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Abstract:This article represents an interval branch and bound (B&B technique) constrained global optimization method developed 

by Karmakar&Bhunia(2012) for Sum of Ratios Fractional Programming Problems (FPPs). The constraints of this kind of FPPs 

involves sum of ratios fractional type constraints. There exist several efficient constraint-handling techniques to find global 

optimizers for various problems; but, not so effective for general sum of ratios fractional type constraints. A more updated and 

general interval ranking definitions in terms of decision maker’s view point has been used to modify this B&B technique. The 

method is mainly based on the multi-section splitting criterion of the accepted/prescribed search region, calculation of interval 

inclusion of the fractional objectives and constraints and the selection of subregion depending on the modified interval order 

relations said earlier. Adequate number of numerical examples selected form the existing literature have been solved and 

compared in support of this technique. 
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1 Introduction 
 

Fractional programming is a type of mathematical optimization problem where the objective function is a ratio of two functions, 

and the goal is to minimize or maximize this ratio subject to certain constraints. In several applications of nonlinear programming, 

a function is to be optimized which is characterized by single or several fractions of given functions.Fractional programming 

problems (FPPs) can be challenging to solve due to the nonlinearity introduced by the ratio of functions. Various techniques are 

employed to address these problems, including transforming them into equivalent nonlinear programming problems or using 

specialized algorithms. 

 

FPPs are initially suggested by Charnas and Cooper (1962).  A wide application of FPP is seen in different Economic models. One 

of the earliest economic models, named, Von Neumann’s (1937) model for an expanding economy contains fractional programs 

which determines the growth rate of an economy as the maximum of the smallest of several output-input ratios. In different 

economic applications such as maximization of productivity, maximization of return on investment, maximization of return/risk, 

maximization of input/output, the FPPs are frequently used. Apart from these there are a number of problems involving fractional 

program in management science and information theory. Among the various types of FPP, the single ratio and the sum of ratios 

problems are mostly used in aforesaid application areas.  

 

The general mathematical form of sum of ratios FPP is 

P1: Minimize 
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1 2 3, , ,i i kp T T T are all natural numbers,

1 2 3, ,i i k     are all nonzero real constant coefficients, 1 2 3, ,i j i j k j     are all real constant 

exponents, and ni(x) ≥ 0, di(x) > 0. 

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2024 IJCRT | Volume 12, Issue 1 January 2024 | ISSN: 2320-2882 

IJCRT2401711 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g81 
 

More specifically, the different types of FPPs are distinguished as follows: 

 

(P1) is said to be a single ratio FPP if p = 1, otherwise it will be a sum of ratio FPP. 

(P1) is called a linear fractional program if all functions ni(x), di(x),gk(x) for all the prescribed values of i and k are affine, i.e., the 

sum of a linear function and a constant. Otherwise, it will be a nonlinear FPP. 

(P1) is said to be a quadratic fractional program if ni(x) and di(x) are quadratic and gk(x) are affine. 

(P1) is said to be a concave-convex FPP if all ni(x) are concave and all di(x) as well as all gk(x) are convex. 

 

The main goal of this article is to apply the earlier developed interval branch and bound constrained handling technique for 

generalsum of ratios FPPs. The mentioned Interval oriented constrained global optimization (ICCGO) technique has been 

developed by Karmakar and Bhunia(2012). It has already been stated that there are so many different global optimization 

techniques which are very efficient in finding global optimizer points for constraint handling problems but cannot find the same 

for general FPPs. From the literature review (ref. Section 3), it is also clear that most of the optimization techniques used for FPP 

have been developed based on the B & B algorithm. Neither any type of interval-oriented algorithm nor any direct application of 

interval numbers and interval analysis have been developed till now for non-interval valued FPPs. An updated interval-oriented 

constraint satisfaction rulesestablished byKarmakar and Bhunia(2012, 2013) are used for equality and inequality constraints. The 

modified multi-section division criterion with some new interval-oriented constraint satisfaction rules for equality and inequality 

constraints and some novel interval order relations in the context of the decision makers’ point of view developed by Sahoo et. al. 

