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1.Introduction:

Lotfi A.Zadeh [17]a professor of electrical engineering with the University of California at Berkeley,
published the first papers on his new theory of Fuzzy sets and Systems in the year 1965. Zadeh [17] is widely
known as the father of a mathematical framework called fuzzy logic which was an early approach to artificial
intelligence. In early 90’s Gau’s and Buehrer [7] introduced the notion of vague sets. Intuitionistic fuzzy sets
have been introduced by Krassimir Atanassov [2] (1983) as an extension of Lotfi Zadeh’s notion of fuzzy set,
which itself extends the classical notion of a set. In topology, the concept of vague y generalized closed sets
extends the traditional notion of closed sets in a topological space. These sets are characterized by a specific
closure operator, denoted by y, which introduces a broader perspective on the closure operation. The term
“vague” implies a more flexible and generalized closure property, allowing for a nuanced understanding of
closed sets beyond the classical definition. Exploring vague y generalized closed sets contributes to a richer
comprehension of topological structures and their properties, offering a valuable perspective for researchers
and practitioners in the field.

2. Preliminaries

Definition 2.1[4]: A vague set A in the universe of discourse U is characterized by two membership functions
given by:

(i) A true membership function t,:U — [0,1] and
(i) A false membership function f,:U — [0,1]

Where t4(x) is a lower bound on the grade of membership of x derived from the “evidence for x”, f;(x) is a
lower bound on the negation of x derived from the “evidence for x”, and t,4(x)+ f4(x)<1. Thus, the grade of
membership of u in the vague set A is bounded by a subinterval [t4(x),1-f4(x)] of [0,1]. This indicates that if
the actual grade of membership of x is p(x), then, t,(x)<u(x)<1-f4(x). The vague set A is written as A= {<x,
[ta(X),1-f4(X)]>/ueU} where the interval [t4(X),1-f4(X)] is called the vague value of x in A, denoted by V,(x).
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Definition 2.2[7]: Let A and B be vague sets of the form A= {<x, [t,(x),1-f4(X)|>/x€eX} and B= {<x, [t5(x),1-
fe(xX)]>/xeX} then

(1)ACB if and only if t4(x)< tg(x) and 1-f4(x)< 1-f5(x) for all xeX
(ii))A=B if and only if ACB and BEA

(iii) A= {<x, £ (X), 1t (X)>/x€ X}

(iv)ANB= {<x, min(t,(x), tp(x)), min(1-f4(x),1-fz(x))>/xeX}
(VAUB= {<x, ( ta(x)VE5(x), (1-fs(x)V1-f5(x))>/xeX}

For the sake of simplicity, we shall use the notation A= {<x,[ts,1-f4;>} instead of A= {<x,[ts(x),1-
fa(o)I>/xeX}.

Definition 2.3: A subset A of a topological space (X,7) is called
(1) Apreclosed set [13] if cl(int(A)) SA
(i) A semi-closed set [9] if int(cl(A)) SA
(ii1) A regular closed set [18] if A =cl(int(A))
(iv) A a-closed set [14] if cl(int(cl(A)))SA
(V) Aclosed set if cl(A)=A
Definition 2.4: A subset A of a topological space (X,7) is called

Q) A generalized closed set (briefly g- closed) [8] if cl(A)SU whenever ACU and U is an openset in
X

(i) A generalized closed set (briefly sg- closed) [3] if scl(A) € U whenever ACU  and U is semi-
open set in X

(ifi)) A generalized semi-closed set (briefly gs-closed) [1] if scl(A) €U whenever ACU and U is open
setin X

(iv) A generalized semi pre closed set (briefly gsp-closed) [6] if spcl(A) SU whenever ACU and U is
open set in X

(v) A generalized pre closed set (briefly qp-closed) [4] if pcl(A) €U whenever ACU and U is open

setin X

(vi) A generalized a-closed set (briefly ga-closed) [11] if acl(A) SU whenever ACU and U is a-open
setin X

(vil) A o-generalized closed set (briefly ag-closed) [10] acl(A) €U whenever ACU and U is open set
in X.

Definition 2.5: A vague topology (VT in short) on X is a family t of vague sets in X satisfying the following
axioms.

(i) Olert
(i) GiNG, €T, forany Gy G, €T
(ilf) U G; € 7 for any family {G;/i€J} S T

In this case the pair (X,7) is called a Vague topological space (VTS in short) and any vague set in 7 is known
as a Vague open set (VOS in short) in X.

