ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Vague **F** Generalized Sets In Topological Spaces

Anusha Antony¹, Dr. L. Mariapresenti²

¹PG Student, ² Assistant Professor

¹Department of Mathematics

Nirmala College For Women Coimbatore-641018, Tamilnadu.

Abstract: The aim of this paper is to explore the notion of vague sets and to define a new class of vague generalized γ closed sets in topological spaces and investigate their properties.

Keywords: Vague set, Vague topology, Vague generalized y closed set, Vague point

1.Introduction:

Lotfi A.Zadeh [17]a professor of electrical engineering with the University of California at Berkeley, published the first papers on his new theory of Fuzzy sets and Systems in the year 1965. Zadeh [17] is widely known as the father of a mathematical framework called fuzzy logic which was an early approach to artificial intelligence. In early 90's Gau's and Buehrer [7] introduced the notion of vague sets. Intuitionistic fuzzy sets have been introduced by Krassimir Atanassov [2] (1983) as an extension of Lotfi Zadeh's notion of fuzzy set, which itself extends the classical notion of a set. In topology, the concept of vague γ generalized closed sets extends the traditional notion of closed sets in a topological space. These sets are characterized by a specific closure operator, denoted by γ , which introduces a broader perspective on the closure operation. The term "vague" implies a more flexible and generalized closure property, allowing for a nuanced understanding of closed sets beyond the classical definition. Exploring vague γ generalized closed sets contributes to a richer comprehension of topological structures and their properties, offering a valuable perspective for researchers and practitioners in the field.

2. Preliminaries

Definition 2.1[4]: A vague set A in the universe of discourse U is characterized by two membership functions given by:

- (i) A true membership function $t_A: U \to [0,1]$ and
- (ii) A false membership function $f_A: U \rightarrow [0,1]$

Where $t_A(x)$ is a lower bound on the grade of membership of x derived from the "evidence for x", $f_A(x)$ is a lower bound on the negation of x derived from the "evidence for x", and $t_A(x)+f_A(x)\leq 1$. Thus, the grade of membership of u in the vague set A is bounded by a subinterval $[t_A(x), 1-f_A(x)]$ of [0,1]. This indicates that if the actual grade of membership of x is $\mu(x)$, then, $t_A(x)\leq \mu(x)\leq 1-f_A(x)$. The vague set A is written as A= {<x, $[t_A(x), 1-f_A(x)]>/u\in U$ } where the interval $[t_A(x), 1-f_A(x)]$ is called the vague value of x in A, denoted by $V_A(x)$.

Definition 2.2[7]: Let A and B be vague sets of the form A= { $<x, [t_A(x), 1-f_A(x)] > /x \in X$ } and B= { $<x, [t_B(x), 1-f_B(x)] > /x \in X$ } then

(i)A \subseteq B if and only if $t_A(x) \le t_B(x)$ and $1 - f_A(x) \le 1 - f_B(x)$ for all $x \in X$

(ii)A=B if and only if $A \subseteq B$ and $B \subseteq A$

(iii) $A^{c} = \{ \langle \mathbf{x}, f_{A}(\mathbf{x}), 1 - t_{A}(\mathbf{x}) \rangle / \mathbf{x} \in \mathbf{X} \}$

(iv)A \cap B= {<x, min($t_A(x), t_B(x)$), min(1- $f_A(x), 1-f_B(x)$)>/x ϵ X}

(v)AUB= {<x, ($t_A(x) \lor t_B(x), (1-f_A(x) \lor 1-f_B(x)) > /x \in X$ }

For the sake of simplicity, we shall use the notation A= $\{\langle x, [t_A, 1-f_A] \rangle\}$ instead of A= $\{\langle x, [t_A(x), 1-f_A] \rangle\}$.

Definition 2.3: A subset A of a topological space (X,τ) is called

- (i) A preclosed set [13] if $cl(int(A)) \subseteq A$
- (ii) A semi-closed set [9] if $int(cl(A)) \subseteq A$
- (iii) A regular closed set [18] if A = cl(int(A))
- (iv) A α -closed set [14] if cl(int(cl(A))) \subseteq A
 - (V) A closed set if cl(A)=A

Definition 2.4: A subset A of a topological space (X,τ) is called

- (i) A generalized closed set (briefly g- closed) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an openset in X
- (ii) A generalized closed set (briefly sg- closed) [3] if scl(A) ⊆ U whenever A⊆U and U is semi-open set in X
- (iii) A generalized semi-closed set (briefly gs-closed) [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X
- (iv) A generalized semi pre closed set (briefly gsp-closed) [6] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X
- (v) A generalized pre closed set (briefly qp-closed) [4] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X
- (vi) A generalized α -closed set (briefly g α -closed) [11] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open set in X
- (vii) A α -generalized closed set (briefly α g-closed) [10] α cl(A) \subseteq U whenever A \subseteq U and U is open set in X.