(2012) have been applied to increase the efficiency of the proposed algorithm. Finally, to show the effectiveness of the technique, 

it is applied to some test problems taken from the existing literature and the results are compared with the same obtained from the 

existing methods. 

 

The organization of the rest of the article as follows: In the next section, a brief survey of different types of FPPs and their 

solution techniques have been given. We shall discuss the important parts of interval mathematics including interval inclusion 

functions and fundamental theorem of interval analysis in Section 3. In Section 4, a brief comparative discussion of some interval 

ordering definitions has been given. Section 5 provides the statement of the problem and the details of the proposed solution 

technique and Section 6 includes the details of numerical experiments and comparative discussions. 

 

2. Literature Survey 
 

Fractional programming provides a flexible framework for handling optimization problems where the objective involves a trade-

off between conflicting criteria. Solving fractional programming problems often requires specialized algorithms and techniques, 

and various methods such as Dinkelbach's algorithm and outer approximation methods have been developed for this purpose . The 

pioneering work on this topic has been delivered by Charnas and Cooper (1962). After that development of linear FPP, a 

considerable number of articles have been published by several researchers. In an extensive treatment of the subject, 

Schaible(1978) tried to relate those works to each other and discussed about their applications in contemporary scientific and 

industrial fields. Moreover, the theoretical and algorithmic developments of FPP are discussed in details. However, the study of 

only single ratio FPP has largely dominated the literature in this field near about 1980. The two monographs of one has been 

given by Craven (1988) and the other by Stancu – Minasian(1997) are completely devoted to general FPP. FPPs with single ratio 

or sum of ratios objective function have often been studied in the broader context of generalized convex programming (ref.Avriel 

et. al. (1988), Frenk and Schaible(2004)). FPPs are always a part of general global optimization problems. However, there are a 

large number of global optimization techniques which fail to search better optimizer points compared to general FPPs. As a result, 

a number of distinguished optimization techniques have been developed theoretically and also algorithmically for FPPs. 

 

During the previous years, various algorithms have been proposed depending on branch-and-bound (B&B) technique. Konno et 

al.(1991) proposed an algorithm for sum of ratios linear FPPs by using the parametric simplex method. Another two algorithms 

for linear FPP which search iteratively the non-convex outcome space until a global optimal solution is found have been proposed 

by Konno and Yamashita (1999) and Falk and Palocsay (1994). A branch and bound algorithm have been proposed by Shen and 

Wang (2006) for the sum of linear ratios problem with coefficients. They reduced the initial non-convex programming problem to 

a series of LPPs by utilizing the equivalent transformation and linearization process. Another B&B algorithm developed by Jiao et 

al.(2006) construct the linear lower bounding functions of the objective function and constrained function of the generalized FPP 

over the feasible region. Qu et al.(2007) used Lagrangian relaxation to develop another algorithm for the sum of quadratic ratios 

problems with non-convex quadratic constraints. A new type of algorithm called Simplicial branch and bound duality-bounds 

algorithm has been presented by Benson (2007) for the linear-sum-of-ratios problem. Shen and Wang (2008) have generalized the 

B & B technique developed by Shen and Wang (2007) to search the global optimizer of sum of fractional functions containing a 

sum or product of a finite number of ratios of linear functions, polynomial fractional programming, generalized geometric 

programming, etc. over a polytope. By using linearization method and a new pruning technique, Jiao et al.(2008) proposed a 

different deterministic global optimization algorithm for the sum of general ratios problem. For quadratic ratios fractional 

programming with non-convex quadratic constraints, a branch-reduce-bound algorithm has been proposed by Shen et al.(2009). 