The complement A€ of a vague open set A in a Vague topological space (X,7) is called a vague closed set
(VCS in short) in X.
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Definition 2.6: Let (X,7) be a VTS and A= {<x, [t4,1-f4]>} be vague set in X. Then the vague interior and a
vague closure are defined by

Vint(A) = U{G/G is an VOS in X and GSA}
Vcel(A)=N{K/K is an VCS in X and ASK}
Note that for any vague set A in (X,7), we have Vcl (A°)=(V int(A))€ and Vint (A°)=(Vcl(A)).¢

Example 2.7: We consider the vague topology. Let X={a,b} and let t={0,G,1} is an vague topology on X
where G ={<x,[0.1,0.5],[0.1,0.6]>}. Here the only open set are 0,1 and G. If A= {<x, [0.1,0.6] [0.1,0.9]>} is
a vague topology on X then,

Vint(A)= U{G/G is an VOS in X and GEA} =G
Vcel(A)= N{K/K is an VCS in X and ACK} =G°
Definition 2.8: A vague set A of (X,7), is said to be a,

Q) A vague pre-closed set if Vcl(Vint(A)) SA
(i) Awvague semi-closed set if Vint (Vcl(A)) CA
(ili)) A vague regular- closed set if A=Vcl(Vint(A))
(iv)  Avague a closed set Vcl(Vint(Vcl(A))) €A
(V) A vague closed set if Vcl(A)=A

Definition 2.9: An vague set A in (X,7), is said to be a,

(i) Vague generalized closed set (briefly VGC) if Vcl(A)ESU whenever ACU and U is an vague
open set in X

(i) Vague generalized semi-closed set (briefly VGSC) if Vscl(A) €U whenever ACU and U is
vague open set in X

(iii) Vague generalized pre closed set (briefly VGPC) if Vpcl(A) €U whenever ACU and U is vague

open set in X
Properties 2.10: Let A be any Vague set in (X,7), then

Q) Vint(1-A) =1-(Vcl(A)) and
(ii) Vel(1-A) =1-(Vint(A))

Proof: (i) By definition Vcl(A)= N{K/K is an VCS in X and ASK}
1-(Vcl(A)) =1 —n{K/K is an VCS in X and ACK}
=U{{l1-K/K is an VCS in X and ACK}
=U{G/Gisan VOS in X and GE 1 —A}
=Vint(1-A)
(i1)The proof is similar to (1)

Theorem 2.11: Let (X,7), be a VS and let A €V(X). Then the following properties hold

(i) Vint(A) c A

(i) AcB = Vint(A) c Vint(B)

(iii) Vint(A) € T

(iv) A is a vague open set & Vint(A)=A
(V) Vint (Vint(A)) =Vint(A)

(vi) Vint (0) =0, Vint (1) =1

(vii) Vint(ANB) = Vint(A)N Vint(B)

(i) (Vint(A))°=Vel (4
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Proof: The proof is obvious.

Theorem 2.12: Let (X,7) be a VS and let A€ V(X). Then the following properties holds.

0] (A) c Vcl(A)

(i) AcB = Vcl(A) c Vcl(B)

(i) Vcl(A)‘ et

(iv) A is a vague closed set & Vcl(A)=A
(v) Vel(Vel(A)=Vel(A)

(vi) Vel(0)=0, Vel(1)=1

(vii) Vcl(AUB) = Vcl(A)U Vcl(B)

(viii) (Vcl(A))“=Vint (4A°)
Proof: The proof is obvious
3. VAGUE y GENERALIZED CLOSED SETS
In this section we have introduced vague y generalized closed sets and studied some of their properties.
Definition 3.1: An vague set A in an vague topological spaces (X,7) is said to be an vague y generalized closed

set (VYGCS for short) Vycl(A)SU whenever ACU and U is an VyOS in (X,1). The complement A° of an
VyGCS Ain an VTS (X,7) is called vague y generalized open set (VyGOS in short) in X.

The family of all VyGCSs of an vague topological spaces (X,1) is denoted by VyGC(X).

Example 3.2: Let X={a,b} and let 7 ={0,G,1} is an VT on X where G={<x,[0.5,0.8][0.3,0.7]>}. Here the
only y open sets are 0, X, and G. Then the VS A= {<x,[0.4,0.9] [0.4,0.8]>} is an VYGCS in (X,1).

Theorem 3.3: Every VCS is an VyGCS in (X,t) but not conversely in general.

