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1.Introduction: 

             Lotfi A.Zadeh [17]a professor of electrical engineering with the University of California at Berkeley, 

published the first papers on his new theory of Fuzzy sets and Systems in the year 1965. Zadeh [17] is widely 

known as the father of a mathematical framework called fuzzy logic which was an early approach to artificial 

intelligence. In early 90’s Gau’s and Buehrer [7] introduced the notion of vague sets. Intuitionistic fuzzy sets 

have been introduced by Krassimir Atanassov [2] (1983) as an extension of Lotfi Zadeh’s notion of fuzzy set, 

which itself extends the classical notion of a set. In topology, the concept of vague γ generalized closed sets 

extends the traditional notion of closed sets in a topological space. These sets are characterized by a specific 

closure operator, denoted by γ, which introduces a broader perspective on the closure operation. The term 

“vague” implies a more flexible and generalized closure property, allowing for a nuanced understanding of 

closed sets beyond the classical definition. Exploring vague γ generalized closed sets contributes to a richer 

comprehension of topological structures and their properties, offering a valuable perspective for researchers 

and practitioners in the field. 

2. Preliminaries 

Definition 2.1[4]: A vague set A in the universe of discourse U is characterized by two membership functions 

given by: 

(i)  A true membership function  𝑡𝐴:U → [0,1] and 

(ii) A false membership function 𝑓𝐴:U → [0,1] 

Where 𝑡𝐴(x) is a lower bound on the grade of membership of x derived from the “evidence for x”, 𝑓𝐴(x) is a 

lower bound on the negation of x derived from the “evidence for x”, and 𝑡𝐴(x)+ 𝑓𝐴(x)≤1. Thus, the grade of 

membership of u in the vague set A is bounded by a subinterval [𝑡𝐴(x),1-𝑓𝐴(x)] of [0,1]. This indicates that if 

the actual grade of membership of x is µ(x), then, 𝑡𝐴(x)≤µ(x)≤1-𝑓𝐴(x). The vague set A is written as A= {<x, 

[𝑡𝐴(x),1-𝑓𝐴(x)]>/u𝜖U} where the interval [𝑡𝐴(x),1-𝑓𝐴(x)] is called the vague value of x in A, denoted by 𝑉𝐴(x). 
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Definition 2.2[7]: Let A and B be vague sets of the form A= {<x, [𝑡𝐴(x),1-𝑓𝐴(x)]>/x𝜖X} and B= {<x, [𝑡𝐵(x),1-

𝑓𝐵(x)]>/x𝜖X} then  

          (i)A⊆B if and only if 𝑡𝐴(x)≤ 𝑡𝐵(x) and 1-𝑓𝐴(x)≤ 1-𝑓𝐵(x) for all x𝜖X 

          (ii)A=B if and only if A⊆B and B⊆A 

          (iii)𝐴𝑐={<x,𝑓𝐴(x),1-𝑡𝐴(x)>/x𝜖X} 

          (iv)A∩B= {<x, min(𝑡𝐴(x), 𝑡𝐵(x)), min(1-𝑓𝐴(x),1-𝑓𝐵(x))>/x𝜖X} 

           (v)A∪B= {<x, ( 𝑡𝐴(x)˅𝑡𝐵(x), (1-𝑓𝐴(x)˅1-𝑓𝐵(x))>/x𝜖X} 

For the sake of simplicity, we shall use the notation A= {<x,[𝑡𝐴,1-𝑓𝐴]>} instead of A= {<x,[𝑡𝐴(x),1- 

𝑓𝐴(x)]>/x𝜖𝑋}. 