Definition 2.5: A vague topology (VT in short) on X is a family τ of vague sets in X satisfying the following axioms.

- (i) $0, 1 \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$
- (iii) $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$

In this case the pair (X,τ) is called a Vague topological space (VTS in short) and any vague set in τ is known as a Vague open set (VOS in short) in X.

The complement A^c of a vague open set A in a Vague topological space (X,τ) is called a vague closed set (VCS in short) in X.

Definition 2.6: Let (X,τ) be a VTS and A= { $\langle x, [t_A, 1-f_A] \rangle$ } be vague set in X. Then the vague interior and a vague closure are defined by

Vint(A) = \bigcup {G/G is an VOS in X and G \subseteq A}

 $Vcl(A) = \cap \{K/K \text{ is an VCS in } X \text{ and } A \subseteq K \}$

Note that for any vague set A in (X,τ) , we have Vcl $(A^c)=(V \operatorname{int}(A))^c$ and Vint $(A^c)=(Vcl(A))^c$.

Example 2.7: We consider the vague topology. Let X={a,b} and let τ ={0,G,1} is an vague topology on X where G = {<x, [0.1, 0.5], [0.1, 0.6] >}. Here the only open set are 0,1 and G. If A= {<x, [0.1, 0.6], [0.1, 0.9] >} is a vague topology on X then,

Vint(A)= \cup {G/G is an VOS in X and G \subseteq A} =G

 $Vcl(A) = \cap \{K/K \text{ is an VCS in } X \text{ and } A \subseteq K\} = G^{c}$

Definition 2.8: A vague set A of (X,τ) , is said to be a,

- A vague pre-closed set if $Vcl(Vint(A)) \subseteq A$ (i)
- (ii) A vague semi-closed set if Vint (Vcl(A)) \subseteq A
- A vague regular- closed set if A=Vcl(Vint(A)) (iii)
- A vague α closed set Vcl(Vint(Vcl(A))) \subseteq A (iv)
- (v) A vague closed set if Vcl(A)=A

Definition 2.9: An vague set A in (X,τ) , is said to be a,

- Vague generalized closed set (briefly VGC) if Vcl(A) \subseteq U whenever A \subseteq U and U is an vague (i) open set in X
- Vague generalized semi-closed set (briefly VGSC) if Vscl(A) \subseteq U whenever A \subseteq U and U is (ii) vague open set in X
- Vague generalized pre closed set (briefly VGPC) if Vpcl(A) \subseteq U whenever A \subseteq U and U is vague (iii) JCRT open set in X

Properties 2.10: Let A be any Vague set in (X,τ) , then

- (i) Vint(1-A) = 1 - (Vcl(A)) and
- Vcl(1-A) = 1 (Vint(A))(ii)

Proof: (i) By definition $Vcl(A) = \bigcap \{K/K \text{ is an } VCS \text{ in } X \text{ and } A \subseteq K \}$

1-(Vcl(A)) = $1 - \bigcap \{K/K \text{ is an VCS in X and } A \subseteq K\}$

 $= \cup \{\{1-K/K \text{ is an VCS in } X \text{ and } A \subseteq K\}$

 $= \cup \{G/G \text{ is an VOS in X and } G \subseteq 1 - A\}$

=Vint(1-A)

(ii)The proof is similar to (i)

Theorem 2.11: Let (X,τ) , be a VS and let $A \in V(X)$. Then the following properties hold

- (i) $Vint(A) \subset A$
- (ii) $A \subset B \Rightarrow Vint(A) \subset Vint(B)$
- $Vint(A) \in \tau$ (iii)
- A is a vague open set \Leftrightarrow Vint(A)=A (iv)
- Vint (Vint(A)) =Vint(A) (v)
- Vint (0) =0, Vint (1) =1 (vi)
- $Vint(A \cap B) = Vint(A) \cap Vint(B)$ (vii)
- $(Vint(A))^{c} = Vcl(A^{c})$ (viii)

Proof: The proof is obvious.

Theorem 2.12: Let (X,τ) be a VS and let $A \in V(X)$. Then the following properties holds.