Proof: Let Abe an VCS in X and let ASU where U is an VyOS in X. As ycl(A)Scl(A)=ACU, by hypothesis,
we have ycl(A)SU. Hence A is an VyYGCS in

(X,1).

Example 3.4: Let the vague set A = {<x,[0.3,0.7],[0.4,0.5]>} and G={<[0.4,0.7],[0.4,0.6]>} is an VyGCS
but not an VCS in (X, 1) as Vcl(A) = 1#£A.

Theorem 3.5: Every VRCS is an VyGCS in (X,7) but not conversely in general.

Proof:Let A be an VRCS. Since every VRCS is an VCS, by theorem 3.3, A is an VYGCS in (X,1).

Example 3.6: Let VS A = {<x,[0.3,0.6], [0.4,0.5]>} and G= {<x, [0.4,0.7][0.4,0.6]>} is an VyYGCS but not an
VRCS in X as Vcl(int(A)) = 0 # A.

Theorem 3.7: Every VSCS is an VyYGCS in (X,t) but not conversely in general.

Proof:Let A be an VSCS in X and let A € U where U is an VyOS in X. Since ycl(A)Sscl(A)=A<c U, by
hypothesis, we have ycl(A) € U. Hence A is an VYGCS in (X,1).

Example 3.8: Let the vague set A = {<x,[0.4,0.8], [0.5,0.6]>} and G={<x,[0.5,0.8][0.5,0.7]>} is an VyGCS
but not an VSCS in X as int(cl(A)) = 1Z A.

Theorem 3.9: Every VPCS is an VyYGCS in (X,t) but not conversely in general.

Proof:Let A be an VPCS in X and let A € U where U is an VyOS in X. As ycl(A)Spcl(A)=Ac U, by
hypothesis, we have ycl(A) € U. Hence A is an VYGCS in

(X,7).
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Example 3.10: Let the vague set A = {<x,[0.2,0.7], [0.3,0.5]>} and G={<[0.2,0.7][0.3,0.5]>} is an VyGCS
but not an VPCS in X, as Vcl(int(A)) = G°ZA.
Theorem 3.11: Every VaCS is an VYGCS in (X,1) but not conversely in general.

Proof: Let A be an VaCS in X and let ACU where U is an VyOS in (X,1). As ycl(A)Cacl(A)=ACU, by
hypothesis, we have ycl(A) € U. Hence A is an VYGCS in (X,1).

Example 3.12: Let the VS A = {<x,[0.3,0.6],[0.1,0.5]>}and G={<x,[0.3,0.6],[0.2,0.8]>} is an VyGCS but not
an VaCS in X as Vel(Vint(Vcl(A)))= G°ZA.
Theorem 3.13: Every VyCS is an VyGCS in (X,1) but not conversely in general.

Proof:Let A be an VyCS and let AS U where U is an VyOS in (X,1). Then ycl(A)=ACU, by hypothesis, we
have ycl(A)CU. Hence A is an VYGCS in

(X,).

Example 3.14: Let the vague set A={<x,[0.2,0.7],{0.3,0.5]>} and G = {<x,[0.2,0.7][0.3,0.5]>} is an VyCS
but not an VyGCS in X, as cl(int(A)) N int(cl(A)) = 1 ZA.

The reverse implications are not true in general in the above diagram.

Remark 3.15: The union of any two VyGCS is not an VyGCS in general as seen in following example.
Example 3.16: Let X = {a,b} and G = {<x,[0.4,0.7],[0.4,0.5]>}, then 7; ={0,G4,1} is a vague topological
space on X and let G,={<x,[0.3,0.8],[0.5,0.6]>}, then 7,={0,G,,1} is a vague topological space on X and let
the vague set A;={<x,[0.3,0.7],[0.4,0.5]>} and A,={<x,[0.2,0.7],[0.4,0.5]>} are vague y generalized closed
set but the union of these two set is not vague y generalized closed set in X.

Remark 3.17: The intersection of any two VyGCS is not an VyGCS in general as seen in the following
example.

Example 3.18: Let X = {a,b} and G; = {<x,[0.4,0.7],[0.4,0.5]>} then 7, ={0,G4,1} is a vague topological
space on X and let G,={<x,[0.3,0.8],[0.5,0.6]>}, then 7,={0,G,,1} is a vague topological space on X and let
the vague set A;={<x,[0.3,0.7],[0.4,0.5]>} and A,={<x,[0.2,0.7],[0.4,0.5]>} are vague y generalized closed
set but the intersection of these two set is not vague y generalized closed set in X.

