaus, (1)] that
$\left\|\mathrm{F}_{\mathrm{f}}(\mathrm{g})\right\| \leq \mathrm{M} \cdot\|\mathrm{g}\|_{\mathrm{q}}$
for every f in X and every g in $\sigma_{q}(f)$.
Now, for each f in $\sigma_{q}(f)$,
$F_{f}(g)=\int_{0}^{\infty} f(x) g(x) d x$
is a bounded linear functional on $\sigma_{q}(f)$.
So, it follows from equation (3.3), by definition of the norm of a bounded linear functional [see Cooke, (2), 350, or Zaanen, (1), 138], that
$\left\|\mathrm{F}_{\mathrm{f}}\right\| \leq \mathrm{M}$
for every f in X; and also, for each f in X we have
$\left\|\mathrm{F}_{\mathrm{f}}\right\|=\sup \left|\mathrm{F}_{\mathrm{f}}(\mathrm{g})\right|$
for all g in $\sigma_{\mathrm{q}}(\mathrm{f})$ with $\|\mathrm{g}\|_{\mathrm{q}} \leq 1$; i.e.,
$\left\|F_{f}\right\|=\sup \left|\int_{0}^{\infty} f(x) g(x) d x\right|$
for all given $\sigma_{q}(f)$ with $\|g\|_{q} \leq 1$.

But,

$$
\begin{equation*}
\|f\|_{p}=\sup \left|\int_{0}^{\infty} f(x) g(x) d x\right| \tag{3.6}
\end{equation*}
$$

for all g in $\sigma_{\mathrm{q}}(\mathrm{f})$ with $\|\mathrm{g}\|_{\mathrm{q}} \leq 1$.

Hence, by equations (3.5) and (3.6), we have
$\left\|F_{f}\right\|=\|f\|_{p}$

Therefore, by equations (3.4) and (3.7),
$\|f\|_{\mathrm{p}} \leq \mathrm{M}$
for every f in X , and thus the condition is necessary.

In $\sigma_{\mathrm{q}}(\mathrm{f}), 1 \leq \mathrm{p}<\infty$
$\|f\|_{p}=\left(\int_{0}^{\infty}|f(x)|^{p} d x\right)^{\frac{1}{p}}$
and in $\sigma_{q}(f)$,
$\|f\|_{\infty}=\underset{x \in[0, \infty)}{\operatorname{ess} \sup }|f(x)|$

Hence, we have
Corollary 1: If $1 \leq \mathrm{p}<\infty$, a set X is $\sigma_{\mathrm{q}}(\mathrm{f})-$ bd if and only if,
$\int_{0}^{\infty}|f(x)|^{p} d x \leq M^{p}$
for every fin X. [cf. Infinite Matrices and Sequence Space, 298(10.4.IV), and 299, (10.4.V)]
corollary 2: A set X is $p-b d$ in $\sigma_{q}(f)$ if and only if, $|f(x)| \leq M$ for almost all $x \geq 0$ and every f in X. (M is the same for all the functions $f(x)$ in the set X). [cf. Infinite Matrices and Sequence Space, 298, (10.4.III)].

4. Strong projective convergence and strong projective continuity

If $\alpha^{*}(f) \geq \beta(f)$, and $f_{\lambda}(x)$ in $\alpha(f)$ satisfies the condition that to every $\varepsilon>0$ and every $p-b d$ set \mathcal{U} in $\beta(f)$ corresponds a positive number $\mathrm{N}(\varepsilon, \mho)$ such that

$$
\begin{equation*}
\left|\int_{0}^{\infty} \mathrm{g}(\mathrm{x})\left\{\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right\} \mathrm{dx}\right| \leq \varepsilon \tag{4.1}
\end{equation*}
$$

for every g in \mho and all $\lambda, \lambda \geq \mathrm{N}(\varepsilon, \mho)$, then $\mathrm{f}_{\lambda}(\mathrm{x})$ is said to be strong projective convergent ($\mathrm{p}-\operatorname{cgt}$) relative to $\beta(\mathrm{f})$, or $\alpha(\mathrm{f}) \beta(\mathrm{f})-\mathrm{cgt}$ when $\beta(\mathrm{f})=\alpha^{*}(\mathrm{f})$, we say that $\mathrm{f}_{\lambda}(\mathrm{x})$ is $\underline{p}-\operatorname{cgt}$ in $\alpha(\mathrm{f})$, or $\alpha(\mathrm{f})-\mathrm{cgt}$. [cf. Infinite Matrices and Sequence Space, 302].