- (i) $(A) \subset Vcl(A)$
- (ii) $A \subset B \Rightarrow Vcl(A) \subset Vcl(B)$
- (iii) $Vcl(A)^c \in \tau$
- (iv) A is a vague closed set \Leftrightarrow Vcl(A)=A
- (v) Vcl(Vcl(A))=Vcl(A)
- (vi) Vcl(0)=0, Vcl(1)=1
- (vii) $Vcl(A\cup B) = Vcl(A) \cup Vcl(B)$
- (viii) $(Vcl(A))^c = Vint (A^c)$

Proof: The proof is obvious

3. VAGUE y GENERALIZED CLOSED SETS

In this section we have introduced vague γ generalized closed sets and studied some of their properties.

Definition 3.1: An vague set A in an vague topological spaces (X,τ) is said to be an vague γ generalized closed set $(V\gamma GCS \text{ for short}) V\gamma cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an $V\gamma OS$ in (X,τ) . The complement A^c of an $V\gamma GCS A$ in an VTS (X,τ) is called vague γ generalized open set $(V\gamma GOS \text{ in short})$ in X.

The family of all V γ GCSs of an vague topological spaces (X, τ) is denoted by V γ GC(X).

Example 3.2: Let X={a,b} and let $\tau = \{0,G,1\}$ is an VT on X where G={<x,[0.5,0.8][0.3,0.7]>}. Here the only γ open sets are 0, X, and G. Then the VS A= {<x,[0.4,0.9] [0.4,0.8]>} is an V γ GCS in (X, τ).

Theorem 3.3: Every VCS is an $\nabla \gamma GCS$ in (X, τ) but not conversely in general.

Proof: Let A be an VCS in X and let $A \subseteq U$ where U is an $V\gamma OS$ in X. As $\gamma cl(A) \subseteq cl(A) = A \subseteq U$, by hypothesis, we have $\gamma cl(A) \subseteq U$. Hence A is an $V\gamma GCS$ in

(X,**t**).

Example 3.4: Let the vague set $A = \{<x, [0.3, 0.7], [0.4, 0.5] > \}$ and $G = \{<[0.4, 0.7], [0.4, 0.6] > \}$ is an V γ GCS but not an VCS in (X, τ) as Vcl $(A) = 1 \neq A$.

Theorem 3.5: Every VRCS is an V γ GCS in (X, τ) but not conversely in general.

Proof:Let A be an VRCS. Since every VRCS is an VCS, by theorem 3.3, A is an V γ GCS in (X, τ).

Example 3.6: Let VS A = {<x,[0.3,0.6], [0.4,0.5]>} and G= {<x, [0.4,0.7][0.4,0.6]>} is an V γ GCS but not an VRCS in X as Vcl(int(A)) = 0 \neq A.

Theorem 3.7: Every VSCS is an V γ GCS in (X, τ) but not conversely in general.

Proof:Let A be an VSCS in X and let $A \subseteq U$ where U is an V γ OS in X. Since γ cl(A) \subseteq scl(A)=A \subseteq U, by hypothesis, we have γ cl(A) \subseteq U. Hence A is an V γ GCS in (X, τ).

Example 3.8: Let the vague set $A = \{ \langle x, [0.4, 0.8], [0.5, 0.6] \rangle \}$ and $G = \{ \langle x, [0.5, 0.8] [0.5, 0.7] \rangle \}$ is an V γ GCS but not an VSCS in X as int(cl(A)) = 1 $\not\subseteq$ A.

Theorem 3.9: Every VPCS is an V γ GCS in (X, τ) but not conversely in general.

Proof:Let A be an VPCS in X and let $A \subseteq U$ where U is an V γ OS in X. As γ cl(A) \subseteq pcl(A)=A \subseteq U, by hypothesis, we have γ cl(A) \subseteq U. Hence A is an V γ GCS in (X, τ).

Example 3.10: Let the vague set $A = \{ \langle x, [0.2, 0.7], [0.3, 0.5] \rangle \}$ and $G = \{ \langle [0.2, 0.7], [0.3, 0.5] \rangle \}$ is an V γ GCS but not an VPCS in X, as Vcl(int(A)) = G^c $\not\subseteq A$.

Theorem 3.11: Every V α CS is an V γ GCS in (X, τ) but not conversely in general.