Also,Shen et al.(2009) developed the simplicial branch and duality-bound algorithm for the sum of convex-convex ratios 

problem. The proposed algorithm is based on reformulating the problem as a monotonic optimization problem. The equivalent 

transformation (ref. Shen and Wang (2006)) and a new linear relaxation technique have been used by Wang et al.(2008) to 

develop a modified B & B algorithm for globally solving the sum of ratios linear FPPs.In another investigation, Shen and 

Jin(2010) have given the conical partition algorithm for the same FPP with convex feasible region. Recently, an extended global 

optimization algorithm is proposed by Shen et al.(2011) for generalized polynomial sum of rations problem via monotonic 

optimization. By utilizing exponent transformation and new three-level linear relaxation method, a global optimization algorithm 

has been proposed by Jiao et al.(2013) for sum of generalized polynomial ratios problem.Jain et. al.(2018) have developed an 

algorithm for Quadratic Fractional Integer Programming Problems with bounded variables (QFIPBV) which involves ranking and 

scanning of the set of integer feasible solutions. An efficient formulation and a computational approach have been successfully 
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constructed in order to solve a general class of linear FPP on arbitrary time scales by Salih and Bohner(2018). A novel iterative 

algorithm depending on usual concept of continuity for a linear FPP has been developed by Ozkok(2020). Mitlif(2022) has 

prescribed an efficient algorithm for fuzzy linear FPP via ranking function. Fathy et. al.(2023) have studied a fully intuitionistic 

fuzzy multi-level linear FPP and solve it. 

3. Basics of Interval Mathematics 
 

Interval numbers are the generalization of real numbers and interval arithmetic is the generalization of real arithmetic in larger 

sense. According to Moore(1979), an interval number A is nothing but a closed interval and thus can be defined as A = {x: aL ≤ x 

≤ aR} and denoted by [aL, aR]. Moore(1979) not only gave the concepts of interval numbers and interval vectors but also proposed 

extensive interval arithmetic and various interval analytical processes. Ratschek and Rokne(1988), Kearfott(1996), Jaulinet 

al.(2001), Hansen and Walster(2004) have also developed modern interval arithmetic very rigorously. Interval arithmetic is used 

to calculate the interval inclusion functions which specify the rigorous bounds of the objective functions in global optimization 

solution techniques. General mathematical operations such as addition, subtraction, scalar multiplication, multiplication between 

two interval numbers, division etc. can be defined very easily in the existing literature. 

 

An interval number can also be expressed in the form of centre and radius of the interval as A = aC,aW = {x: aC – aWxaC + aW , 

xR}, where aC = (aL + aR)/2 = centre and aW = (aR – aL)/2 = radius of the interval. In this form, the interval arithmetic can be 

depicted for A = aC,aWand B = bC,bWas, 

 

A + B = aC,aW+bC,bWaC + bC, aW + bW

A – B = aC,aW – bC,bW = aC ,aW + –bC,bW=aC – bC, aW + bW

A = aC,aW = aC, aW


Let A = [aL,aR] be an interval and n be any non-negative integer, then the nth power of A is defined by  

[1,  1]                    if 0

[ ,  ]               if 0 or if  is odd

[ ,  ]               if 0 and  is even

[0,  max( ,  )] if 0  and ( 0) is even.

n n
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Karmakaret al.(2009) defined the nth root, any rational power and modulus of an interval as follows: 

 

The nthroot of an interval A = [aL,aR], n being any positive integer, is defined as 
1 1
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where  is an empty interval. 

 

Again, by applying the definitions of power and different roots of an interval, the rational power of an interval A = [aL,aR] is defined 

as 
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According to Moore (1979), an interval function means an interval-valued function of interval arguments. Let f :Rn → Rbe a real 

valued function of real variables x1, x2,…, xn and F: In → Ibe an interval valued function of interval variables X1, X2,…, Xn. The 

function F is said to be an interval extension of f if F(x1, x2,…, xn) = f(x1, x2,…, xn) for all xi (i = 1, 2,…, n). Again, an interval 

function F is said to be inclusion monotonic if XiYi (i = 1, 2,…, n) implies F(X1, X2,…, Xn) F(Y1, Y2,…, Yn). Now we shall state 

the fundamental theorem of interval analysis which is also the most important for any interval-orientedmethod (Hansen and 

Walster(2004)). 