Definition 2.3: A subset A of a topological space (X,𝜏) is called 

(i)  A preclosed set [13] if cl(int(A)) ⊆A 

     (ii)  A semi-closed set [9] if int(cl(A)) ⊆A 

     (iii)  A regular closed set [18] if A =cl(int(A)) 

     (iv)  A α-closed set [14] if cl(int(cl(A)))⊆A 

       (V)  A closed set if cl(A)=A 

Definition 2.4: A subset A of a topological space (X,𝜏) is called 

(i)  A generalized closed set (briefly g- closed) [8] if cl(A)⊆U whenever A⊆U and U is an openset in 

X  

(ii)  A generalized closed set (briefly sg- closed) [3] if scl(A) ⊆ U whenever A⊆U      and U is semi-

open set in X  

(iii)  A generalized semi-closed set (briefly gs-closed) [1] if scl(A) ⊆U whenever A⊆U and U is open 

set in X 

(iv)  A generalized semi pre closed set (briefly gsp-closed) [6] if spcl(A) ⊆U whenever A⊆U and U is 

open set in X  

(v)  A generalized pre closed set (briefly qp-closed) [4] if pcl(A) ⊆U whenever A⊆U and U is open 

set in X 

(vi)  A generalized α-closed set (briefly gα-closed) [11] if αcl(A) ⊆U whenever A⊆U and U is α-open 

set in X 

(vii)  A α-generalized closed set (briefly αg-closed) [10] αcl(A) ⊆U whenever A⊆U and U is open set 

in X. 

Definition 2.5: A vague topology (VT in short) on X is a family 𝜏 of vague sets in X satisfying the following 

axioms. 

(i) 0,1 ∈ 𝜏 

(ii) 𝐺1 ∩ 𝐺2 ∈ 𝜏, for any 𝐺1 ,𝐺2 ∈ 𝜏 

(iii)  ∪ 𝐺𝑖 ∈ 𝜏 𝑓𝑜𝑟 any family {𝐺𝑖/ i∈J} ⊆ 𝜏 

In this case the pair (X,𝜏) is called a Vague topological space (VTS in short) and any vague set in 𝜏 is known 

as a Vague open set (VOS in short) in X. 

The complement 𝐴𝑐 of a vague open set A in a Vague topological space (X,𝜏) is called a vague closed set 

(VCS in short) in X. 
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Definition 2.6: Let (X,𝜏) be a VTS and A= {<x, [𝑡𝐴,1-𝑓𝐴]>} be vague set in X. Then the vague interior and a 

vague closure are defined by  

             Vint(A) = ∪{G/G is an VOS in X and G⊆A} 

             Vcl(A)= ∩{K/K is an VCS in X and A⊆K} 

Note that for any vague set A in (X,𝜏), we have Vcl (𝐴𝑐)=(V int(A))𝑐 and Vint (𝐴𝑐)=(Vcl(A)).𝑐 

Example 2.7: We consider the vague topology. Let X={a,b} and let 𝜏={0,G,1} is an vague topology on X 

where G ={<x,[0.1,0.5],[0.1,0.6]>}. Here the only open set are 0,1 and G. If A= {<x, [0.1,0.6] [0.1,0.9]>} is 

a vague topology on X then, 

        Vint(A)= ∪{G/G is an VOS in X and G⊆A} =G 

         Vcl(A)= ∩{K/K is an VCS in X and A⊆K} =𝐺𝑐 

Definition 2.8: A vague set A of (X,𝜏), is said to be a, 

(i) A vague pre-closed set if Vcl(Vint(A)) ⊆A 

(ii) A vague semi-closed set if Vint (Vcl(A)) ⊆A 

(iii) A vague regular- closed set if A=Vcl(Vint(A)) 

