INTERNATIONAL JOURNAL OF CREATIVE
 RESEARCH THOUGHTS（IJCRT）

An International Open Access，Peer－reviewed，Refereed Journal

NON－LINEAR DUAL PROGRAMMING UNDER THE CONCEPT OF B－CONVEXITY

Dr．G．Varalakshmi，PRR\＆VS Government College，Vidavalur

Abstract

This paper consists of various duality theorems for nonlinear programming problems under B－convexity assumptions．

1．Introduction：Recently Bector and Singh［2］have introduced B－vex functions which are weaker than convex functions and more recently Bector，Suneja and Lalitha［8］have introduced Pseudo b－ vex and quasi b －vex functions which are weaker than pseudo convex and quasi convex functions respectively．P．Kanniappan \＆P．Pandian［7］introduced b－vexity is non－linear programming duality．R．B． Patel introduced duality for non－linear fractional programming involving generalized semilocally B－vex functions．Vasile Preda and Anton Bata to rescu［10］introduced duality for minimax generalized Beex programming involving n－set functions．But they have not considered the recently developed concepts like B－convex duality．Hence in this paper an attempt is made to fill the gap in the aim of research．This paper consists various duality theorem for non－linear programming problem under B－convexity assumptions．

2．1 Definition ：The function f is said to be B－convex at u x．w．r．t．
b（ D, u ）and $(\mathrm{x}-\mathrm{u})$ if x x X ．
$b(x, u)[f(x)-f(u)](x-u)^{t} \square f(u)$

2．2 Definition ：The function f is said to be quasi b－convex at u 回 with

 respect to $\mathrm{b}(\mathrm{x}, \mathrm{u})$ and $(\mathrm{x}-\mathrm{u})$ if 国 x 国 X ．2．3 Definition ：The function f is said to be strictly quasi b－convex at u 团 X with respect to $b(x, u)$ and $(x-u)$ if 国 x 局，and $x=u$ ．
$f(x)$ f (u) 回 $(x, u)(x-u)^{t}$ 回 $(u)<0$

2．4 Definition：The function f is said to be semistrictly quasi b－convex at u 团 with respect to $b(x, u)$ and $(x-u)$ if 国 x 回 ．
$f(x)<f(u)$ 回 $(x, u)(x-u)^{t}$ 回 $(u)<0$

The connection $b / u \mathrm{~b}$－convex and quasi b －convex function is that every
b－convex function is quasi b－convex but the converse is not true．We can easily see that every b－ convex function with respect to $\mathrm{b}(\mathrm{x}, \mathrm{u})$ ，with $\mathrm{b}(\mathrm{x}, \mathrm{u})>0$ is semi strictly quasi b －convex with respect to the same $\mathrm{b}(\mathrm{x}, \mathrm{u})$ ．However the converse is not true．

Example ：Let $x=\{-1,1\}$ define $f: x$ 回 R by
$f(x)=x+x^{3}$ and $b: x x$ x 回R＋by
$(x-u)=0$
$\mathrm{b}(\mathrm{x}, \mathrm{u})=-1 \mathrm{xu}$ 回 0
$=-x u, x u<0$
Then f is semi strictly quasi b －convex with respect to $\mathrm{b}(\mathrm{x}, \mathrm{u})$ but not b－convex with respect to b （ x, u ）because for
$x=\frac{-1}{7}, u=\frac{-1}{2}$ ，we can see that
$b(x, u)[f(x)-f(u)]<(x-u)^{t}$ 回 $f(u)$

Every semi strictly quasi b－convex with respect to $b(x, u)$ is quasi
bconvex with respect to same $b(x, u)$ but the converse is not true．