Theorem 3.19: Let (X,t) be an VTS.Then for every AEVYGC(X) and for every
BeVS(X), AcBCycl(A)=BeVYGC(X).
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Proof: Let BEU and U be an VyOS in X. Then since, ACB, ACU. By hypothesis BSycl(A). Therefore Y
cl(B)Sycl(Yel(A)) =Ycl(A)CSU, since A is an VyGCS. Hence BEVYGC(X).

Theorem 3.20: An vague set A of an VTS (X,1) is an VYGCS V and only if AzF=ycl(4)4F for every VyCS
F of X.

Proof: Necessity: Let F be an VyCS and AgF, then ACF¢,we know that “if two vague sets are said to be g-
coincident(A,B in short) if and only if there exists an element x€X such that p,(x)>vg(x) or

V4 (x)<up(x)”where F¢ is an VyOS. Then ycl(A)<S F¢, by hypothesis. Then, ycl(4)4F.

Sufficiency: Let U be an VyOS such that ACU. Then U® is an VyCS and AS(U®°.By hypothesis,
AzU=ycl(A)zU°. Hence ycl(A)S(U%)*=U. Therefore ycl(A)SU. Hence A is an VyYGCS in X.

Theorem 3.21: If A is both an VYOS and an VyGCS in (X,t) then A is an VyCS in (X,7).

Proof: Since ACA and A is an VyOS, by hypothesis ycl(A)SA. But A Sycl(A). Therefore ycl(A)=A. Hence
Ais an VyCSin (X,7).

Theorem 3.22: Let A be an VYGCS in (X,t) and p(p) be an VP in X such that

p(a,B)qyel(Ajthen cl(p(a,p))qA.

Proof: Let A be an VyYGCS and let pp)qycl(A). Vel(p(a, B)) ¢A, then by definition, AS[cl(p.p))]¢, where
[cl(pp))]¢ 1s an VOS then it is an VyOS. Then by hypothesis, ycl(A)S[cl(p.p))] =int(p.p)) S [pwp)]°. This
implies that p(p)gycl(A), which is a contradiction to the hypothesis. Hence cl(p(a.p))qA.

Theorem 3.23: Let FEACSX where A is an VyOS and an VyGCS in X. Then F is an VYGCS in A if and only
if F is an VyGCS in X.

Proof: Necessity: Let U be an VYOS in X and FEU. Also let F be an VyGCS in A. Then FEANU and ANU
is an VyOS in A. Hence gamma closure of F in A, ycla(F)©ANU and by Theorem 3.21, A is an VyCS.
Therefore ycl(A)=A. Now gamma closure of F in X, ycl(F)Sycl(F)Nycl(A)=yc(F)NA=ycla(F)SANUCU.
That is ycl(F)SU, whenever FEU. Hence F is an VyGCS in X.

Sufficiency: Let V be an VOS in A such that FEV. Since A is an VyOS in X, V is an VyOS in X. Therefore
vel(F)EV, since F is an VyGCS in X. Thus, ycla(F)=ycl(F)NASVNACV. Hence F is an VyYGCS in A.

Theorem 3.24: For an vague set A, the following conditions are equivalent:

Q) Ais an VOS and an VyGCS
(i)  Aisan VROS

Proof: (i)=(ii)

Let Abe an VOS and an VYGCS. Then Ycl(A)cA as A €A and Ais an VYOS in X, but ASycl(A). This implies
that Ycl(A)=A.Therefore, A is an VYCS and int(cl(A)) = int(cl(A))Ncl(A)) = int(cl(A))Ncl(int(A)) €A, by
hypothesis. Hence int(cl(A))SA. Since A is an VOS, it is an VPOS. Hence ACint(cl(A)). Therefore
A=int(cl(A)). Hence A is an VROS.

(i)=(1)
Let A be an VROS. Therefore A=int(cl(A)). Since every VROS is an VOS we have int(cl(A))Ncl(int(A)) =A
Ncl(int(A)) =Ancl(A)=AZSA. Hence A is an VyCS in X and thus A is an VyGCS in X.

IJCRT2402459 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d902


http://www.ijcrt.org/

www.ijcrt.org © 2024 |JCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

Theorem 3.25: For an VOS A in (X,7), the following conditions are equivalent:

Q) Aisan VCS
(i) Ais an VYGCS and an VQ-set

Proof: (i)=(i) Since A is an VCS, it is an VyGCS by Theorem 3.3. Now
int(cl(A))=int(A)=A=cl(A)=cl(int(A)), by hypothesis. Hence A is an VQ-set.