(iv) A vague α closed set Vcl(Vint(Vcl(A))) ⊆A 

(v) A vague closed set if Vcl(A)=A 

Definition 2.9: An vague set A in (X,𝜏), is said to be a, 

(i) Vague generalized closed set (briefly VGC) if Vcl(A)⊆U whenever A⊆U and U is an vague 

open set in X  

(ii) Vague generalized semi-closed set (briefly VGSC) if Vscl(A) ⊆U whenever A⊆U and U is 

vague open set in X 

(iii) Vague generalized pre closed set (briefly VGPC) if Vpcl(A) ⊆U whenever A⊆U and U is vague 

open set in X 

Properties 2.10: Let A be any Vague set in (X,𝜏), then 

(i) Vint(1-A) =1-(Vcl(A)) and 

(ii) Vcl(1-A) =1-(Vint(A)) 

Proof: (i) By definition Vcl(A)= ∩{K/K is an VCS in X and A⊆K} 

       1-(Vcl(A)) = 1 −∩{K/K is an VCS in X and A⊆K} 

                               = ∪{{1-K/K is an VCS in X and A⊆K} 

                                    = ∪{G/G is an VOS in X and G⊆ 1 −A} 

                                     =Vint(1-A) 

(ii)The proof is similar to (i) 

Theorem 2.11: Let (X,𝜏), be a VS and let A ∈V(X). Then the following properties hold  

(i) Vint(A) ⊂ A 

(ii) A⊂B ⇒ Vint(A) ⊂ Vint(B) 

(iii) Vint(A) ∈ 𝜏 

(iv) A is a vague open set ⟺  Vint(A)=A 

(v) Vint (Vint(A)) =Vint(A) 

(vi) Vint (0) =0, Vint (1) =1 

(vii) Vint(A∩B) = Vint(A)∩ Vint(B) 

(viii) (Vint(A))𝑐=Vcl (𝐴𝑐) 
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Proof: The proof is obvious. 

Theorem 2.12: Let (X,𝜏) be a VS and let A∈ V(X). Then the following properties holds. 

(i) (A) ⊂ 𝑉𝑐𝑙( A) 

(ii) A⊂B ⇒ Vcl(A) ⊂ Vcl(B) 

(iii) Vcl(A)𝑐 ∈ 𝜏 

(iv) A is a vague closed set ⟺  Vcl(A)=A 

(v) Vcl(Vcl(A))=Vcl(A) 

(vi) Vcl(0)=0, Vcl(1)=1 

(vii) Vcl(A∪B) = Vcl(A)∪ Vcl(B) 

(viii) (Vcl(A))𝑐=Vint (𝐴𝑐) 

Proof: The proof is obvious   

3. VAGUE γ GENERALIZED CLOSED SETS  

In this section we have introduced vague γ generalized closed sets and studied some of their properties.  

Definition 3.1: An vague set A in an vague topological spaces (X,τ) is said to be an vague γ generalized closed 

set (VγGCS for short) Vγcl(A)⊆U  whenever A⊆U and U is an VγOS in (X,τ). The complement Ac of an 

VγGCS A in an VTS (X,τ) is called vague γ generalized open set (VγGOS in short) in X. 

The family of all VγGCSs of an vague topological spaces (X,τ) is denoted by VγGC(X).  

Example 3.2: Let X={a,b} and let 𝜏 ={0,G,1} is an VT on X where G={<x,[0.5,0.8][0.3,0.7]>}. Here the 

only γ open sets are 0, X, and G. Then the VS A= {<x,[0.4,0.9] [0.4,0.8]>} is an VγGCS in  (X,τ). 

Theorem 3.3: Every VCS is an VγGCS in (X,τ) but not conversely in general.  

Proof:  Let A be an VCS in X and let A⊆U where U is an VγOS in X. As γcl(A)⊆cl(A)=A⊆U, by hypothesis, 

we have γcl(A)⊆U. Hence A is an VγGCS in  

(X,τ).  

Example 3.4: Let the vague set A = {<x,[0.3,0.7],[0.4,0.5]>} and G={<[0.4,0.7],[0.4,0.6]>}  is an VγGCS 

but not an VCS in (X, τ) as Vcl(A) = 1≠ A.  

Theorem 3.5: Every VRCS is an VγGCS in (X,τ) but not conversely in general.  