This is demonstrated by the following example．

Example：

Let $x=(-1,1)$ ．Define $f: x$ ？R by $f(x)=x^{3}$ and
define $b: x \times x$ R＋by
［1 1 xu 0
$\mathrm{b}(\mathrm{x}, \mathrm{u})=$ 国国， xu 回 $0 \quad(\mathrm{x}-\mathrm{u})=0$
Then f is quasi b－convex with respect to $b(x, u)$ but it is not semi strictly quasi b－convex with respect to $\mathrm{b}(\mathrm{x}, \mathrm{u})$ because for $\mathrm{x}=0$ and $\mathrm{u}=\frac{1}{2}$ ．
$b(x, u)(x-u)^{t}$ f $(u)=0$ and $f(x)<f(u)$

3 Formulation ：

3．1 Primal Formulation ：

Let us assume that the function $\mathrm{f}, \mathrm{g} \& \mathrm{~h}$ are differentiable on X ．

Consider the following non－linear programming problem
（ P ）\quad minimize $f(x)$
x
国 X

Subject to $g(x)$ 回 0

3．2 Dual Formulation ：

（D）Maximize f（u）

U ${ }^{\text {O }}$

Subject to $\mathrm{f}(\mathrm{u})+\mathrm{O}^{\mathrm{t}} \mathrm{g}(\mathrm{u})=0$（1）
$y^{t} \mathrm{~g}(\mathrm{u})=0$（2）
x $=0$（3） w.r.t. bj (x, u) and $(x-u)$ on x with bo $(x, u)>0$, then (D) is dual to P.

4. Feasibility :

The following feasible terminology is used in duality theorems.
(i) A point x ? X is said to be (P) - feasible optional if x is a feasible (optimal) $\cong \quad \cong$ solution of the primal problem (P).
(ii) The value of the objective function for the problem (P) at a point x is called as ${ }^{\circ}$
(P) - objective value at $x .{ }^{\circ}$

5 Duality Theorems :

5.1 : (Weak duality theorem) : Let x be (P) - feaisble and (u, y) be D - feasible. If f is semi strictly quasi b-convex at u with respect to (x, u) and ytg is strictly quasi b-convex at u with respect to $b(x, u)$ feasible (x, u, y) then $f(x)$? $f(u)$.

Proof : If $x=u$, the results is trival
suppose x ?

Since x is (P) - feasible and (u, y) is D - feasible, we have
$y \operatorname{tg}(x)-y \operatorname{tg}(u)$? 0

By strictly quasi b-convexity of ytg at u

We have
b (x, u) (x-u)t 回ytg(u)<)0

From (7) we have
$b(x, u)(x-u)^{t}$? $f(u)>0$

By semi strict quasi b - convexity of f at u, we have

Hence the theorem

5．2 Strong Duality Theorem ：

Let x be (P)－optimal and let g satisty a constraint qualification at x ．Then ϱ°
 the D－objective value at（ x, y ）．If forever feasible（ x, u, y ），the function f is semi ${ }^{\circ} \quad \underline{o}$ strictly quasi b －convex at u w．r．t． $\mathrm{b}(\mathrm{x}, \mathrm{u})$ and ytg is strictly quasi b －convex at u with ${ }^{\circ}$ respect to $b(x, u)$ then (x, y) is is（ D ）－optimal．
＠
Proof ：
Since x is (P) optimal and g satisfies a constraint qualification at x by Kuhno Tucker condition，回 y Rm such that ${ }^{0}$

回 $(\mathrm{x})+\mathrm{at}\left(\mathrm{g}(\mathrm{x})=0{ }^{\circ} \mathrm{o} \quad \underline{0}\right.$

Yot $g\left(x^{0}\right)=0$
y 0
－
？(x, y) is D－feasible and P－objective value at xo is equal to D－objective ${ }^{\circ}$ value at $(x, y) . \varrho$

Suppose (x, y) is not D－optimal then a D －feasible (u, y) such that $\underline{0}^{0}$
$\mathrm{f}(\mathrm{u}, \mathrm{y})>\mathrm{f}(\mathrm{x}, \mathrm{u})$（4）
Then 回 a（D）－feasible and（ u, y ）is D－feasible by weak duality
$f(x)$ 回（u）${ }^{\circ}$
which is a contradiction to（4）

