ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A COMPREHENSIVE REVIEW ON MECHANISM OF ACTIVITY OF VARIOUS HERBAL PLANTS ON ATHEROSCLEROSIS.

Dr. Sonali S. Nipate^{*}, Ms. Pratiksha K. Hajare¹

Professor, Assistant Professor

Department of Pharmacology

PES. Modern College of Pharmacy Nigdi Pune-44

Abstract

A major contributor to cardiovascular disease, atherosclerosis is an inflammatory vascular condition marked by a gradual buildup of cholesterol in the walls of the arteries. In recent years, problems with synthetic drug adverse effects have contributed to drug abuse. A new understanding of medicinal plants has therefore lately evolved, and extensive study has been done on these herbs in an effort to create novel organically based medications. The objective of this review paper was to examine the molecular processes of therapeutic plants with potential against atherosclerosis. The regulation of inflammatory factor expression, stimulation of PPARs, inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA reductase), promotion of ATPbinding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G (ABCG), facilitation of adiponectin activity, reduction of LDL cholesterol, and stimulation of PPARs are just a few of the mechanisms by which an improved understanding of these herbal mechanistic linkages is a crucial step before designing new plant-based medications.. An important part of the aetiology of atherosclerosis is inflammation. Excessive intimal fibrosis, the development of fatty plaques, the growth of smooth muscle cells, and the migration of inflammatory-response cells including platelets, monocytes, and T cells are all symptoms of the condition. The early stage of atherosclerosis in cardiovascular illnesses is represented by low density lipoprotein (LDL) oxidation to Ox-LDL. Increased peroxynitrite concentrations in some clinical conditions, including severe hypercholesterolemia, worsen atherosclerosis and vascular damage. It has been proven that medicinal plants have the ability to interact with these or other pathogenic variables to inhibit atherosclerosis.

Introduction

The word "atherosclerosis," which means thickening of the inner lining of arteries and fat buildup, is Greek in origin. The plaque's central core contains fatty material that is surrounded by fibrous tissue. Atherosis, which is a deposit of fat accompanied by many macrophages, and sclerosis, make up the two elements of the name "atherosclerosis" (fibrosis layer comprising smooth muscle cells [SMC], leukocyte, and connective tissue).

© 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

Atheromatous plaques, which are fatty deposits, develop in the inner layers of arteries as a result of the prevalent illness atherosclerosis. Small cholesterol crystals that are deposited in the intima and its supporting smooth muscle are the first step in the formation of these plaques. Once inside the arteries, the plaques expand due to the growth of adjacent smooth muscle and fibrous tissues, decreasing blood flow. Sclerosis or hardening of the arteries is brought on by fibroblasts producing connective tissue and calcium being deposited in the lesion. Finally, thrombosis and clot formation due to the uneven surface of the arteries cause an abrupt restriction of blood flow.

Increased oxidative damage, which alters antioxidant status and lipoprotein levels, is linked to hyperlipidemia and hyperglycemia. Studies have demonstrated that cholesterol-lowering medicinal herbs, in addition to their antioxidant properties, can lower blood lipid levels, particularly after meals. As a result, they can stop atherosclerosis and harm to the vascular endothelium.

The development of atherosclerotic alterations in blood arteries is influenced by numerous contributing risk factors to varied degrees, either directly or indirectly. Cigarette smoking, high blood pressure, diabetes, obesity, hypercholesterolemia, and a history of heart disease in the family are some of these. Recent problems with the adverse effects of modern synthetic pharmaceuticals have resulted in drug abuse, a lack of patient consultations, and ultimately a breakdown in the careful management of sickness. As a result, recent years have brought about a new understanding of medicinal plants, and extensive research has been done on these herbs. Since ancient times, the utilisation of medicinal plants to treat illnesses has drawn interest. Communities throughout many nations have been turning more and more to alternative medicine in recent years, particularly phytotherapy and nutritional supplements to treat conditions like atherosclerosis. Medicinal plants have had some reassuring results in addition to lowering healthcare expenses, and it is practical to utilise such plants even as adjuncts, particularly when existing medicines fail to control the disease. Additionally, substantial research on medicinal plants is necessary due to the fact that their adverse effects are typically less severe than those of manufactured medications.