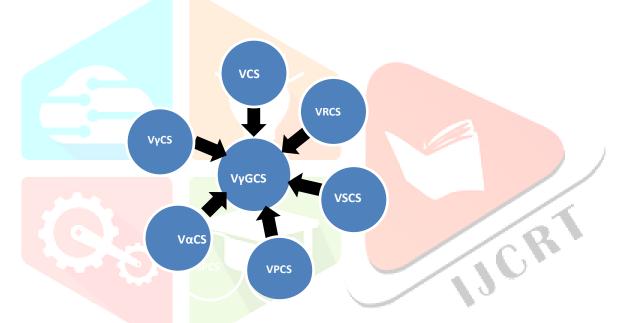
Proof: Let A be an V α CS in X and let A \subseteq U where U is an V γ OS in (X, τ). As γ cl(A) $\subseteq \alpha$ cl(A)=A \subseteq U, by hypothesis, we have γ cl(A) \subseteq U. Hence A is an V γ GCS in (X, τ).

Example 3.12: Let the VS A = {<x,[0.3,0.6],[0.1,0.5]>} and G={<x,[0.3,0.6],[0.2,0.8]>} is an V γ GCS but not an V α CS in X as Vcl(Vint(Vcl(A)))= G^c \nsubseteq A.

Theorem 3.13: Every V γ CS is an V γ GCS in (X, τ) but not conversely in general.

Proof:Let A be an V γ CS and let A \subseteq U where U is an V γ OS in (X, τ). Then γ cl(A)=A \subseteq U, by hypothesis, we have γ cl(A) \subseteq U. Hence A is an V γ GCS in (X, τ).

Example 3.14: Let the vague set $A = \{ \langle x, [0.2, 0.7], [0.3, 0.5] \rangle \}$ and $G = \{ \langle x, [0.2, 0.7], [0.3, 0.5] \rangle \}$ is an V γ CS but not an V γ GCS in X, as $cl(int(A)) \cap int(cl(A)) = 1 \not\subseteq A$.



The reverse implications are not true in general in the above diagram.

Remark 3.15: The union of any two V γ GCS is not an V γ GCS in general as seen in following example. **Example 3.16:** Let X = {a,b} and G₁ = {<x,[0.4,0.7],[0.4,0.5]>}, then $\tau_1 = \{0,G_1,1\}$ is a vague topological space on X and let $G_2 = \{<x,[0.3,0.8],[0.5,0.6]>\}$, then $\tau_2 = \{0,G_2,1\}$ is a vague topological space on X and let the vague set $A_1 = \{<x,[0.3,0.7],[0.4,0.5]>\}$ and $A_2 = \{<x,[0.2,0.7],[0.4,0.5]>\}$ are vague γ generalized closed set but the union of these two set is not vague γ generalized closed set in X.

Remark 3.17: The intersection of any two V γ GCS is not an V γ GCS in general as seen in the following example.

Example 3.18: Let $X = \{a,b\}$ and $G_1 = \{<x,[0.4,0.7],[0.4,0.5]>\}$ then $\tau_1 = \{0,G_1,1\}$ is a vague topological space on X and let $G_2 = \{<x,[0.3,0.8],[0.5,0.6]>\}$, then $\tau_2 = \{0,G_2,1\}$ is a vague topological space on X and let the vague set $A_1 = \{<x,[0.3,0.7],[0.4,0.5]>\}$ and $A_2 = \{<x,[0.2,0.7],[0.4,0.5]>\}$ are vague γ generalized closed set but the intersection of these two set is not vague γ generalized closed set in X.

Theorem 3.19: Let (X,τ) be an VTS.Then for every $A \in VYGC(X)$ and for every $B \in VS(X)$, $A \subseteq B \subseteq \gamma cl(A) \Longrightarrow B \in VYGC(X)$.

Proof: Let $B\subseteq U$ and U be an V γ OS in X. Then since, $A\subseteq B$, $A\subseteq U$. By hypothesis $B\subseteq \gamma cl(A)$. Therefore $\gamma cl(B)\subseteq \gamma cl(\gamma cl(A)) = \gamma cl(A)\subseteq U$, since A is an V γ GCS. Hence $B\in V\gamma$ GC(X).

Theorem 3.20: An vague set A of an VTS (X,τ) is an VYGCS V and only if $A_{\bar{q}}F \Longrightarrow \gamma cl(A)_{\bar{q}}F$ for every V γ CS F of X.

Proof: Necessity: Let F be an V γ CS and $A_{\bar{q}}$ F, then A \subseteq F^c, we know that "if two vague sets are said to be q-coincident(A_q B in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > v_B(x)$ or $v_A(x) < \mu_B(x)$ " where F^c is an V γ OS. Then γ cl(A) \subseteq F^c, by hypothesis. Then, γ cl(A) $_{\bar{q}}$ F.