Then (x, y) is D －optimal ${ }^{0} \quad \underline{0}$

Hence the theorem．

6 Converse Duality Theorem ：

Theorem 6．1 Converse duality ：

Let (x, y) be D －optimal and let the $\mathrm{n} \times \mathrm{n}$ Hersian matrix．$\varrho^{\circ} \subseteq$
$\square^{2} f(x)+\sigma^{2} y^{t} g(x) \cong \quad 0 \quad \underline{o}$
be + ve or－ve definite and the vector $\mathrm{T}_{\mathrm{f}}(\mathrm{x})=0{ }^{\circ}$
If for all feasible x, u, y ，f is semi strictly quasi b－convex at u w．r．t．(x, u) and $y t$
g is strictly quasi b －convex at u w．r．t． $\mathrm{b}(\mathrm{x}, \mathrm{u})$ ．Then x is (P)－optimal．${ }^{0}$

Proof ：Since (x, y) is（D）optimal then by Fritz－John theorem 0 回 R, v 回 R^{n} ， ㅇ
q R and S 回 R^{m} such that

$v^{t} f(x)=0$（6）${ }^{\circ}$
v^{t} 回 $\mathrm{g}(\mathrm{x})+\mathrm{qg}(\mathrm{x})+\mathrm{S}=0$（7）${ }^{\mathrm{o}} \mathrm{o}$
$\operatorname{qytg}(x)=0$（ 8$)^{\circ} \underline{o}$
t ？（9）
$\mathrm{Vs}=0$ 응
（p，q，s）0（10）
$(p, q, v, s)=0$（11）

Multiplying（7）by $\mathrm{y}^{\mathrm{o}}{ }^{\mathrm{t}}$ ，we have
vt 回 $y^{t} g(x)+q y^{t} g(x)+y^{t} s=0 \underline{0} \underline{\underline{0}} \underline{\underline{0}} \underline{\underline{0}}$
From（8）and（9）we get
v^{t} 回 $\mathrm{y}^{\mathrm{t}} \mathrm{g}(\mathrm{x})=0$ 回（12）$\underline{0}$ o

Multiplying（5）by v t we have
$p v^{t}$ 团 $\left.(x)+v^{t}[]^{2} f(x)+\square^{2} y^{t} g(x)\right] v o \underline{o} \quad \underline{o}$
$+q v^{t} \mathrm{a}^{\mathrm{t}} \mathrm{g}(\mathrm{x})=0 \bigcirc \bigcirc$
From（6）and（12）we get
$v^{t}\left[\square^{2} f(x)+\sigma^{2} y^{t} g(x)\right] v=0 \cong \quad \underline{o}$

Since the Hersian Matrix is positive or negative difinite $v=0$ since $v=0,(5)$ becomes
p 回 $f\left(x_{0}\right)+q$ 回 $y_{0} g(x o)=0$ From（5）we have
p 回 $\left(x_{0}\right)+q$ 回 $\left(x_{0}\right)=0$
which implies $(p-q)$ ？$f\left(x_{0}\right)=0$

Since $\operatorname{f}\left(x_{0}\right)=0$ ，we have $p=q$

Suppose $\mathrm{p}=0$ then $\mathrm{q}=0$ and $\mathrm{s}=0$ by（7）
？$(\mathrm{p}, \mathrm{q}, \mathrm{v}, \mathrm{s})=0$ which is a contradiction to（11）

Thus p 回 0 ，since $\mathrm{p}=\mathrm{q}, \mathrm{q}$ 国 0 and from（4．10），$q>0$

Since $v=0, q>0$ and s ？ 0 from（4．7）we have
$g\left(x_{0}\right)$ 回 0
xo is (p) feasible．From the theorem of weak duality xo is (p)－optimal．