The use of medicinal plants with less side effects may possibly contribute to an improved treatment of atherosclerosis due to the health implications of atherosclerosis, the relative ineffectiveness, high cost, and side effects of some conventional medications. Some of the medicines that are currently prescribed across the globe were created using established compounds with established processes. Having knowledge of such medications can help researchers screen isolated natural molecules, then synthesise and create pharmaceuticals with comparable structures. The mechanisms of action of medicinal plants used to treat atherosclerosis have been studied. Such research is necessary to create new pharmaceutical formulations that are more effective while having fewer negative effects. The current review's goal was to present the most comprehensive.

Major targets for anti-atherosclerotic activity

a. Modification of lipoprotein level

Triacylglycerol, proteins, and phospholipids make up the lipids that make up lipoproteins. It is widely accepted that the main risk factor for atherosclerosis is elevated blood cholesterol levels. Dyslipidemia and coagulation issues are two of the most significant risk factors for the development of atherosclerotic diseases, according to epidemiological studies (1).Excess LDL infiltrates arteries in a hyperlipidemic state and is retained in the tunica intima. The sub-endothelial area of the retained LDL suffers oxidative changes controlling the invasion of LDL can be accomplished in one of two ways the blood, increasing HDL levels, or focusing on the HMG CoA reductase enzyme, an enzyme that lowers cholesterol.

b. LDL oxidation

Free radical oxidative damage has been implicated as the cause of many diseases. There is ample proof from the research that has been done that LDL oxidation plays a significant role in the development of atherosclerosis.(2) LDL is transformed into mmLDL, which is still recognised by the LDL receptors, after infiltration of LDL in the artery. A purpose of the study is to fortify against LDL oxidation in order to stop the

onset and development of atherosclerosis. Due to the early reduction of atherosclerotic development, antioxidants that effectively halt LDL oxidation may prevent atherosclerosis.

c. Failure of endothelial cells and molecule adhesion

The blood artery wall's other cells and the circulating blood is connected by endothelial cells, which serve as an edge and functional link. NO, prostacyclin, endothelin-1, and angiotensin II are all produced by the endothelium.(3)

Nitric oxide (NO), a key signalling chemical produced by the NOS enzyme family, is essential for maintaining the homeostasis of the vascular system. NO has a variety of effects on the artery wall, such as activation and inhibition of platelet aggregation, inhibition of cell adhesion and migration, relaxation and inhibition of vascular smooth muscle cell growth, etc. Endothelial cells' ability to produce homeostatic mediators of vascular health, such as NO, is compromised by any biochemical or physical damage, which accelerates the development of atherosclerosis.(4) Therefore, maintaining healthy NO levels and endothelial cell activity can aid in halting the onset and progression of atherosclerosis.

Sr.	Medicinal	Phytochemica	Study design	Mechanism of	Referenc
no	plants	l constitu <mark>ents</mark>	• 0	action	е
1	Sage (salvia	Total	6 healthy female	The extract	1
	officinalis)	phenolics,	volunteers	reduced the levels	
		total		of triglycerides,	
		flavonoids and		LDL-C, TC, FG,	
		quarcetin		2hPPG and	
				HbA1c,	
2	Elephant	Allicin	Hyperlipidemic	Hamsters fed a	2
	garlic		hamsters	high-fat diet with	
	(Allium			Persian leek	
	ampeloprasu			showed lower liver	
	m)			triglycerides (TG),	
				plasma Alanine	\sim
				aminotransferase	
	A start			levels, and tumour) -
				necrosis factor	
				gene expression	
				than hamsters on a	
				high-fat diet alone.	
3	Licorice	Glycyrrhizin,	Hypercholesterolemic	Mean CIMT, LDL	3
	(Glycerhiza	tannins,	patients	levels, blood	
	glabra)	sitosterol and		pressure, and total	
		stigmasterol		cholesterol all	
				decreased. This	
				implies that	
				licorice may slow	
				the progression of	
				atherosclerosis and	
				other	
				cardiovascular	
				disorders.	
4	Mulberry	resveratrol p-	Hypercholesterolemi	Hepatic PPAR-	4
	(Morus alba)	coumaric acid,	c mice	expression was	
		chrysin,		increased while	
		catechin		genes related to	
				cholesterol were	
				expressed less	
				strongly.	