Sufficiency: Let U be an V γ OS such that A \subseteq U. Then U^c is an V γ CS and A \subseteq (U^c)^c.By hypothesis, $A_{\bar{q}}$ U^c $\Rightarrow \gamma$ cl(A) $_{\bar{q}}$ U^c. Hence γ cl(A) \subseteq (U^c)^c=U. Therefore γ cl(A) \subseteq U. Hence A is an V γ GCS in X.

Theorem 3.21: If A is both an V γ OS and an V γ GCS in (X, τ) then A is an V γ CS in (X, τ).

Proof: Since $A \subseteq A$ and A is an V γ OS, by hypothesis $\gamma cl(A) \subseteq A$. But $A \subseteq \gamma cl(A)$. Therefore $\gamma cl(A)=A$. Hence A is an V γ CSin (X, τ).

Theorem 3.22: Let A be an V γ GCS in (X, τ) and $p_{(\alpha,\beta)}$ be an VP in X such that $p(\alpha,\beta)q\gamma cl(A)$ then $cl(p(\alpha,\beta))qA$.

Proof: Let A be an V γ GCS and let $p_{(\alpha,\beta)q}\gamma cl(A)$. Vcl $(p(\alpha, \beta))$ q⁻A, then by definition, A \subseteq [cl $(p_{(\alpha,\beta)})$]^c, where $[cl(p_{(\alpha,\beta)})]^c$ is an VOS then it is an V γ OS. Then by hypothesis, $\gamma cl(A) \subseteq [cl(p_{(\alpha,\beta)})]^c = int(p_{(\alpha,\beta)})^c \subseteq [p_{(\alpha,\beta)}]^c$. This

implies that $p_{(\alpha,\beta)q}\gamma cl(A)$, which is a contradiction to the hypothesis. Hence $cl(p_{(\alpha,\beta)})_qA$.

Theorem 3.23: Let $F \subseteq A \subseteq X$ where A is an $V\gamma OS$ and an $V\gamma GCS$ in X. Then F is an $V\gamma GCS$ in A if and only if F is an $V\gamma GCS$ in X.

Proof: Necessity: Let U be an V γ OS in X and F \subseteq U. Also let F be an V γ GCS in A. Then F \subseteq A \cap U and A \cap U is an V γ OS in A. Hence gamma closure of F in A, $\gamma cl_A(F) \subseteq A \cap U$ and by Theorem 3.21, A is an V γ CS. Therefore $\gamma cl(A)=A$. Now gamma closure of F in X, $\gamma cl(F) \subseteq \gamma cl(F) \cap \gamma cl(A)=\gamma cl_A(F) \subseteq A \cap U \subseteq U$. That is $\gamma cl(F) \subseteq U$, whenever F \subseteq U. Hence F is an V γ GCS in X.

Sufficiency: Let V be an VOS in A such that $F \subseteq V$. Since A is an $V\gamma OS$ in X, V is an $V\gamma OS$ in X. Therefore $\gamma cl(F) \subseteq V$, since F is an $V\gamma GCS$ in X. Thus, $\gamma cl_A(F) = \gamma cl(F) \cap A \subseteq V \cap A \subseteq V$. Hence F is an $V\gamma GCS$ in A.

Theorem 3.24: For an vague set A, the following conditions are equivalent:

- (i) A is an VOS and an $V\gamma GCS$
- (ii) A is an VROS

Proof: (i)⇒(ii)

Let A be an VOS and an V γ GCS. Then γ cl(A) \subseteq A as A \subseteq A and A is an V γ OS in X, but A $\subseteq \gamma$ cl(A). This implies that γ cl(A)=A.Therefore, A is an V γ CS and int(cl(A)) = int(cl(A)) \cap cl(A)) = int(cl(A)) \cap cl(int(A)) \subseteq A, by hypothesis. Hence int(cl(A)) \subseteq A. Since A is an VOS, it is an VPOS. Hence A \subseteq int(cl(A)). Therefore A=int(cl(A)). Hence A is an VROS.

(ii)**⇒**(i)

Let A be an VROS. Therefore A=int(cl(A)). Since every VROS is an VOS we have $int(cl(A)) \cap cl(int(A)) = A \cap cl(int(A)) = A \cap cl(A) = A \subseteq A$. Hence A is an V γ CS in X and thus A is an V γ GCS in X.