Proof:Let A be an VRCS. Since every VRCS is an VCS, by theorem 3.3, A is an VγGCS in (X,τ).  

Example 3.6: Let VS A = {<x,[0.3,0.6], [0.4,0.5]>} and G= {<x, [0.4,0.7][0.4,0.6]>} is an VγGCS but not an 

VRCS in X as Vcl(int(A)) = 0 ≠ A.  

Theorem 3.7: Every VSCS is an VγGCS in (X,τ) but not conversely in general.  

Proof:Let A be an VSCS in X and let A ⊆ U where U is an VγOS in X. Since γcl(A)⊆scl(A)=A⊆ U, by 

hypothesis, we have γcl(A) ⊆ U. Hence A is an VγGCS in (X,τ).  

Example 3.8: Let the vague set A = {<x,[0.4,0.8], [0.5,0.6]>} and G={<x,[0.5,0.8][0.5,0.7]>} is an VγGCS 

but not an VSCS in X as int(cl(A)) = 1⊈ A.  

Theorem 3.9: Every VPCS is an VγGCS in (X,τ) but not conversely in general.  

Proof:Let A be an VPCS in X and let A ⊆ U where U is an VγOS in X. As γcl(A)⊆pcl(A)=A⊆ U, by 

hypothesis, we have γcl(A) ⊆ U. Hence A is an VγGCS in  

(X,τ).  
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Example 3.10: Let the vague set A = {<x,[0.2,0.7], [0.3,0.5]>} and G={<[0.2,0.7][0.3,0.5]>} is an VγGCS 

but not an VPCS in X, as Vcl(int(A)) = Gc⊈A.  

Theorem 3.11: Every VαCS is an VγGCS in (X,τ) but not conversely in general.  

Proof:  Let A be an VαCS in X and let A⊆U where U is an VγOS in (X,τ). As γcl(A)⊆αcl(A)=A⊆U, by 

hypothesis, we have γcl(A) ⊆ U. Hence A is an VγGCS in (X,τ).  

Example 3.12: Let the VS A = {<x,[0.3,0.6],[0.1,0.5]>}and G={<x,[0.3,0.6],[0.2,0.8]>} is an VγGCS but not 

an VαCS in X as Vcl(Vint(Vcl(A)))= Gc⊈A.  

Theorem 3.13: Every VγCS is an VγGCS in (X,τ) but not conversely in general.  

Proof:Let A be an VγCS and let A⊆ U where U is an VγOS in (X,τ). Then γcl(A)=A⊆U, by hypothesis, we 

have γcl(A)⊆U. Hence A is an VγGCS in  

(X,τ).  

Example 3.14: Let the vague set A={<x,[0.2,0.7],[0.3,0.5]>} and G = {<x,[0.2,0.7][0.3,0.5]>} is an VγCS 

but not an VγGCS in X , as cl(int(A)) ∩ int(cl(A)) = 1⊈A.  

 

 

The reverse implications are not true in general in the above diagram.  

Remark 3.15: The union of any two VγGCS is not an VγGCS in general as seen in following example. 

Example 3.16: Let X = {a,b} and G1 = {<x,[0.4,0.7],[0.4,0.5]>}, then 𝜏1 ={0,𝐺1,1} is a vague topological 

space on X and let 𝐺2={<x,[0.3,0.8],[0.5,0.6]>}, then 𝜏2={0,𝐺2,1} is a vague topological space on X and let 

the vague set 𝐴1={<x,[0.3,0.7],[0.4,0.5]>} and 𝐴2={<x,[0.2,0.7],[0.4,0.5]>} are vague γ generalized closed 

set but the union of these two set is not  vague γ generalized closed set in X. 

Remark 3.17: The intersection of any two VγGCS is not an VγGCS in general as seen in the following 

example.  