(i1))=(i) Since A is an VOS and an VYGCS, by Theorem 3.24, A is an VROS. Therefore A=int(cl(A))
=cl(int(A)) =cl(A), by hypothesis. Hence A is an VCS in X.

Theorem 3.26: If a subset A of an VTS (X, 1) is nowhere dense, then it is an VYGCS in (X,7).

Proof: If A is nowhere dense, then int(cl(A)) =0. Let A € U where U is an VFyOS.

Now Ycl(A)ESscl(A) = AUint(cl(A)) = A U 0=A € U and hence A is an VyGCS in (X,7).

Theorem 3.27: Let (X,1) be an VTS. Then every vague set in (X,r) is an VyGCS if and only if
VyO(X)=VyC(X).

Proof: Necessity: Suppose that every vague set in (X,t) is an VYGCS in X. Let UEVyO(X), and by hypothesis,
yel(U)cU<ycl(U). This implies ycl(U)=U. Therefore

UeVyC(X). Hence VYO(X)cVyC(X)(i). Let AEVYC(X), then A°€VyO(X)=VyC(X). That is, A‘€VyC(X).
Therefore AEVyO(X). Hence VyC(X) €VyO(X). From (i) and (ii) VYO(X)=VyC(X)

Theorem 3.28: If A is an VROS and B is an VaCS, then A N B is an VyYGCS in (X, 1).

Proof: Let B be an VaCS and A be an VROS. Then cl(int(cl(B))) € B and int(cl(A)) = A. Therefore AN B 2
A N cl(int(cl(B))) = int(cl(A)) N cl(int(cl(B))) 2 int(cl(A)) N int(cl(B)) =int (cl (A NB)). We have int (cl(A N
B) € AnB. Hence A NB is an VSCS and by Theorem 3.7, ANB is an VyGCS in (X, 7).

Theorem 3.29: If A is both an VROS and an VyYGCS in (X, t) then A is an Vy-clopen setin (X, 1).

Proof: Let A be an VROS and an VYGCS in (X, 1). Then A is an VYOS and A € A, Ycl(A) € A, by hypothesis.
But A SYcl(A). Therefore A = Ycl(A). Hence A is an VYCS in (X, t). Hence A is an Vyy-clopen set in (X, 1).

Theorem 3.30: If A is both an VaOS and an VYGCS in (X, 1) then A is an VBCS in (X, 1).

Proof:Let A be an VaOS. Then A is an VYOS. As A € A, by hypothesisYcl(A) € A. Since Bcl(A) € ycl(A)<
ACSBcl(A), Ais an VBCS in (X, 1).

Theorem 3.31: An VS A of X is an VYGCS V ycl(A) € ker(A).

Proof: Let U be any VYOS such that A € U. By hypothesisycl(A) < ker(A) and since A € U, ker(A) € U.
Therefore ycl(A) € U and hence A is an VyGCS.

Theorem 3.32: If A is both an VYOS and an VyGCS in (X, 1) and suppose that F is an VCS in X. Then AN F
is an VYGCS in (X, 1).

Proof: Since A is an VyOS and an VyGCS in (X, 1), then by Theorem 3.23 A is an VyCS in X. But F is an
VCS in X. Therefore AN F is an VyCS in X. Hence AN F is an VYGCS in (X, 1).

Theorem 3.33: For an VYGCS A in an VTS (X,7), the following conditions hold:
Q) If A'is an VROS then scl(A) is an VYGCS

(i) If A is an VRCS then sint(A) is an VyGCS
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Proof:(i) Let A be an VROS in (X, 7). Then int(cl(A)) = A. By definition we have scl(A) = A Uint(cl(A)) = A.
Since A is an VYGCS in X, scl(A) is an VYGCS in X.

(i1)Let Abe an VRCS in (X, 7). Then cl(int(A)) = A. By definition we have sint(A) = ANcl(int(A)) = A. Since
Ais an VyYGCS in X, sint(A) is an VyGCS in X.

Remark 3.34: Every VOS, VROS, VSOS, VPOS, VaOS, VyOS, VSPOS in (X, 1) is an VYGOS in (X, 1) but
not conversely in general.

Proof: Straightforward.

Example 3.35: Obvious from examples 3.4, 3.6, 3.8, 3.10, 3.12, 3.14 and 3.16, by taking complement of A in
the respective examples.