Table 1. Mechanism of action of medicinal plants on atherosclerosis

www.	ijcrt.org		© 2024 IJCR I Vo	olume 12, Issue 3 Marc	ch 2024 ISSN: 2
5	Green tea (Camellia sinensis)	Theanine, polyphenols, Myricetin, caempherol, quarcetine	ApoE-knockout mice, fed with a high- fat diet	Enhanced the mRNA and protein expressions of hepatic PPAR and autophagy markers (LC3, Beclin1, and p62) in the vessel wall of ApoE- knockout mice, and decreased the blood levels of oxLDL.	5
6	Oregano (origanum vulgare)	Apigenin, luteolin, apigenin-7-O- glucoside	Isoproterenol (ISO)- induced myocardial injury in rats	protective impact against ISO- induced elevations in CRP, IL-6, IL- 13, and TNF-	6
7	Citrus fruits	Flavonoids: naringenis and nobiletin	<i>Ldlr^{-/-}</i> mice fed a high-fat cholesterol- containing (HFHC) diet	Improvements in hepatic steatosis, insulin sensitivity, hyperlipidemia, and blood monocytes, as well as a small decrease	7
8	Mango (Mangifera Indica Linn)	Mangiferin	Hyperch <mark>olesterol</mark> emic mice	Prevent mitochondrial oxidative stress in atherosclerosis	8
9	Red spinach(Amar anthus dubius)	β-carotene, lutein and zeaxanthin	High-fat, high- cholesterol induced rats	Significantly lower the LDL level	9
10	Pineapple (Ananas comosus)	Bromelain, coumaric acid, ellagic acid, ascorbic acid	High cholesterol diet fed rats.	Through an improvement in hepatic cholesterol metabolism, pineapple fruit consumption can treat fatty liver and safeguard the vascular endothelium in diet-induced hypercholesterolae mia.	10
11	Turmeric (Curcuma longa)	curcumin	Hypercholesterolemi c rabbits	Inhibits LDL oxidation, hypocholesterolem ic effects in animals	11
12	Hibiscus(<i>Hibi</i> scus rosa- sinensis)	polyphenols	High fat diet induced rabbits	Reduce the production of foam cells, oxidised low-density lipoprotein, and oxidative damage	12

www.	ijcrt.org		© 2024 IJCRT Ve	olume 12, Issue 3 Mar	ch 2024 ISSN
				to endothelial	
13	Black pepper (piper nigrum)	Piperine	rat fed with high-fat diet	cells. Piperine has antihypertensive and antithrombotic properties, may	13
				reduce myocardial ischemia, cardiac damage, and cardiac fibrosis, and may prevent arterial stenosis by reducing the proliferation of vascular smooth	
				muscle cells.	
14	Cinnamon(ci nnamomum vrerum)	cinnamaldehy de	Streptozotocin- induced diabetic rats	The control of ERK1/2 activity in macrophages, prevented the	14
				production of CD36 and	
				scavenger receptor class A (SRA), as well as acetyl LDL	
				absorption.	
15	Chili pepper(Capsi cum annuum)	Capsaicin	High fat diet induced mice	Diminish plaque development in ApoE/ animals fed	15
				an HFD through the PPAR/LXRa pathway.	
16	Anise	Flavonoids	aniseed-treated	Decreased blood	16
	(Pimpinella anisum)	and polyphenols	diabetes patients	glucose, lipid profile, lipid peroxidation and protein oxidation in aniseed-treated	
17	Classe	Esses and 1	II'sh fat dist in dasa d	diabetes patients.	17
17	Clove (Syzygium aromaticum)	Eugenol	High fat diet induced diabetic rats	Lowered the production of IL-1, IL-6, and IL-10, three pro- inflammatory cytokines, Reduces lipid level.	17
18	Saffron (crocus sativus)	Crocine, carotenoid	High fat diet induced rat/mice	Prevented the development of glycation and oxidation products, plaque, and inflammation in diabetic atherosclerotic rats.	18