Theorem 3.25: For an VOS A in (X,τ) , the following conditions are equivalent:

- (i) A is an VCS
- (ii) A is an VYGCS and an VQ-set

Proof: $(i) \Rightarrow (ii)$ Since Α is an VCS, it is an VyGCS by Theorem 3.3. Now int(cl(A))=int(A)=A=cl(A)=cl(int(A)), by hypothesis. Hence A is an VQ-set.

(ii) \Rightarrow (i) Since A is an VOS and an VYGCS, by Theorem 3.24, A is an VROS. Therefore A=int(cl(A))

=cl(int(A)) =cl(A), by hypothesis. Hence A is an VCS in X.

Theorem 3.26: If a subset A of an VTS (X, τ) is nowhere dense, then it is an V γ GCS in (X, τ) .

Proof: If A is nowhere dense, then int(cl(A)) = 0. Let $A \subseteq U$ where U is an VF γ OS. Now $\gamma cl(A) \subseteq scl(A) = A \cup int(cl(A)) = A \cup 0 = A \subseteq U$ and hence A is an V γ GCS in (X,τ) .

Theorem 3.27: Let (X,τ) be an VTS. Then every vague set in (X,τ) is an V γ GCS if and only if V γ O $(X)=V\gamma$ C(X).

Proof: Necessity: Suppose that every vague set in (X,τ) is an V γ GCS in X. Let U \in V γ O(X), and by hypothesis, γ cl(U) \subseteq U \subseteq γ cl(U). This implies γ cl(U)=U. Therefore

U \in V γ C(X). Hence V γ O(X) \subseteq V γ C(X)(i). Let A \in V γ C(X), then A^c \in V γ O(X) \subseteq V γ C(X). That is, A^c \in V γ C(X). Therefore A \in V γ O(X). Hence V γ C(X) \subseteq V γ O(X). From (i) and (ii) V γ O(X)=V γ C(X)

Theorem 3.28: If A is an VROS and B is an V α CS, then A \cap B is an V γ GCS in (X, τ).

Proof: Let B be an V α CS and A be an VROS. Then cl(int(cl(B))) \subseteq B and int(cl(A)) = A. Therefore A \cap B \supseteq A \cap cl(int(cl(B))) = int(cl(A)) \cap cl(int(cl(B))) \supseteq int(cl(A)) \cap int(cl(B)) \perp int (cl (A \cap B)). We have int (cl(A \cap B)) \subseteq A \cap B. Hence A \cap B is an VSCS and by Theorem 3.7, A \cap B is an V γ GCS in (X, τ).

Theorem 3.29: If A is both an VROS and an V γ GCS in (X, τ) then A is an V γ -clopen set in (X, τ).

Proof: Let A be an VROS and an V γ GCS in (X, τ). Then A is an V γ OS and A \subseteq A, γ cl(A) \subseteq A, by hypothesis. But A $\subseteq \gamma$ cl(A). Therefore A = γ cl(A). Hence A is an V γ CS in (X, τ). Hence A is an V γ -clopen set in (X, τ).

Theorem 3.30: If A is both an V α OS and an V γ GCS in (X, τ) then A is an V β CS in (X, τ).

Proof:Let A be an V α OS. Then A is an V γ OS. As A \subseteq A, by hypothesis γ cl(A) \subseteq A. Since β cl(A) $\subseteq \gamma$ cl(A) $\subseteq A \subseteq \beta$ cl(A), A is an V β CS in (X, τ).

Theorem 3.31: An VS A of X is an V γ GCS V γ cl(A) \subseteq ker(A).

Proof: Let U be any VYOS such that $A \subseteq U$. By hypothesis γ cl(A) \subseteq ker(A) and since $A \subseteq U$, ker(A) $\subseteq U$. Therefore γ cl(A) $\subseteq U$ and hence A is an V γ GCS.

Theorem 3.32: If A is both an V γ OS and an V γ GCS in (X, τ) and suppose that F is an VCS in X. Then A \cap F is an V γ GCS in (X, τ).

Proof: Since A is an V γ OS and an V γ GCS in (X, τ), then by Theorem 3.23 A is an V γ CS in X. But F is an VCS in X. Therefore A \cap F is an V γ CS in X. Hence A \cap F is an V γ GCS in (X, τ).

Theorem 3.33: For an V γ GCS A in an VTS (X, τ), the following conditions hold:

- (i) If A is an VROS then scl(A) is an V γ GCS
- (ii) If A is an VRCS then sint(A) is an V γ GCS

Proof:(i) Let A be an VROS in (X, τ) . Then int(cl(A)) = A. By definition we have $scl(A) = A \cup int(cl(A)) = A$. Since A is an V γ GCS in X, scl(A) is an V γ GCS in X.