If $\alpha^{*}(f) \geq \beta(f)$, and $f_{\lambda}(x)$ in $\alpha(f)$ satisfies the condition that to every $\varepsilon>0$ and every $p-b d$ set \mho in $\beta(f)$ corresponds a positive number $\delta(\varepsilon, \mho)$ such that equation (4.40) holds for every g in \mathbb{U} and all nonnegative λ and λ^{\prime} sueh that $\left|\lambda-\lambda^{\prime}\right|<\delta(\varepsilon, \mathcal{U})$, then $\mathrm{f}_{\lambda}(\mathrm{x})$ is said to be strong projective continuous (p-continuous) relative to $\beta(f)$, or $\alpha(f) \beta(f)$ - continuous when $\beta(f)=\alpha^{*}(f)$, we say that $f_{\lambda}(x)$ is $\underline{p}-$ continuous in $\alpha(\mathrm{f})$, or $\underline{\alpha(\mathrm{f})}$ - continuous.

By taking U to consist of one function only, we see from the definitions that $\alpha(\mathrm{f}) \beta(\mathrm{f})$ - convergence implies $\alpha(\mathrm{f}) \beta(\mathrm{f})$ - convergence, and that $\alpha(\mathrm{f}) \beta(\mathrm{f})$ - continuity implies
$\alpha(\mathrm{f}) \beta(\mathrm{f})$ - continuity $\alpha(f) \beta(\mathrm{f})$ - continuity.

Theorem (4.I): Every parametric convergent family in $\sigma_{\infty}(f)$ is $\underline{p}-\operatorname{cgt}$ in $\sigma_{\infty}(f)$.

Proof: We have $\alpha_{\infty}^{*}(f)=\sigma_{1}(f)$. Let \mathbb{U} be a p-bd set in $\sigma_{1}(f)$; then by theorem (3.I), cor.1,

$$
\begin{equation*}
\int_{0}^{\infty}|\lg (\mathrm{x})| \mathrm{dx} \leq \mathrm{M} \tag{4.2}
\end{equation*}
$$

for every g in \mho.
Let $f_{\lambda}(x)$ belong to $\sigma_{\infty}(f)$ and be parametric convergent $(\lambda-\operatorname{cgt})$, then corresponding to every $\varepsilon>0$, we can choose a positive number $\mathrm{N}(\varepsilon)$ such that, for almost all $\mathrm{x} \geq 0$
$\left|\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right| \leq \frac{\varepsilon}{\mathrm{M}}$
for all $\lambda, \lambda^{\prime} \geq \mathrm{N}$.

Hence by equations (4.2) and (4.3),
$\left|\int_{0}^{\infty} \mathrm{g}(\mathrm{x})\left\{\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right\} \mathrm{dx}\right| \leq \frac{\varepsilon}{\mathrm{M}} \cdot \int_{0}^{\infty}|\mathrm{g}(\mathrm{x})| \mathrm{dx} \leq \varepsilon$
for every g in \mathcal{U} and all $\lambda, \lambda^{\prime} \geq \mathrm{T}(\varepsilon)$, for every $\varepsilon>0$
therefore $f_{\lambda}(x)$ is $\underline{p}-\operatorname{cgt}$ in $\sigma_{\infty}(f)$.

Theorem (4.II): Every family $f_{\lambda}(x)$ in $\sigma_{\infty}(f)$, such that $f_{\lambda}(x) \in \zeta_{1}(f)_{\lambda}$, is $\sigma_{\infty}(f)$ - continuous.

Then proof is similar to that of (4.4.I).
Theorem (4.III): For every parametric convergent family in $\sigma_{1}(f), p$ convergence and $\underline{\mathrm{p}}$ - convergrence coincide. [cf., Infinite Matrices and Sequence Space, 304, $(10.5, \mathrm{H})$].

Proof: We have $\alpha_{1}^{*}(f)=\sigma_{\infty}(f)$. If \mathbb{U} is a $p-b d$ set in $\sigma_{\infty}(f)$, then, by theorem (3.I), cor 2,
$\lg (\mathrm{x}) \mid \leq \mathrm{M}$
for every g in \mathcal{U} and almost all $\mathrm{x} \geq 0$.
Let $f_{\lambda}(x)$ belong to $\sigma_{1}(f)$ and be λ-cgt, and suppose that it is $\sigma_{1}(f)$ cgt. Then, since $\sigma_{\infty}(f)$ is normal and $f_{\lambda}(x)$ is $\lambda-c g t$, we can takingg $(x)=1$ for all $x \geq 0$, for every $\varepsilon>0$ determine a positive number $\mathrm{N}(\varepsilon)$ such that

$\int_{0}^{\infty}\left|\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right| \mathrm{dx} \leq \frac{\varepsilon}{\mathrm{M}}$
for all $\lambda, \lambda^{\prime} \geq \mathrm{N}$

Hence by equations (4.4) and (4.5),
$\left|\int_{0}^{\infty} \mathrm{g}(\mathrm{x})\left\{\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right\} \mathrm{dx}\right| \leq \mathrm{M} \int_{0}^{\infty}\left|\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right| \mathrm{dx} \leq \varepsilon$
for every g in \mathcal{U} and all $\lambda, \lambda^{\prime} \geq \mathrm{T}$.