Theorem 2.1 Let F(X1, X2,…, Xn) be an inclusion monotonic interval extension of a real function f(x1, x2,…, xn). Then F(X1, X2,…, 

Xn) contains the range of values of f(x1, x2,…, xn) for all xi Xi (i = 1, 2,…, n). 
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4. Order Relations of Interval Numbers 
 

Interval order is a type of binary relation that is often used in the context of ordered sets or partially ordered sets. Inmathematics, 

an ordered set is a set equipped with a binary relation that is reflexive, antisymmetric, and transitive. The concept of an interval 

order is particularly useful when dealing with intervals on a real line or in a more general ordered set. In this section, we discuss 

the previous developments of order relations of interval numbers for both maximization and minimization problems. Let A = 

[aL,aR] = aC,aWand B = [bL,bR] = bC,bW be any two closed intervals. A details of interval ordering definitions are reviewed in 

Karmakar and Bhunia(2012). These intervals may be of the following types: 

 

Type I:  Non-overlapping intervals i.e., when aLbR or bLaR. 

Type II: Partially overlapping intervals i.e., when bLaL<bRaR or aL<bLaR<bR. 

Type III: Fully overlapping intervals i.e., when aL<bL<bRaR or bLaL<aR<bR. 
 

Definition 4.1 For any two intervals A and B, Moore (1979) gave the first transitive order relation ‘<’ as 

A < B iffaR<bL. 

Other transitive order relation for intervals is  

ABiffbL≤ aL and aR≤ bR. 

These two order relations cannot order two partially or fully overlapping intervals. Second transitive order relation which is the 

extension of set inclusion property cannot order A and B in terms of value. It describes the condition that the interval A is nested 

in B.      

Noticing the drawbacks of Moore’s (1979) approach, Ishibuchi and Tanaka (1990) defined the order relations for minimization 

problems of two closed intervals A and B in the following way: 

Definition 4.2   (i) ALRBiffaLbL and aRbR 

                                                        A<LRBiffALRB and AB. 

(ii) ACWBiffaCbC and aWbW 

                                                         A<CWBiffACWB and AB. 

These order relations are reflexive, transitive and anti-symmetric i.e., it is a partial order. Clearly, for minimization problems, a 

decision maker will prefer the interval A.  

Generalizing the definitions of Ishibuchi and Tanaka (1990), Chanas and Kuchta(1996) proposed the concept of t0t1 – cut of an 

interval for the ranking of interval numbers.  

Definition 4.3 Let A = [aL,aR] be any interval and t0 and t1 be any two fixed numbers such that 0 t0< t11. Then thet0,t1 – cut of 

the interval is given by 

   
0 1

0 1,
/ ,  L R L L R Lt t

A a t a a a t a a
  

       . 

Using this definition on interval numbers, Chanas and Kuchta(1996) modified the interval ranking definitions of Ishibuchi and 

Tanaka (1990). For minimization problems, they considered the Definition 4.2 and redefined as follows: 

 

Definition 4.4                  
0 1 0 1 0 1, , ,

( ) /   / / ,LR LRt t t t t t
i A B A B
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/   / / .LR LRt t t t t t
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0 1 0 1 0 1
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( ) /   / / ,

/   / / .

CW CWt t t t t t

CW CWt t t t t t

ii A B A B

A B A B

          

          

  

  
 

For t0 = 0 and t1 = 1, the definitions (i), and (ii) certainly lead to the order relations LR, and CW proposed by Ishibuchi and 

Tanaka (1990)respectively. 

 

Regarding interval ranking a remarkable work was done by Sengupta and Pal (2000). They defined their first definition of order 

relation with respect to the decision makers’ point of view using acceptability function.   

Definition 4.6 The acceptability function (or acceptability index or value judgment index) : II [0, ) for the intervals A and 

B is defined as  

 , ,C C

W W

b a
A B

b a


 


where bW + aW 0. 

(A, B) may be regarded as a grade of acceptability of the ‘first interval to be inferior to the second’. If (A, B) = 0 then for a 

minimization problem, the interval A can’t be accepted as smaller. If  0 , 1A B   , A can be accepted as such with the grade of 

acceptability C C

W W

b a

b a




. Finally, if (A, B) = 1, A is accepted fully. 