19	Star anise (<i>Illicium</i>	Trans-anethole [1-methoxy-4-	Highfatdietinduced $ApoE^{-/-}$ mic	Impede the development of	19
	`	- •		atherosclerotic	
	verum)	(1-propenyl)	e		
20	Tauna a su (A su	benzene]	Centerl	plaque	20
20	Tarragon(Art	Isothiocynates	Coated	Exhibit	20
	emisia	,	microplate wells	anticoagulant	
	dracunculus)	monoterpenes	with a combination	action that inhibits	
			of Laminin and	the adhesion,	
			collagens as two	aggregation, and	
			important adhesion	secretion of	
			proteins.	platelets.	
21	Ginkgo	Flavonids ,	High fat diet induced	GBE-mediated	21
	(ginkgo	terpenoids	rabbits	prevention of	
	biloba)			atherosclerosis is	
				indicated by the	
				GBE treatment's	
				suppression of	
				Cx43 expression.	
22	Cornifructus	Polysaccharid	Apolipoprotein E-	In ApoE/ animals	22
	(Cornus	e fructus c <mark>orni-</mark>	deficient $(ApoE^{-/-})$	fed an HFD, PFC-	
	officinalis)	1 and	mice fed high-fat diet	2 enhanced	
		polysaccharide		superoxide	
		fructus co <mark>rni-2</mark>		dismutase activity,	
				increased serum	
				levels of low-	
				density lipoprotein	
			-	cholesterol, total	,
				cholesterol,	
				triglycerides, and	
				malondialdehyde,	
				and decreased the	
				amount of lipid	C
				and macrophages	
				in the aortic sinus	
				plaque.	
23	Black	polyphenols	Culture medium	Reduced	23
	chokeberry		containing Caco-2	expression of FAS,	
	(Aronia		(Human colorectal	ABCA1, HMG-	
	melanocarpa)		adenocarcinoma cell)	CoA reductase,	
	······································		· · · · · · · · · · · · · · · · · · ·	and ACOX1	
L	l	l	I		

www.	ijcrt.org		© 2024 IJCRT Vo	olume 12, Issue 3 Mar	ch 2024 ISSN: 23
24	Berberine(<i>Be</i> <i>rberis</i> <i>aristata</i>)	Isoquinoline alkaloid	ApoE ^{-/-} mice fed a western-type diet	The vascular injury is brought on by EC dysfunction, and abnormal VSMC proliferation, migration, and apoptosis result in media thickening. In addition, blood monocytes cross the endothelial barrier and migrate to the intima to bring about a number of inflammatory reactions that aid in vascular remodelling.	24
25	Black	polyphenols,	Hypercholesterolemi	higher expression	25
	hawthorn	oligomeric	c rats	PPAR, LXR, and	
	(Crataegus	procyanid <mark>ins,</mark>		ABCA1	
	pentaegyna)	and flavonoid <mark>s.</mark>			
26	Bitter	Triterpenes,ph	ApoeE-/- mice	Reduces	26
	melon(Momo	enolic		atherosclerotic	
	rdica	compounds		plaque area,	
	charantia)			decreases serum soluble vascular	
				cell adhesion	<u> </u>
				molecule(VCAM)	
				-1, P-selectin	R •
				levels,MCP-1,IL-6	,
27	Pamboo/Saga	Anthroquinona	Haalthy	in aorta Serum total	27
27	Bamboo(<i>Sasa</i> borealis)	Anthraquinone s,tannins,	Healthy young women with diet	cholesterol, low-	21
	soreans)	phenolics,	containing 25g of	density lipoprotein	
		glycosides,	cellulose.	cholesterol, and	
		flavonoids,		the atherogenic	
		and phenolics.		index were decreased	
28	Arjuna tree	Flavons and	High fat diet induced	Reduces the levels	28
	(terminalia	tannins	rabbits	of TC, LDL, and	
	arjuna)			TG while	
				increasing HDL and reducing	
				atherosclerotic	
				lesion in the aorta	
29	Fenugreek(Tr	alkaloids,	High cholesterol diet	Galactomannan, a	29
	igonella fo anum	flavonoids,	induced rabbits	component of	
	foenum- graecum)	saponins, mucilages(Gal		fenugreek mucilage, has a	
	Siuccum	actomannan)		hypolipidemic	
				impact.	
30	Peas (pisum	b-sitosterol	Swiss albino mice fed	Possess	30
	sativum)		with standard diet	thrombolytic	