Therefore $\mathrm{f}_{\lambda}(\mathrm{x})$ is $\underline{\sigma_{1}(\mathrm{f})}$ - cgt.

Also p - convergence implies p - convergence.

Hence the result follows.
Theorem (4.IV): For every family $f_{\lambda}(x)$ in $\sigma_{1}(f)$, such that

$$
\mathrm{f}_{\lambda}(\mathrm{x}) \in \zeta_{1}(\mathrm{f})_{\lambda}, \mathrm{p} \text { - continuity and }
$$ \underline{p} - continuity coincide.

The proof is similar to that of (4.III)
Theorem (4.V): when $\beta(f)$ is normal and is such that sections of functions in it belong to it, then the necessary and sufficient condition that $\mathrm{f}_{\lambda}(\mathrm{x})$ in $\alpha(\mathrm{f})$ should be $\underline{\alpha(\mathrm{f}) \beta(\mathrm{f})}$ - cgt is that, to every $\varepsilon>0$ and every p - bd set \mathbb{U} in $\beta(f)$, these corresponds a positive number $N(\varepsilon, \mho)$ such that
$\int_{0}^{\infty} \lg (\mathrm{x})\left\{\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right\} \mid d \mathrm{x} \leq \varepsilon^{2}$ for every g in $\boldsymbol{\sigma}$ and all $\lambda, \lambda^{\prime} \geq \mathrm{N}$. [cf. Infinite Matrices and Sequence Space, 303, (10.5.I)].

Proof: It follows from the definition of \underline{p} - convergence that the condition is sufficient:

To prove that it is necessary, we construct the sections
$h_{r}(x)= \begin{cases}g(x) & \text { for } 0 \leq x \leq r \\ 0 & \text { for } \mathrm{x}>r\end{cases}$
of every g in U, and consider the set V which consists of all functions $\theta_{r}(x)$ such that
$\left|\theta_{\mathrm{r}}(\mathrm{x})\right|=\left|\mathrm{h}_{\mathrm{r}}(\mathrm{x})\right|$, for all $\mathrm{x} \geq 0$
By hypothesis, $\beta(f)$ is such that sections of functions in it belong to it, so $h_{r}(x) \in \beta(f)$; also $\beta(f)$ is normal, therefore
$\theta_{\mathrm{r}}(\mathrm{x}) \in \beta(\mathrm{f})$ for all $\omega(\mathrm{x})$ in $\beta^{*}(\mathrm{f})$,

$$
\begin{aligned}
\left|\int_{0}^{\infty} \theta_{r}(x) \omega(x) d x\right| & \leq \int_{0}^{\infty}\left|\theta_{r}(x) \omega(x)\right| d x \\
& =\int_{0}^{\infty}\left|h_{r}(x) \omega(x)\right| d x \\
& =\int_{0}^{\infty}|g(x) \omega(x)| d x
\end{aligned}
$$

$$
\leq \int_{0}^{\infty}|\lg (\mathrm{x}) \omega(\mathrm{x})| \mathrm{dx}
$$

for every $r>0$; hence V is $p-b d$ in $\beta(f)$.

Consequently, if $\mathrm{f}_{\lambda}(\mathrm{x})$ is $\alpha(\mathrm{f}) \beta(\mathrm{f})-\mathrm{cgt}$
$\left|\int_{0}^{\infty} \theta_{\mathrm{r}}(\mathrm{x})\left\{\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right\} \mathrm{dx}\right| \leq \varepsilon$
for all $\lambda, \lambda^{\prime} \geq N(\varepsilon, \mho)$ for every $\varepsilon>0$.

Given any two fixed number $\lambda, \lambda^{\prime} \geq \mathrm{N}$,

We choose the signs of $\theta_{\mathrm{r}}(\mathrm{x})$ so that $\theta_{\mathrm{r}}(\mathrm{x})\left\{\mathrm{f}_{\lambda}(\mathrm{x})-\mathrm{f}_{\lambda^{\prime}}(\mathrm{x})\right\}$ is non-negative.
Then we have, for all $\lambda, \lambda^{\prime} \geq N(\varepsilon, \mho)$,

for every $\mathrm{r}>0$ and every g in U ; the result thus follows.
In (4.V), unlike the case of sequence spaces [see Infinite Matrices and Sequence Space, $303,(10.5, \mathrm{I})$], we have to make the additional hypothesis that $\beta(\mathrm{f})$ is normal and is such that sections of functions in it belong to it, because sections of a sequence always belong to the sequence space ϕ, where as the sections of a function do not necessarily belong to the function space $\phi(\mathrm{f})$, since a section of a function is not necessarily essentially bounded, but functions in $\phi(f)$ are, by definition essentially bounded.