(ii)Let A be an VRCS in (X, τ) . Then cl(int(A)) = A. By definition we have $sint(A) = A \cap cl(int(A)) = A$. Since A is an V γ GCS in X, sint(A) is an V γ GCS in X.

Remark 3.34: Every VOS, VROS, VSOS, VPOS, V α OS, V γ OS, VSPOS in (X, τ) is an V γ GOS in (X, τ) but not conversely in general.

Proof: Straightforward.

Example 3.35: Obvious from examples 3.4, 3.6, 3.8, 3.10, 3.12, 3.14 and 3.16, by taking complement of A in the respective examples.

Theorem 3.36: Let (X, τ) be an VTS. Then for every $A \in V\gamma$ GO(X) and for every $B \in VS(X)$, γ int(A) $\subseteq B \subseteq A \Rightarrow B \in V\gamma$ GO(X).

Proof: Let A be any V γ GOS of X and B be any VS of X. Let γ int(A) \subseteq B \subseteq A. Then A^c is an V γ GCS and A^c \subseteq B^c $\subseteq \gamma$ cl(A^c). Therefore, B^c is an V γ GCS which implies B is an V γ GOS in X. Hence B \in V γ GO(X).

Theorem 3.37: An VS A of an VTS (X, τ) is an V γ GOS V and only V F $\subseteq \gamma$ int(A) whenever F is an V γ CS and F \subseteq A.

Proof: Necessity: Suppose A is an V γ GOS in X. Let F be an V γ CS such that F \subseteq A. Then F^c is an V γ OS and A^c \subseteq F^c. By hypothesis A^c is an V γ GCS, we have γ cl(A^c) \subseteq F^c. Therefore F $\subseteq \gamma$ int(A).

Sufficiency: Let F be an V γ CS such that F \subseteq A and F $\subseteq \gamma$ int(A). Then (γ int(A)) $^{c}\subseteq$ F^c and A^c \subseteq F^c. This implies that γ cl(A^c) \subseteq F^c, where F^c is an V γ OS. Therefore, A^c is an V γ GCS. Hence A is an V γ GOS in X.

Theorem 3.38: Let (X, τ) be an VTS. Then for every $A \in VS(X)$ and for every $B \in V\beta O(X)$, $B \subseteq A \subseteq int(cl(int(B))) \Rightarrow A \in V\gamma GO(X)$.

Proof: Let B be an $V\beta$ OS. Then B \subseteq cl(int(cl(B))). By hypothesis, A \subseteq int(cl(int(cl(int(cl(B)))))) \subseteq int(cl(int(cl(int(cl(B)))))) \subseteq int(cl(int(cl(B))))) \subseteq int(cl(int(cl(B))))) \subseteq int(cl(int(cl(A)))) \subseteq int(cl(A)) as B \subseteq A. Therefore, A is an VPOS and by Theorem 3.36, A is an V γ GOS. Hence A \in V γ GO(X).

Theorem 3.39: Let (X,τ) be an VTS. Then for every $A \in VS(X)$ and for every $B \in VRC(X)$, $B \subseteq A \subseteq int(cl(B)) \Rightarrow A \in VYGO(X).$ $B \in VRC(X)$

Proof: Let B be an VRCS. Then B = cl(int(B)). By hypothesis, $A \subseteq int(cl(B)) \subseteq int(cl(int(B))) = int(cl(int(A))) \cong int(cl(int(A)))$ as $B \subseteq A$. Therefore, A is an V α OS and by Theorem 3.36, A is an V γ GOS. Hence $A \in V\gamma$ GO(X).

Theorem 3.40: Let (X, τ) be an VTS then for every $A \in VSPO(X)$ and for every VS B in X, $A \subseteq B \subseteq cl(A) \Rightarrow B \in V\gamma GO(X)$.

Proof: Let A be an VSPOS in X. Then there exists an VPOS, (say) C such that $C \subseteq A \subseteq cl(C)$. By hypothesis, $A \subseteq B$. Therefore $C \subseteq B$. Since $A \subseteq cl(C)$, $cl(A) \subseteq cl(C)$ and $B \subseteq cl(C)$, by hypothesis. Thus $C \subseteq B \subseteq cl(C)$. This implies B is an VSPOS. As every VSPOS is an VYGOS by Theorem 3.36, $B \in VYGO(X)$.