 

Example 3.18: Let X = {a,b} and G1 = {<x,[0.4,0.7],[0.4,0.5]>} then 𝜏1 ={0,𝐺1,1} is a vague topological 

space on X and let 𝐺2={<x,[0.3,0.8],[0.5,0.6]>}, then 𝜏2={0,𝐺2,1} is a vague topological space on X and let 

the vague set 𝐴1={<x,[0.3,0.7],[0.4,0.5]>} and 𝐴2={<x,[0.2,0.7],[0.4,0.5]>} are vague γ generalized closed 

set but the intersection of these two set is not  vague γ generalized closed set in X. 

Theorem 3.19: Let (X,τ) be an VTS.Then for every A V GC(X) and for every  

B∈VS(X), A B⊆γcl(A) B V GC(X).  

  

VγGCS 

VCS 

VRCS 

VSCS 

VPCS VSPCS 

VαCS 

VγCS 
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Proof: Let B U and U be an VγOS in X. Then since, A B, A U. By hypothesis B⊆γcl(A). Therefore 

cl(B)⊆γcl cl(A)) = cl(A)⊆U, since A is an VγGCS. Hence B∈VγGC(X).  

Theorem 3.20: An vague set A of an VTS (X,τ) is an V GCS V and only if 𝐴𝑞̅F⟹γcl(𝐴)𝑞̅F for every VγCS 

F of X.  

Proof: Necessity: Let F be an VγCS and 𝐴𝑞̅F, then A⊆Fc,we know that “if two vague sets are said to be q-

coincident(𝐴𝑞B in short) if and only if there exists an element x∈X such that 𝜇𝐴(x)>𝑣𝐵(𝑥) or 

𝑣𝐴(𝑥)<𝜇𝐵(𝑥)”where Fc is an VγOS. Then γcl(A)⊆ Fc, by hypothesis. Then, γcl(𝐴)𝑞̅F.  

Sufficiency: Let U be an VγOS such that A⊆U. Then Uc is an VγCS and A⊆(Uc)c.By hypothesis, 

𝐴𝑞̅Uc⟹γcl(𝐴)𝑞̅Uc. Hence γcl(A)⊆(Uc)c=U. Therefore γcl(A)⊆U. Hence A is an VγGCS in X.  

Theorem 3.21: If A is both an VγOS and an VγGCS in (X,τ) then A is an VγCS in (X,τ).  

Proof: Since A⊆A and A is an VγOS, by hypothesis γcl(A)⊆A. But A ⊆γcl(A). Therefore γcl(A)=A. Hence 

A is an VγCSin (X,τ).  

Theorem 3.22: Let A be an VγGCS in (X,τ) and p(α,β) be an VP in X such that  

p(α,β)qγcl(A)then cl(p(α,β))qA.  

Proof: Let A be an VγGCS and let p(α,β)qγcl(A). Vcl(p(α, β)) 𝑞 ̅A, then by definition, A⊆[cl(p(α,β))]
c, where 

[cl(p(α,β))]
c is an VOS then it is an VγOS. Then by hypothesis, γcl(A)⊆[cl(p(α,β))]

c =int(p(α,β))
c⊆[p(α,β)]

c. This 

implies that p(α,β)𝑞 ̅γcl(A), which is a contradiction to the hypothesis. Hence cl(p(α,β))qA.  

Theorem 3.23: Let F⊆A⊆X where A is an VγOS and an VγGCS in X. Then F is an VγGCS in A if and only 

if F is an VγGCS in X.  

Proof: Necessity: Let U be an VγOS in X and F⊆U. Also let F be an VγGCS in A. Then F⊆A∩U and A∩U 

is an VγOS in A. Hence gamma closure of F in A, γclA(F)⊆A∩U and by Theorem 3.21, A is an VγCS. 

Therefore γcl(A)=A. Now gamma closure of F in X, γcl(F)⊆γcl(F)∩γcl(A)=γcl(F)∩A=γclA(F)⊆A∩U⊆U. 