Theorem 3.36: Let (X, 7) be an VTS. Then for every A € Vy GO(X) and for every B € VS(X), y int(A) € B
C A= B € Vy GO(X).

Proof: Let A be any Vy GOS of X and B be any VS of X. Let y int(A) € B € A. Then A® is an Vy GCS and
A°C B°C y cl(A°). Therefore, B® is an Vy GCS which implies B is an Vy GOS in X. Hence B € Vy GO(X).

Theorem 3.37: An VS A of an VTS (X, ) is an Vy GOS V and only V F € y int(A) whenever F is an VyCS
and F C A.

Proof: Necessity: Suppose A is an Vy GOS in X. Let F be an VyCS such that F € A. Then F° is an VyOS and
A°C F°. By hypothesis A® is an Vy GCS, we have y cl(A®) € F¢. Therefore F € y int(A).

Sufficiency: Let F be an VyCS such that F € A and F € y int(A). Then (y int(A)) °€ F° and A°C F°. This
implies that y cl(A°) € F¢, where F¢ is an VyOS. Therefore, A° is an Vy GCS. Hence A is an Vy GOS in X.

Theorem 3.38: Let (X, 7) be an VTS. Then for every A € VS(X) and for every B e Vp O(X),
B € A C int(cl(int(B))) = A € Vy GO(X).

Proof: Let B be an VS OS. Then B Ccl(int(cl(B))). By hypothesis, A C int(cl(int(B))) <
int(cl(int(cl(int(cl(B)))))) € int(cl(cl(int(cl(B))))) = int(cl(int(cl(B)))) € int(cl(cl(A))) € int(cl(A)) as B € A.
Therefore, A is an VPOS and by Theorem 3.36, A is an Vy GOS. Hence A € Vy GO(X).

Theorem 3.39: Let (X,7) be an VTS. Then for every A € VS(X) and for every B € VRC(X),
B c A cint(cl(B)) = A € VYGO(X).

Proof: Let B be an VRCS. Then B = cl(int(B)). By hypothesis, A € int(cl(B)) < int(cl(cl(int(B)))) =
it(cl(int(B))) < int(cl(int(A))) as B < A. Therefore, A is an VaOS and by Theorem 3.36, A is an VYGOS.
Hence A € VYGO(X).

Theorem 3.40: Let (X, 7) be an VTS then for every A € VSPO(X) and for every VS B in X, A< B ccl(A)
= B € V¥GO(X).

Proof: Let A be an VSPOS in X. Then there exists an VPOS, (say) C such that C € A c cl(C). By hypothesis,
Ac B. Therefore C < B. Since A < cl(C), cl(A) € cl(C) and B < cl(C), by hypothesis. Thus C € B < cl(C).
This implies B is an VSPOS. As every VSPOS is an V¥GOS by Theorem 3.36, B € VYGO(X).

Theorem 3.41: If A is an VYCS and an VYGOS in (X, 1) then A is an VYOS in (X, 7).

Proof: As A 2 A, by hypothesis ¥int(A)2 A. But we have A = Yint(A). This implies A = ¥int(A). Hence A is
an VYOS in X.

Theorem 3.42: Let (X,7) be an VTS. Then for every A € VS(X) and for every B € VSO(X),
B c A cint(cl(B)) = A € VYGO(X).
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Proof: Let B be an VSOS in X. Then B € cl(int(B)). By hypothesis, A < int(cl(B)) € int(cl(cl(int(B)))) =
int(cl(int(B))) < int(cl(int(A))) as B < A. Therefore, A is an VaOS and by Theorem 3.36, A is an VYGOS.
Hence A € VYGO(X).

Theorem 3.43: If A is an VRCS and B is an VaOS, then AU B is an VYGOS in (X, 1).

Proof: Let B be an VaOS and A be an VRCS. Then B < int(cl(int(B))) and cl(int(A)) = A. Therefore AUB <
A Uint(cl(int(B))) = cl(int(A))Uint(cl(int(B)))Scl(int(A))U cl(int(B)) < cl(int(A U B)). We have A U B
cl(int(A U B)). Therefore A U B is an VSOS and by Theorem 3.36, A U B is an VyGOS in X.

Theorem 3.44:1f an vague set A of an VTS X is both an VCS and an VGOS, then A is an VyGOS in (X, 1).

Proof: Suppose A is both an VCS and an VGOS. Then as A € A, by hypothesis A € int(A). But int(A) € A.
Therefore int(A) = A. We have A is an VOS, since every VOS is an VyGOS. Hence A is an VYGOS in X.
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