5. Reference books

1. Allen, H.S.: "Projective Convergence and limit in Sequence Spaces", P. L. M. S., (2), 48, (1944), 310338
2. Allen, H.S.:"Transformations of Sequence Spaces", journal London math soc: 31, 374-76(1956)
3. Banach, S., and Steinhaus, H.:"Sur le Principle de La Condensation de Singularites", Fundamental Math, 9 (1927, 50-61).
4. Chandra, P. and Tripathy, B.C.:"On generalized Kothe-Toeplitz duals of some sequence Spaces", Indian J. pure and applied math 1301-1306, Aug 2002.
5. Chandra, P.:"Investigation into the theory of operators and linear spaces", Ph.D. Thesis, Patna university, 1977.
6. Cooke, R. G.:"Linear Operators" Macmillan, London, 1953.
7. Cooke, R.G.:"Infinite Matrices and Sequence Spaces", Macmillan, London 1950.
8. Dienes, P.:"The Taylor series", (oxford), 1931.
9. Dunford, N., and J. Schwartz:"Linear Operators Part 1", Inter Science Publishers, Inc., New York, 1967.
10. Edwards, R. E.:"Functional Analysis", Holt, Rinchart and Winston, Inc., New York, 1965.
11. Goffman, C. and Pedrick, G.:"First Course in Functional Analysis", Prentice Hall, India, New Delhi (1974).
12. Halmos, P.R.:"Finite Dimensional Vector Spaces," van nostrand, Princeton, N.J., 1958.
13. Hardy, G.H., Littlewood, J.E., And Polya, G.: In equalities, (Cambridge) 1934.
14. Hardy, G.H.:"Divergent Series", oxford 1949.
15. Kamthan, P.K. and Gupta, M.:"Sequence Spaces and Series", Marcel Dekkar, New York (1981)
16. Kothe G., and toeplitze, o.:"Linear RaumeMitUnendlichvielenKoordinaten Und Ringe UnendlicherMatrizen", Crelle 171, 193-226(1934)
17. lascaridesa, C. G.:Pac. J. Math. 38 (2), 487-500,1971.
18. Leonard, I.E.:"Banach Sequence Spaces", J. Math. Anal. Appl., 54(1976)
19. Loeve, M.:"Probability Theory", (D. Van Nostrand, New York, London and Toranto), 1960
20. Maddox, I. J.:"Elements of Functional Analysis", Cambridge university press, Cambridge 1970.
21. Maddox, I. J.:J. London Math. Soc. 21 (1969) 316-22.
22. Natanson, I.P.: "Theory of Functions of a Real Variable", (Frederic Ungar, New York), 1955.
23. Okutoyi, J. I.: Acta. Math. Hungarica, 59 (No. 3-4) 291-299, 1992.
24. ERath, D. and Tripathy, B.C.: "Characterisation of Certain Matrix Operators", J. Orissa math. Soc. 8 (1989) 121-134.
25. Riesz, F., and B. Sz. - Nagy: "Functional Analysis", Fredrick Ungar,'New York, 1955/
26. Royden, H.L.: "Real Analysis", the Macmillan company New York, 1964.
27. Rudin, W.: "Functional Analysis", Mc Graw Hill Book Company, Inc., New York, 1973.
28. Rudin, W.: "Functional Analysis", McGraw-Hill book company, inc., New York, 1975.
29. Simmons, G.F.: "Introduction to Topology and Modern Analysis," McGraw-Hill book Company, inc., New York, 1963.
30. Taylor, A.E.: "Introduction to Functional Analysis", Wiley, New York ,1958.
31. Titchmarsh, E. C.: "The Theory of Functions", Oxford University Press, 1939.
32. Tripathy, B.C. and Sen, M.: "On A New Class of Sequence Related to The Space LP", Tamkang J. math. 33(no. 2) (2002), 167-171.
33. Vermes, P.: "Certain class of Series to Series Transformation matrices", Amer Journal Math, 72 (1950), 615-620.
34. Vermes, P.: "Series to Series Transformation and Analytic Condition by Matrix methods", Amer Journal math, 71 (1949).
35. Wilansky, A.: "Functional Analysis", Blaisdell Publishing Company, 1964.
36. Yoshida, K.: "Functional Analysis", Springer Verlag, New York, Inc., New York, 1968.
37. Zaanen, A.C.: "Linear Analysis", (Amsterdan and Groningen), 1953.
38. Zaanen, A.C.: "Linear Analysis", (North- Holland, Amsterdan and P. NOORDHOFF N.V., Groningen), 1960.