Hence the theorem．

6．2 Theorem（Strict converse duality theorem）：

Let x_{0} be (p)－optimal and let g satisfy a constraint qualification at x_{0} ．If $\left(u_{0}, y_{0}\right)$ is（ D ）－optimal f is strictly quasi b－convex at u_{0} with respect to $b_{0}(x, u)$ and yo ${ }^{t} g$ is strictly quasi b－convex at u_{0} w．r．t．$b(x, u)$ ，then $x_{0}=u_{0}$ and $\inf (p)=\operatorname{SUP}(D)$ ．

Proof ：Since x_{0} is (P)－Primal，g satisfies a constraint qualification at x_{0} ，by KhunTukkar conditions．回 a y 目 R^{m} such that $\left(x_{0}, y\right)$ is（D）－feasible．

Suppose x_{0} 圆

Since x_{0} is (P)－feasible and（ $\left.u_{0}, y_{0}\right)$ is（D）－feasible，we have
$b\left(x_{0}, u_{0}\right)\left(x_{0}-u_{0}\right)^{t}$ 回 $y_{0}{ }^{t} g\left(u_{0}\right)<0$（13）

By the feasibility of（ u_{0}, y_{0} ），we have from（13）
$b\left(x_{0}, u_{0}\right)\left(x_{0}-u_{0}\right)^{t}$ 回 $\left(u_{0}\right)>0$

Since $b\left(x_{0}, u_{0}\right)$ 回 0 and $b_{o}\left(x_{0}, u_{0}\right)$ 0，we have
$b_{0}\left(x_{0}, u_{0}\right)\left(x_{0}-u_{0}\right)^{t}$ 回 $\left(u_{0}\right)$ ？ 0

By strict quasi b－convexity of f at u_{o} ，
We have
$f\left(x_{0}\right)>f\left(u_{0}\right)$

This contradicts that $\left(u_{0}, y_{0}\right)$ is a D－optimal．

Then $x_{0}=u_{0}$ and clearly infimum（ P ）＝Supremum（D）．

Hence the theorem

REFERENCES

1. A. Ben - Israel and B. Mond, what is invexity? J. Austral. Math. Soc., Series B 28 (1986), 1-9.
2. Bector C.R., Suneja S.K. and Lalitha C.S. (1993) "Generalized B-vex function and generalized Bvex programming", Journal of optimization theory and applications, Vol.76, P. 561-576.
3. Bector C.R. and Singh C. (1991), "B-vex functions, Journal of Optimization theory and application", Vol. 71 P. 237-253.
4. Bector, C.R., Hussain, I., Chandra, "A duality model for a generalized minimax program", Naval Research Logistics, 35 (1988), 493-501.
5. Bector C.R., Batia, D. and Agarwal, S. (1992) "Multiobjective fractional programming duality; A non-differentiable case", Congressus Numeration, 87, 77-85.
6. Bector, C.R., Singh, M. and Gill, A. (1993) : "Duality for vector valued B-vex
P. Mazzoleni : "On constrained optimization for convex set function in survey of mathematical programming" Vol.1, A. Pre Kopaled, North Holland, Amsterdam (1979), 273290.
7. P. Kanniappan and S. Pandian, "On Generalized B-vexity in non-linear programming Duality", International Journal of Management and System, Vol. 13, P. 115-124.
8.. Suneja, S.K. and Gupta, S. (1994), "Duality in non-linear programming involving semilocally B-vex and related functions", Journal of Information and Optimization Sciences, 15 (1), 137-151, OPSEARCH 27 (1990), 239-253.
8. T. Weir and B. Mond, "Preinvex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), 29-38.
9. Varalaksmi G. and P.R.S. (Reddy) (2005): "Duality in multi-objective fractional programming problem involving semilocally b-vexity and related functions, Vision 2020, Re stratigic role of Operational Research.