 

According to them, the acceptability index is only a value based ranking index and it can be applied partially to select the best 

alternative from the pessimistic point of view of the decision maker. So, only the optimistic decision maker can use it completely. 
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For a pessimistic decision maker, Sengupta and Pal (2000) introduced the fuzzy preference ordering for ranking of a pair of 

interval numbers on the real line. The fuzzy preference method was actually described for maximizing the profit interval; 

however, the method is equally applicable for minimizing the cost/time intervals. Therefore, they have assumed that A and B are 

two profit intervals and the problem is to choose the maximum profit interval form among them. Thereafter they considered the 

fuzzy set “Rejection of an interval A in comparison to the interval B” or “Acceptance of B in comparison to A”.  

 

Definition 4.7 The membership function of this fuzzy set is given by 

,

max 0, ,

1

( , )

0 .

C L W

C L W

C C

L W C C

b a b

a a b

b a

B A a b b a

otherwise


 

 




 
     

 



 

This non-linear membership function lies in the interval [0, 1]. When the values of this membership function lies within the 

interval [0.333, 0666], this definition fails to find the order relations.  

 

Recently, Mahato and Bhunia(2006) proposed two types of definitions of interval order relations in the context of optimistic and 

pessimistic decision making. As usual, let the intervals A= [aL,aR] = aC,aW and B = [bL,bR] = bC,bW represent the interval 

numbers. 

4.1 Optimistic decision-making 

In this decision making, a decision is taken by ignoring the uncertainty and the interval containing the lowest cost/ time for 

minimization problems and the highest profit for maximization problem are accepted. 

 

Definition 4.8 For minimization problems, the order relation omin between the intervals A and Bis defined as 

AominBiffaLbL, and 

A<ominBiffAominB and AB. 

 

This implies that A is superior to B and A is accepted. This order relation is obviously not symmetric. 

 

Definition 4.9 For maximization problems, the order relation omax between the intervals A and B is 

AomaxBiffaRbR, and 

A>omaxBiffAomaxB and AB. 

 

This implies that A is superior to B and the optimistic decision maker accepts the profit interval A. Here, again the order relation 

omax is not symmetric.  

4.2 Pessimistic decision-making  

In this case, the decision maker expects the minimum cost/time for minimization problems and the maximum profit for 

maximization problems according to the principle “Less uncertainty is better than more uncertainty”. 

Definition 4.10 For minimization problems, the order relation <pmin between the intervals A= [aL, aR] = aC,aW and B = [bL, bw] = 

bC, bW for a pessimistic decision maker is defined as 

(i) A<pminBiffaC<bC,   for Type - I and Type – II intervals, and 

(ii) A<pminBiffaCbC and aW<bW, for Type – III intervals. 

However, for Type – III intervals with aC<bCand aW>bW, a pessimistic decision cannot be taken. Here, the optimistic decision is 

considered.     

Definition 4.11 For maximization problems, the order relation >pmax between the intervals A= [aL, aR] = aC,aW  and B = [bL, bR] 

= bC, bW for a pessimistic decision maker is defined as 

(i) A>pmaxBiffaC>bC, for type - I and Type – II intervals 

(ii) A>pminBiffaCbC and aW<bW, for Type – III intervals. 

Again, for Type – III intervals with aC>bC and aW>bW, a pessimistic decision cannot be taken. Here, the optimistic decision is 

taken. 

Some important interval ordering definitions with different mathematical backgrounds have been mentioned here. A details 

comparative discussion is given by Karmakar and Bhunia(2012). 

 

Generalised Ordering Definition 
 

The interval ranking definitions in terms of pessimistic decision making given byMahato and Bhunia(2006) is insufficient for 

some of the pair of Type - III intervals.According to their suggestion those inapplicable cases may be handled by 

consideringoptimistic decision making. To tackle those situations, some more general orderingdefinitions are suggested by Sahoo 

et. al.(2012) which are as follows: 
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Definition 4.12 For any pair of intervals A and B, the order relations for maximizationproblems denoted by >max is defined as 

(i) A>maxBaC>bC for Type - I and Type - II intervals 

(ii) A>maxBeither aC≥bC∧aW<bWor aC≥bC∧aL>bL for Type - III intervals. 