activity; Reduced plasma total and LDL cholesterol and hepatic
esterified cholesterol

ApoE-/-: Apolipoprotein E-deficient CIMT: carotid intima-media thickness; LDL: Low density lipoprotein; ABCA1: ATP-binding cassette transporter, LXRa: Liver X receptor a; PPARs: Peroxisome proliferatoractivated receptor; VCAM: vascular cell adhesion molecule; MCP: monocyte chemoattractant protein; IL: interlukin; LDL-C: low-density lipoprotein cholesterol; FG: Fasting glucose; hbA1C: Glycosylated haemoglobin 2hPPG: 2 h postprandial glucose TC: Total cholesterol; EC: Endothelial cells; VSMC: Vascular smooth muscle cells.

Supplemental Dietary fibre for atherosclerosis

The gut bacteria in the colon can ferment dietary fibre to create a range of short chain fatty acids with antiatherogenic effects. A crucial short chain fatty acid called butyrate is formed during the fermentation of fibre and has been demonstrated to reduce inflammation. (31) Lipopolysaccharide-stimulated murine macrophages treated with butyrate produced less pro-inflammatory cytokines, such as IL-1, IL-6, and TNF-, and less nitric oxide. Additionally, butyrate treatment of HUVEC for 24 hours boosted ICAM-1 expression but had no effect on VCAM-1 expression.(32) However, preincubation with butyrate reduced the amount of VCAM-1 that was expressed when TNF- was present, and this reduced the adherence of monocytes to endothelial cells.

The advantages of butyrate in treating atherosclerosis have also been shown in in vivo experiments. Comparatively to control mice, ApoE-deficient animals fed a chow diet supplemented with 1% butyrate for 10 weeks developed smaller and more stable lesions.(33) Due to decreased monocyte and macrophage migration to the plaque site and decreased expression of VCAM-1 and MCP-1 in the lesion, lesions were reduced by around 50%. Additionally, compared to the control mice, the lesions in the butyrate-supplemented mice contained more ECM, which is a sign of improved plaque stability. 130

Effective factors on atherosclerosis

Vitamin C:

Ascorbic acid, often known as vitamin C, is a water-soluble antioxidant that, in addition to scavenging ROS free radicals, also triggers the cycle of additional antioxidants including vitamin E and urate. Therefore, it is possible that using these two antioxidants will avoid the side effects of atherosclerosis and vascular disease. (34)

Vitamin E:

Because it is fat-soluble, vitamin E, or alpha-tocopherol, has been shown in a study on seminiferous tubules to be able to stop ROS from damaging sperm parameters. Because the tocopherol molecule can prevent two lipid peroxyl radicals from initiating two possible peroxidation chain reactions as a volatile antioxidant of the chain. It can stop the progression of atherosclerosis and cardiovascular disease's side effects (35)

Acids:

By binding to food minerals like iron and zinc and obstructing gastrointestinal absorption, reducing acids can have adverse effects on food. These include the phytic acid found in barley, grains, corn, and vegetables; the oxalic acid found in cocoa; the tannins found in tea, beans, and cabbage.

