Survey On Automatic Depression Level Detection.

1Shilpa S B, Assistant Professor, Cambridge Institute of Technology, Bangalore, India.
2Dr Shashikumar D R, Prof & Head, Dept of CSE, Cambridge Institute of Technology, Bangalore, India.

ABSTRACT
The depression is a medical condition and it is among the major mental diseases that affects numerous people worldwide. For this work, the Distress Analysis Interview Corpus-Wizard of Oz interviews (DAJC-WOZ) dataset will be utilized which contains 189 sessions in zip file format and responses from 59 depressed and BO non-depressed patients[1]. This dataset has video, audio and text clips so individual preprocessing techniques are utilized which is given as a source for depression detection level. The inputs are in the form of video, audio and text, so individual preprocessing methods for feature extraction are used with separate techniques. Then, the extracted features from separate techniques are concatenated and given as input for the classification of depression level. The Long-Short Term Memory (LSTM) can be utilized in this research for classifying the depression levels[3].

Key Words: Depression level detection, Feature Fusion, Grey-Level Co-occurrence Matrix, Long-Short Term Memory.

1. INTRODUCTION
In the present years, depression is one of the major fundamental social issues because of its powerful relationship with health and well-being [1]. It is a hazardous infection that not just effects mental condition of the person and leads physical injury to patient. The severity is forecasted based on the patient's mental health conditions [2]. The restlessness, anxiety, sleeping, addictive, stress and eating disorders are the most recurrent cases of mental health disorder [3]. It is a sort of mental disease in that a patient regularly feels demoralization, hopeless, loss of interest in mental, physical and other activities that cause physical and an emotional damage [4] [5]. It affects the learning ability which leads mood variations and decreases the work effectiveness of a patient [6]. According to World Health Organization (WHO) 280 million peoples are suffered from depression and 800000 peoples of suicide approximately due to depression in globally [7]. The depression has few stages of incidences like dysthymia, bipolar, clinical and seasonal affective disorder [8].

The prevention and detection of depression is most important and various advanced and traditional methods had proposed in recent years [9]. In the high severity, the brain activities are slow and provides the hormone cortisol that affects neuron development in brain [10]. It is a fourth leading disease in worldwide and affects the all-age peoples like children, adults and old age [11]. Due to the unavailability of early and accurate treatment, more than 80% of depressed peoples not get proper treatment [12]. Recently, the depression measurements are commonly utilized by self-reports, but self-reports have some limitations in practical like the reports of symptoms can be exaggerated or the report depends upon the patients mindset [13] [14]. In the recent researches in wearable technology, the probability of simultaneously monitoring the depression by utilizing the many physiological factors has huge attention [15].

2. LITERATURE REVIEW
Balint Hajduska-Der[4] created a sensitive model that uses speech processing to identify depression. Additionally, models for classification and regression were created using a machine learning technique. Each subject's BDI score and the HAMD score of 20% of the participants are both comprised in the
Kailai Yang[6] presented mental condition Contrastive and Knowledge-aware Network (KC-Net). Initially, KC-Net presents mental state information derived from the generative knowledge base COMET, which specifically models speakers' mental states. The mentalization method then makes use of GRU models and knowledge-aware dot-product attention, which helps the model choose more pertinent knowledge elements. In order to completely utilize label information for capturing class-specific features, a supervised contrastive learning module is utilized. Additionally, it should improve the direction of the mentalization process' knowledge selection process.

Ravi Prasad Thati[7] suggested a unique method for identifying depression that blends task-based processes with real-time MCS. Numerous features from multimodalities have been studied separately and in combination. These features include selection methods based on PCA and Pearson's correlation analysis, as well as various classifiers of machine learning for classification, including Support Vector Machines, Naive Bayes, Decision Trees, and Logistic Regression. SVM produced the best accuracy of 86% when compared to different machine learning classifiers.

Masakazu Higuchi[8] created a composite index that can accurately distinguish major depressive disorder sufferers from healthy persons based on vocal acoustic parameters. OpenSMILE was used to process the speech data in the training set and extract 6552 vocal acoustic features. With ~90% sensitivity, specificity, and accuracy in the training set and ~80% sensitivity, specificity, and accuracy in the test set, the suggested criterion—MDDI—distinguished between depressed and normal participants. Further evidence of MDDI's possible effectiveness in practice comes from the almost complete lack of gender-related variances in the instrument.

Minghao Du[9] proposed a novel machine speech chain model for depression recognition (MSCDR) that can capture text-independent depressive speech representation from the speaker's mouth to the listener's ear to improve recognition performance. In the proposed MSCDR, linear predictive coding (LPC) and Mel-frequency epstral coefficients (MFCC) features are extracted to describe the processes of speech generation and of speech perception, respectively. Then, a one-dimensional convolutional neural network and a long short-term memory network sequentially capture intra- and inter-segment dynamic depressive features for classification.

Vandana et al. [16] introduced a hybrid deep learning for identify depression that integrated text and audio features. This developed model contains three components, initially a text CNN was trained through text features and then the audio CNN was trained through audio features only. Next, an integration of text and audio named as hybrid model in which Long-Short Term Memory (LSTM) was utilized. The improved LSTM like Bidirectional LSTM is utilized for identifying the depression level. This model receives data from both forward and backward directions that enables to capture context features in an input. However, it enhances the computational sources and high training time.