That is γcl(F)⊆U, whenever F⊆U. Hence F is an VγGCS in X.  

Sufficiency: Let V be an VOS in A such that F⊆V. Since A is an VγOS in X, V is an VγOS in X. Therefore 

γcl(F)⊆V, since F is an VγGCS in X. Thus, γclA(F)=γcl(F)∩A⊆V∩A⊆V. Hence F is an VγGCS in A.  

Theorem 3.24: For an vague set A, the following conditions are equivalent:  

(i) A is an VOS and an VγGCS  

(ii) A is an VROS  

Proof: (i) (ii)  

 Let A be an VOS and an VγGCS. Then cl(A) A as A  A and A is an V OS in X, but A⊆γcl(A). This implies 

that cl(A)=A.Therefore, A is an V CS and int(cl(A)) = int(cl(A))∩cl(A)) = int(cl(A))∩cl(int(A)) A, by 

hypothesis. Hence int(cl(A)) A. Since A is an VOS, it is an VPOS. Hence A⊆int(cl(A)). Therefore 

A=int(cl(A)). Hence A is an VROS.  

(ii) (i) 

 Let A be an VROS. Therefore A=int(cl(A)). Since every VROS is an VOS we have int(cl(A))∩cl(int(A)) =A

cl(int(A)) =A cl(A)=A⊆A. Hence A is an VγCS in X and thus A is an VγGCS in X.  

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882 

IJCRT2402459 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d903 
 

Theorem 3.25: For an VOS A in (X,τ),  the following conditions are equivalent:  

(i) A is an VCS  

(ii) A is an V GCS and an VQ-set  

Proof: (i) (ii) Since A is an VCS, it is an VγGCS by Theorem 3.3. Now 

int(cl(A))=int(A)=A=cl(A)=cl(int(A)), by hypothesis. Hence A is an VQ-set.  

(ii) (i) Since A is an VOS and an V GCS, by Theorem 3.24, A is an VROS. Therefore A=int(cl(A)) 

=cl(int(A)) =cl(A), by hypothesis. Hence A is an VCS in X.  

Theorem 3.26: If a subset A of an VTS (X, ) is nowhere dense, then it is an VγGCS in (X,𝜏).  

Proof: If A is nowhere dense, then int(cl(A)) =0. Let A  U where U is an VFγOS.  

Now cl(A)⊆scl(A) = A∪int(cl(A)) = A  0= A  U and hence A is an VγGCS in (X,𝜏).  

Theorem 3.27: Let (X,τ) be an VTS. Then every vague set in (X,τ) is an VγGCS if and only if 

VγO(X)=VγC(X).  

Proof: Necessity: Suppose that every vague set in (X,τ) is an VγGCS in X. Let U VγO(X), and by hypothesis, 

γcl(U) U γcl(U). This implies γcl(U)=U. Therefore  

U VγC(X). Hence VγO(X) VγC(X)(i). Let A VγC(X), then Ac VγO(X) VγC(X). That is, Ac VγC(X). 

Therefore A VγO(X). Hence VγC(X) VγO(X). From (i) and (ii) VγO(X)=VγC(X) 

Theorem 3.28: If A is an VROS and B is an VαCS, then A  B is an VγGCS in (X, τ).  

Proof: Let B be an VαCS and A be an VROS. Then cl(int(cl(B)))  B and int(cl(A)) = A. Therefore A  B  

A  cl(int(cl(B))) = int(cl(A))  cl(int(cl(B)))  int(cl(A))  int(cl(B)) int (cl (A B)). We have int (cl(A  

B)  A  B. Hence A  B is an VSCS and by Theorem 3.7, A∩B is an VγGCS in (X, τ).  

Theorem 3.29: If A is both an VROS and an VγGCS in (X, τ) then A is an Vγ-clopen set in (X, τ).  