© 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

It is important to use these foods, which are strong sources of antioxidants and have a number of health benefits, to treat and prevent cardiovascular disease. However, these acids should be consumed less frequently when meat and diets high in zinc and iron are present. Dietary deficiencies in calcium and iron are caused by consuming too much meat, while phytic acid is absorbed more readily when cereals are consumed.(36)

Uric acid:

One protective factor against oxidative stress is uric acid. The antioxidant effects of serum uric acid help to scavenge and trap free radicals in human serum. Vascular dilatation increases and peroxynitrite-induced oxidative stress reduces because uric acid works with peroxynitrite to produce stable nitric oxide.(37)

Bacteria:

Involvement in the cell membrane, oxidation of the host cell membrane, production of oxygen free radicals and damage to the cell membrane, occasionally induction of apoptosis and increase in oxidation of lipids and cholesterol in the atherosclerotic plaque are all ways that certain bacteria and viruses, including Chlamydia pneumonia and Helicobacter pylori, and atherosclerosis, contribute to the development of atherosclerosis. (38)

References:-

- 1) Emerging Risk Factors Collaboration. (2009). Lipoprotein (a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. *JAMA: the journal of the American Medical Association*, 302(4), 412.
- 2) Zampetaki, A., Dudek, K., & Mayr, M. (2013). Oxidative stress in atherosclerosis: the role of microRNAs in arterial remodeling. *Free Radical Biology and Medicine*, 64, 69-77.
- 3) Ignarro, L. J., Cirino, G., Casini, A., & Napoli, C. (1999). Nitric oxide as a signaling molecule in the vascular system: an overview. *Journal of cardiovascular pharmacology*, *34*(6), 879-886.
- 4) Napoli, C., de Nigris, F., Williams-Ignarro, S., Pignalosa, O., Sica, V., & Ignarro, L. J. (2006). Nitric oxide and atherosclerosis: an update. *Nitric oxide*, *15*(4), 265-279.
- 5) Kianbakht, S., Nabati, F., & Abasi, B. (2016). Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: a randomized clinical trial. *International journal of molecular and cellular medicine*, *5*(3), 141.
- 6) Fatoorechi V, Rismanchi M, Nasrollahzadeh J. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet. *Avicenna J Phytomed*. 2016;6(4):418-424.
- 7) Fogelman Y, Gaitini D, Carmeli E. Antiatherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: decreased CIMT, reduced plasma lipid levels, and decreased blood pressure. *Food Nutr Res.* 2016;60:30830. Published 2016 Apr 22. doi:10.3402/fnr.v60.30830
- 8) Kobayashi Y, Miyazawa M, Araki M, *et al.* Effects of *Morus alba* L (Mulberry) leaf extract in hypercholesterolemic mice on suppression of cholesterol synthesis. J Pharmacogn Nat Prod 2015; 2: 1-13.
- 9) Ding S, Jiang J, Yu P, Zhang G, Zhang G, Liu X. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy. *PLoS One*. 2017;12(8):e0181666. Published 2017 Aug 4. doi:10.1371/journal.pone.0181666
- 10) Rababa'h, A. M., & Alzoubi, M. A. (2021). Origanum majorana L. extract protects against isoproterenol-induced cardiotoxicity in rats. *Cardiovascular Toxicology*, 21(7), 543-552.
- 11) Burke, A. C., Sutherland, B. G., Telford, D. E., Morrow, M. R., Sawyez, C. G., Edwards, J. Y., ... & Huff, M. W. (2018). Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr-/- mice. *Journal of Lipid Research*, 59(9), 1714-1728.
- 12) Pardo-Andreu, G. L., Paim, B. A., Castilho, R. F., Velho, J. A., Delgado, R., Vercesi, A. E., & Oliveira, H. C. (2008). Mangifera indica L. extract (Vimang®) and its main polyphenol mangiferin prevent

mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. *Pharmacological Research*, *57*(5), 332-338.