Kirill Milintsevich et al. [17] developed an automatic text-based estimation for depression through predicting the symptoms. This paper-trained multi-target hierarchical regression technique for predicting the depression level of individuals from the patient-psychiatrist on DAIC-WOZ dataset. The developed model produced a fine-grained overview of individual symptoms for every person. This model automatically learns meaningful features from text data that was utilized to recognize the patterns and depressions. However, it cannot capture the full spectrum of individual patient health.

Alice Othmani et al. [18] implemented a multimodal computer-aided diagnosis scheme for predicting the depression level through audiovisual. The correlation-based anomaly detection and similarity measure of depression was detected when deep audiovisual pattern of a depression was free. The correlation among audiovisual encoding of test subject and deep audiovisual depression illustration was estimated and utilized for monitoring the depressed subjects. However, the developed model requires vast amount of captured data which is complex to obtain.

Clinton Lau et al. [19] presented a parameter-efficient tuning for an automatic depression severity with deep learning model. This model influences the pretrained large language models and parameter effective tuning techniques. It is created based on adopting a minimum tunable parameter sets which is known as prefix vector. This vector was employed to
guide a pretrained model to predict the patient depression Levels. However, this model was complex and overfit the training data which leads the class imbalance issue.

Sandee Kumar Pandey et al. [20] suggested a profound tensor-based technique for classifying depression in speech patterns. The developed model needs significantly simple implementation and extracts traits that aid in the identification of depression. The pooling of mindful outline was achieved to extricate highlights at the sack level that are classified using fully connected layers. This developed model has computationally expensive which required substantial computational resources.

3. PROPOSED WORK

In this section, the novel deep learning based automatic depression level detection is proposed. The proposed work involves dataset of DAJC-WOZ which has videos, audios and texts. The preprocessing and feature extraction are performed individually with separate techniques. The extracted features are fused and then utilized for the classification. Figure 1 represents the overall performance of proposed work.

![Figure 1. Overall process of proposed work](image)

Preprocessing
The inputs are in the form of video, audio and text, so individual preprocessing techniques will be utilized.

Feature extraction
The preprocessed data are given into feature extractor for extracting the features. For three various pre-processed data, the extraction of features is also done separately.

Feature fusion
The Several characteristics are taken out of individual feature extraction methods that are concatenated in this stage. The concatenated features are given as input to Long-Short Term Memory (LSTM) classifier.

Classification
In this research, for the detection of depression levels, the Long-Short Term Memory(LSTM) neural network can be utilized. The LSTM is developed from RNN for resolving gradient descent problems and capable to learn long time dependence. Before processing the model, the similar pad sequence of data is created so that it can be put to the model with the same length. The LSTM is suitable for this Natural Language Processing (NLP) task due to the existence of three gates such as input, output and forget gates which manages the flow of data over the network.

LSTM performs pre-measurements for the input before producing an output to the final layer in the network. The LSTM have different memory cells in the hidden layer which facilitated by three gates such as input, output and forget gate and these three gates will determine the data, it is need to be store in memory. The cell state which passes information from one layer to another. The forget gate allows only the necessary data to pass through the cell state, the input gate is used for processing the data and the output gate determines the true values of the hidden layers.

4. CONCLUSION

The depression is a medical condition and it is among the major mental diseases that affects numerous people worldwide. For this work, the Distress Analysis Interview Corpus-Wizard of Oz Interviews (DAJC-WOZ) dataset is utilized which contains 189 sessions in zip file format and responses from 59 depressed and BO non-depressed patients. This dataset has video, audio and text clips so individual preprocessing techniques are utilized which is given as input for the detection of depression level. The data sources are as video, sound and text, so individual preprocessing furthermore, include extraction methods are utilized with independent procedures. Then, the extracted features from independent procedures are combined and given as input for the classification of depression level. The Long-Short Term Memory (LSTM) is utilized in this research for classifying the depression levels.
REFERENCES

<table>
<thead>
<tr>
<th>Author</th>
<th>Methodology</th>
<th>Evaluation Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vandana et al. [16] (2023)</td>
<td>Hybrid Bi-LSTM</td>
<td>Accuracy-0.88, Precision-0.75, Recall-0.73, F1-score-0.74</td>
</tr>
<tr>
<td>Kirill Milintsevich et al. [17] (2023)</td>
<td>Symptom prediction</td>
<td>Macro-F1-0.739, Micro-H-0.766, MAE-3.78</td>
</tr>
<tr>
<td>Alice Othmani et al. [18] (2022)</td>
<td>Similarity Measure</td>
<td>Accuracy-82.55%, F1-score-79.9%</td>
</tr>
<tr>
<td>Clinton Lau et al. [19] (2023)</td>
<td>Dual encoder model</td>
<td>MAE-3.80, RMSE-4.87</td>
</tr>
<tr>
<td>Sandeep Kumar Pandey et al. [20] (2022)</td>
<td>3DTF</td>
<td>Accuracy-0.7245, F1-score-0.705</td>
</tr>
</tbody>
</table>