Proof: Let A be an VROS and an VγGCS in (X, τ). Then A is an V OS and A  A, cl(A)  A, by hypothesis. 

But A cl(A). Therefore A = cl(A). Hence A is an VγCS in (X, τ). Hence A is an Vγ-clopen set in (X, τ).  

Theorem 3.30: If A is both an VαOS and an VγGCS in (X, τ) then A is an VβCS in (X, τ).  

Proof:Let A be an VαOS. Then A is an V OS. As A  A, by hypothesis cl(A)  A. Since βcl(A)  γcl(A)  

A⊆βcl(A), A is an VβCS in (X, τ).   

Theorem 3.31: An VS A of X is an VγGCS V γcl(A)  ker(A).  

Proof: Let U be any V OS such that A  U. By hypothesisγcl(A)  ker(A) and since A  U, ker(A)  U. 

Therefore γcl(A)  U and hence A is an VγGCS.  

Theorem 3.32: If A is both an VγOS and an VγGCS in (X, τ) and suppose that F is an VCS in X. Then A∩ F 

is an VγGCS in (X, τ).    

Proof:  Since A is an VγOS and an VγGCS in (X, τ), then by Theorem 3.23 A is an VγCS in X. But F is an 

VCS in X. Therefore A∩ F is an VγCS in X.  Hence A∩ F is an VγGCS in (X, τ).  

Theorem 3.33: For an VγGCS A in an VTS (X,𝜏), the following conditions hold:  

(i) If A is an VROS then scl(A) is an VγGCS  

(ii) If A is an VRCS then sint(A) is an VγGCS  

  

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882 

IJCRT2402459 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d904 
 

Proof:(i) Let A be an VROS in (X, 𝜏). Then int(cl(A)) = A. By definition we have scl(A) = A ∪int(cl(A)) = A. 

Since A is an VγGCS in X, scl(A) is an VγGCS in X.              

  (ii)Let A be an VRCS in (X, 𝜏). Then cl(int(A)) = A. By definition we have sint(A) = A∩cl(int(A)) = A. Since 

A is an VγGCS in X, sint(A) is an VγGCS in X.  

Remark 3.34: Every VOS, VROS, VSOS, VPOS, VαOS, VγOS, VSPOS in (X, τ) is an VγGOS in (X, τ) but 

not conversely in general.  

Proof: Straightforward.  

Example 3.35: Obvious from examples 3.4, 3.6, 3.8, 3.10, 3.12, 3.14 and 3.16, by taking complement of A in 

the respective examples.  

Theorem 3.36: Let (X, 𝜏 ) be an VTS. Then for every A ∈ V𝛾 GO(X) and for every B ∈ VS(X), 𝛾 int(A) ⊆ B 

⊆ A ⇒ B ∈ V𝛾 GO(X).  

Proof: Let A be any V𝛾 GOS of X and B be any VS of X. Let 𝛾 int(A) ⊆ B ⊆ A. Then Ac is an V𝛾 GCS and 

Ac⊆ Bc⊆ 𝛾 cl(Ac). Therefore, Bc is an V𝛾 GCS which implies B is an V𝛾 GOS in X. Hence B ∈ V𝛾 GO(X).  

Theorem 3.37: An VS A of an VTS (X,𝜏 ) is an V𝛾 GOS V and only V F ⊆ 𝛾 int(A) whenever F is an VγCS 

and F ⊆ A.  

Proof: Necessity: Suppose A is an V𝛾 GOS in X. Let F be an VγCS such that F ⊆ A. Then Fc is an VγOS and 

Ac⊆ Fc. By hypothesis Ac is an V𝛾 GCS, we have 𝛾 cl(Ac) ⊆ Fc. Therefore F ⊆ 𝛾 int(A).  