- 13) Pradana, D. A., Pondawinata, M., & Widyarini, S. (2017, March). Red spinach (Amaranthus tricolor L.) ethanolic extract as prevention against atherosclerosis based on the level of Low-Density Lipoprotein and histopathological feature of aorta in male Sprague-Dawley rats. In *AIP Conference Proceedings* (Vol. 1823, No. 1, p. 020079). AIP Publishing LLC.
- 14) Namwong, A., Kumphune, S., Chotima, R., Nernpermpisooth, N., & Malakul, W. (2022). Pineapple fruit improves vascular endothelial dysfunction, hepatic steatosis, and cholesterol metabolism in rats fed a high-cholesterol diet. *Food & Function*.
- 15) Singh L, Sharma S, Xu S, Tewari D, Fang J. Curcumin as a Natural Remedy for Atherosclerosis: A Pharmacological Review. *Molecules*. 2021;26(13):4036. Published 2021 Jul 1. doi:10.3390/molecules26134036
- 16) Chou, Cheng-Chung, et al. "Anti-atherosclerotic effect of Hibiscus leaf polyphenols against tumor necrosis factor-alpha-induced abnormal vascular smooth muscle cell migration and proliferation." *Antioxidants* 8.12 (2019): 620.
- 17) Wang, D., Zhang, L., Huang, J., Himabindu, K., Tewari, D., Horbańczuk, J. O., ... & Atanasov, A. G. (2021). Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. *Trends in Food Science & Technology*, 117, 34-45.
- 18) Kang H., Park S.H., Yun J.M., Nam T.G., Kim Y.E., Kim D.O., Kim Y.J. Effect of cinnamon water extract on monocyte-to-macrophage differentiation and scavenger receptor activity. *BMC Complement*. *Altern. Med.* 2014;14:90. doi: 10.1186/1472-6882-14-90.
- Hu Y.W., Ma X., Huang J.L., Mao X.R., Yang J.Y., Zhao J.Y., Li S.F., Qiu Y.R., Yang J., Zheng L., et al. Dihydrocapsaicin Attenuates Plaque Formation through a PPARγ/LXRα Pathway in apoE(-/-)
 Mice Fed a High-Fat/High-Cholesterol Diet. *PLoS ONE*. 2013;8:e66876. doi: 10.1371/journal.pone.0066876
- 20) Shobha, R. I., & Andallu, B. (2018). Antioxidant, anti-diabetic and hypolipidemic effects of aniseeds (pimpinella anisum L.): in vitro and in vivo studies. *J. Complement Med. Alt. Healthcare*, *5*(2), 555-656.
- 21) Adefegha S.A., Oboh G., Adefegha O.M., Boligon A.A., Athayde M.L. Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (*Szyzgium aromaticum*) bud powder in a high-fat diet/streptozotocin-induced diabetes rat model. *J. Sci. Food Agric*. 2014;94:2726–2737. doi: 10.1002/jsfa.6617
- 22) Li J., Lei H.T., Cao L., Mi Y.N., Li S., Cao Y.X. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. *Int. Immunopharmacol.* 2018;55:120–127. doi: 10.1016/j.intimp.2017.11.037.
- 23) Park S.H., Sung Y.Y., Nho K.J., Kim H.K. Protective activity ethanol extract of the fruits of *Illicium verum* against atherogenesis in apolipoprotein E knockout mice. *BMC Complement. Altern. Med.* 2015;15:232. doi: 10.1186/s12906-015-0750-0
- 24) Hedaryan, A. H., Mehrpouri, M. M., Ayatolahi, M. A., bakhshian Farsiani, A., Hamidpou, P. R., & Hamidpour, P. M. The effect of Tarragon (Artemisia dracunculus) extract on platelet function.
- 25) WEI, J. M., et al. GINGKO suppresses atherosclerosis through downregulating the expression of connexin 43 in rabbits. *International Journal of Cardiology*, 2013, 2.164: S5.
- 26) Zhang, X. W., Sui, Y., Liu, X. X., Fu, C. Y., Qiao, Y. H., Liu, W. J., ... & Cao, W. (2020). Structures and anti-atherosclerotic effects of 1, 6-α-glucans from Fructus Corni. *International Journal of Biological Macromolecules*, 161, 1346-1357.
- 27) Kim B, Park Y, Wegner CJ, *et al.* Polyphenol-rich black chokeberry (Aroniamelanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. J Nutr Biochem 2013; 24(9): 1564-1570.