Theorem 3.41: If A is an VYCS and an VYGOS in (X, τ) then A is an VYOS in (X, τ) .

Proof: As $A \supseteq A$, by hypothesis γ int(A) $\supseteq A$. But we have $A \supseteq \gamma$ int(A). This implies $A = \gamma$ int(A). Hence A is an V γ OS in X.

Theorem 3.42: Let (X,τ) be an VTS. Then for every $A \in VS(X)$ and for every $B \in VSO(X)$, $B \subseteq A \subseteq int(cl(B)) \Rightarrow A \in VYGO(X)$.

Proof: Let B be an VSOS in X. Then $B \subseteq cl(int(B))$. By hypothesis, $A \subseteq int(cl(B)) \subseteq int(cl(int(B))) = int(cl(int(A)))$ as $B \subseteq A$. Therefore, A is an V α OS and by Theorem 3.36, A is an V γ GOS. Hence $A \in V\gamma$ GO(X).

Theorem 3.43: If A is an VRCS and B is an V α OS, then A \cup B is an V γ GOS in (X, τ).

Proof: Let B be an V α OS and A be an VRCS. Then B \subseteq int(cl(int(B))) and cl(int(A)) = A. Therefore A \cup B \subseteq A \cup int(cl(int(B))) = cl(int(A)) \cup int(cl(int(B))) \subseteq cl(int(A)) \cup cl(int(B)) \subseteq cl(int(A \cup B)). We have A \cup B \subseteq cl(int(A \cup B)). Therefore A \cup B is an VSOS and by Theorem 3.36, A \cup B is an V γ GOS in X.

Theorem 3.44: If an vague set A of an VTS X is both an VCS and an VGOS, then A is an V γ GOS in (X, τ).

Proof: Suppose A is both an VCS and an VGOS. Then as $A \subseteq A$, by hypothesis $A \subseteq int(A)$. But $int(A) \subseteq A$. Therefore int(A) = A. We have A is an VOS, since every VOS is an V γ GOS. Hence A is an V γ GOS in X.

REFERENCES

- 1. Arya.S, Nour.T, Characterizations of s- normal spaces, Indian J. Pure Appl. Math.21(1990), 87-96.
- 2. Atanassov. K., Intuitionistic fuzzy Set, Fuzzy set and system ,20(1986), 87-96
- 3. Bhattacharya. P, Lahiri. B.K, Semi generalized closed sets in topology, Indian J. Math .29(1987) 375-382.
- 4. Borumandsaeid. A and Zarandi. A., Vague sets theory applied to BM- Algebras. International Journal of algebra, 5,5(2011), 207-222
- 5. Bustince. H, Burillo. P., Vague sets are intuitionistic fuzzy sets, fuzzy sets and systems, 79(1996), 403-405.
- 6. Dontchev. J, on generating semi- preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math.16(1995) 35-48
- 7. Gau. W.L, Buehrer. D.J., Vague sets, IEEE Trans, Systems Man and Cybernet, 23(2) (1993), 610-614
- 8. Levine. N, generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19(1970) 89-96
- 9. Levine. N, Semi-open sets ans semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963) 36-41
- 10. Maki.H, Balachandran. K, Devi. R, Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 15(1994) 51-63
- 11. Maki.H, Devi. R, Balachamdran. K, Generalized α- closed sets in topology, Bull. Fukuoka Univ.Ed. part III 42(1993) 13-21
- 12. Mashhour.A. S, Abed. El- Monsef.M. E and El- Deeb. S. N, On pre continuous mappings and weak pre-continuous mappings, Proc Math, Phys. Soc. Egypt 53(1982) 47-53
- 13. Mashhour. A.S., Hasanein I.A and El- Deeb S.N., α-continuous and α-open mapping., Acta Math. Hung, 41(3-4) (1983) 213-218
- 14. Moiodtsov .D., Soft set theory-rst results, Comput. Math.App.37(4-5)(1999), 19-31
- 15. Pawlak.Z., Rough sets, Int.J. Inf. Comp.Sci.11(1982), 341-356
- Stone.M, Application of the theory of Boolean rings to general topology, Trans .Amer. Math. Soc. 41(1937) 374-481
- 17. Zadeh, L.A., Fuzzy Sets, Information and control, 1965, 338-35.
- 18. L.Mariapresenti and I.Arockia Rani, Vague generalized alpha closed sets in topological spaces, International Journal of Mathematics Archive, Vol.7, No.8, 2016, 23-29