Sufficiency: Let F be an VγCS such that F ⊆ A and F ⊆ 𝛾 int(A). Then (𝛾 int(A)) c⊆ Fc and Ac⊆ Fc. This 

implies that 𝛾 cl(Ac) ⊆ Fc, where Fc is an VγOS. Therefore, Ac is an V𝛾 GCS. Hence A is an V𝛾 GOS in X.  

Theorem 3.38: Let (X, 𝜏 ) be an VTS. Then for every A ∈ VS(X) and for every                             B ∈ V𝛽 O(X), 

B ⊆ A ⊆ int(cl(int(B))) ⇒ A ∈ V𝛾 GO(X).  

Proof: Let B be an V𝛽 OS. Then B ⊆cl(int(cl(B))). By hypothesis, A ⊆ int(cl(int(B))) ⊆ 

int(cl(int(cl(int(cl(B)))))) ⊆ int(cl(cl(int(cl(B))))) = int(cl(int(cl(B)))) ⊆ int(cl(cl(A))) ⊆ int(cl(A)) as B ⊆ A. 

Therefore, A is an VPOS and by Theorem 3.36, A is an V𝛾 GOS. Hence A ∈ V𝛾 GO(X).  

Theorem 3.39: Let (X, ) be an VTS. Then for every A  VS(X) and for every                             B  VRC(X), 

B  A  int(cl(B))  A  V GO(X).  

Proof: Let B be an VRCS. Then B = cl(int(B)). By hypothesis, A  int(cl(B))  int(cl(cl(int(B)))) = 

int(cl(int(B)))  int(cl(int(A))) as B  A. Therefore, A is an VαOS and by Theorem 3.36, A is an V GOS. 

Hence A  V GO(X).  

Theorem 3.40: Let (X, ) be an VTS then for every A   VSPO(X) and for every VS B in X, A  B  cl(A) 

 B  V GO(X).  

Proof: Let A be an VSPOS in X. Then there exists an VPOS, (say) C such that C  A  cl(C). By hypothesis, 

A  B. Therefore C  B. Since A  cl(C), cl(A)   cl(C) and B  cl(C), by hypothesis. Thus C  B  cl(C). 

This implies B is an VSPOS. As every VSPOS is an V GOS by Theorem 3.36, B  V GO(X).    

Theorem 3.41: If A is an V CS and an V GOS in (X, τ) then A is an V OS in (X, τ).  

Proof: As A  A, by hypothesis int(A)  A. But we have A int(A). This implies A = int(A). Hence A is 

an V OS in X.  

Theorem 3.42: Let (X, ) be an VTS. Then for every A  VS(X) and for every                             B  VSO(X), 

B  A  int(cl(B))  A  V GO(X).  
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Proof: Let B be an VSOS in X. Then B  cl(int(B)). By hypothesis, A  int(cl(B))  int(cl(cl(int(B)))) = 

int(cl(int(B)))  int(cl(int(A))) as B  A. Therefore, A is an VαOS and by Theorem 3.36, A is an V GOS. 

Hence A  V GO(X).  

Theorem 3.43: If A is an VRCS and B is an VαOS, then A  B is an V GOS in (X, τ).  

Proof: Let B be an VαOS and A be an VRCS. Then B  int(cl(int(B))) and cl(int(A)) = A. Therefore A  B  

A int(cl(int(B))) = cl(int(A)) int(cl(int(B)))⊆cl(int(A))∪ cl(int(B))  cl(int(A  B)). We have A  B  

cl(int(A  B)). Therefore A  B is an VSOS and by Theorem 3.36, A  B is an VγGOS in X.  

Theorem 3.44:If an vague set A of an VTS X is both an VCS and an VGOS, then A is an VγGOS in (X, τ).  

Proof: Suppose A is both an VCS and an VGOS. Then as A ⊆ A, by hypothesis A ⊆ int(A). But int(A) ⊆ A. 

Therefore int(A) = A. We have A is an VOS, since every VOS is an VγGOS. Hence A is an VγGOS in X.  
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