- 28) Tan, W., Wang, Y., Wang, K., Wang, S., Liu, J., Qin, X., ... & Gao, X. (2020). Improvement of endothelial dysfunction of berberine in atherosclerotic mice and mechanism exploring through TMT-based proteomics. *Oxidative medicine and cellular longevity*, 2020.
- 29) Ghanbari-Niaki A, Ghanbari-Abarghooi S, Rahbarizadeh F, Zare-Kookandeh N, Gholizadeh M, Roudbari F, Zare-Kookandeh A. Heart ABCA1 and PPAR-α genes expression response in male rats: effects of high intensity treadmill running training and aqueous extraction of Black *Crataegus-Pentaegyna*. Res Cardiovasc Med 2013;2:153-159
- 30) Zeng, Y., Guan, M., Li, C., Xu, L., Zheng, Z., Li, J., & Xue, Y. (2018). Bitter melon (Momordica charantia) attenuates atherosclerosis in apo-E knock-out mice possibly through reducing triglyceride and anti-inflammation. *Lipids in Health and Disease*, *17*(1), 1-7.
- 31) Park, E. J., & Jhon, D. Y. (2009). Effects of bamboo shoot consumption on lipid profiles and bowel function in healthy young women. *Nutrition*, 25(7-8), 723-728.
- 32) Subramaniam, S., Subramaniam, R., Rajapandian, S., Uthrapathi, S., Gnanamanickam, V. R., & Dubey, G. P. (2011). Anti-atherogenic activity of ethanolic fraction of Terminalia arjuna bark on hypercholesterolemic rabbits. *Evidence-Based Complementary and Alternative Medicine*, 2011.
- 33) Helen, A., & Antony, H. (2021). Mucilage isolated from fenugreek seeds modulates inflammatory markers of atherosclerosis induced by high cholesterol diet in rabbits. *Atherosclerosis*, *331*, e90-e91.
- 34) Alam, A. K., & Khatun, C. S. (2016). Phytochemical analysis and antioxidant, analgesic and thrombolytic activity investigation of methanol extract of Pisum sativum seed. *Journal of Pharmacognosy and Phytochemistry*, 5(6), 366-370.
- 35) Liu T, et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. *Inflammation*. 2012;35:1676–1684. doi: 10.1007/s10753-012-9484-z.
- 36) Miller SJ, Zaloga GP, Hoggatt AM, Labarrere C, Faulk WP. Short-chain fatty acids modulate gene expression for vascular endothelial cell adhesion molecules. *Nutrition*. 2005;21:740–748. doi: 10.1016/j.nut.2004.11.011.
- 37) Aguilar EC, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. *Nutr Metab Cardiovasc Dis.* 2014;24:606–613. doi: 10.1016/j.numecd.2014.01.002.
- 38) Moser, M. A., & Chun, O. K. (2016). Vitamin C and heart health: a review based on findings from epidemiologic studies. *International journal of molecular sciences*, *17*(8), 1328.
- 39) Upston, J. M., Kritharides, L., & Stocker, R. (2003). The role of vitamin E in atherosclerosis. *Progress in lipid research*, *42*(5), 405-422.
- 40) Wei T, Liu J, Zhang D, et al. The Relationship Between Nutrition and Atherosclerosis. *Front Bioeng Biotechnol.* 2021;9:635504. Published 2021 Apr 19. doi:10.3389/fbioe.2021.635504