Definition 4.13 For the same pair of intervals A and B, the order relation forminimization problems denoted by <min is defined as 

(i) A<minBaC<bC for Type - I and Type - II intervals 

(ii) A<minBeither aCbC∧aW<bWor aCbC∧aL<bL for Type - III intervals. 

Clearly, the order relations defined above are all partially ordered. 

5. Statement of the Problem and Solution Procedure 

Let us consider a constrained optimization problem with fractional type of objective: 

 

                                  Optimize    f (x),  

                                  subject togk (x) ≤0,   k = 1, 2, …, p; 

hk (x) = 0,   k = 1, 2, …, q; 

  l≤x≤u,        ...   (5.1) 

 

where f (x) be the objective-function of the form described in the definition of FPP (P1),x = (x1, x2, …, xn), l = (l1, l2, …, ln), u = 

(u1, u2,…, un), n, p and q represent the number of decision variables, the number of inequality constraints and the number of 

equality constraints respectively. The decision variable xj(j=1, 2,…, n) lies in the prescribed interval [lj, uj] . Hence, the search 

region of the above problem is as follows: 

D= {xRn:lj ≤xj ≤uj , j =1, 2,…, n}. 

 

Solution procedure  

The search region of the problem (5.1) is as follows:D= {x:ljxjuj, j =1, 2… n}. 

Now, our objective is to split the accepted region (for the first time, either it is the prescribed search region or assumed if it is not 

prescribed) into a number of distinct equal subregions R1, R2,…,R(= mn, with each direction of the variable xj of the hyper 

rectangular search region is divided into m sections simultaneously). 

 

First of all, we check whether in each subregion the given set of constraints gi (x)  0 (or = 0) are satisfied or not. If they are 

satisfied then the corresponding subregion is called feasible and the value of the objective function will be calculated. Otherwise, 

the subregion will be discarded. Let us explain the constraint satisfaction (here the constraints are non-interval-valued) rule by 

interval method. 

 

Constraint satisfaction rules 

 

The concept of interval extension of real valued functions due to Moore (1979) has been used in these rules. Calculate the interval 

inclusion function Gi (Rγ) = [ ig , ig ] of the real valued function gi (x) in each of the subregion RγγλAn inequality 

constraintgi (x) ≤ 0 is satisfied if 0ig  whereas an equality constraintgi (x) = 0 is satisfied when 0ig   and 0ig  . According 

to the fundamental theorem of interval analysis and the concept of interval extension and inclusion function theory, a constraint 

(inequality or equality) satisfying the conditions of the above constraint satisfaction rules in any subregion does not mean the 

necessarily satisfaction by all the real points of that particular subregion; however, the subregion is called feasible. The case is 

quite different for infeasible subregions because, in that case no real points of the infeasible subregion can be found by which the 

constraints are satisfied. This is quite compatible with our intension. 

 

For illustration, let us consider an inequality constraint of the form 2x – 2y ≥ 3 or –2x + 2y +3 ≤ 0. Now we want to check whether 

this constraint is satisfied or not in the subregions created by dividing the box D*= {(x, y): 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5} for m = 5. This 

is shown in Figure 1. The region ABC is satisfied by the constraint in D*. According to the stated constraint satisfaction rule, the 

subregion will be feasible if any part of the satisfied region is included in that subregion. Here, the subregions marked by  are 

not feasible and clearly the rest are feasible. Verifications: 

 

R1 = {(x, y): 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1}  –2 [1, 2] + 2 [0, 1] +3 = [-1, 3] R1 is feasible. 

R2 = {(x, y): 4 ≤ x ≤ 5 and 0 ≤ y ≤ 1}  –2 [4, 5] + 2 [0, 1] +3 = [-7, -5] R2 is feasible. 

R3 = {(x, y): 3 ≤ x ≤ 4 and 2 ≤ y ≤ 3}  –2 [3, 4] + 2 [2, 3] +3 = [-1, 3] R3 is feasible. 

R4 = {(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}  –2 [0, 1] + 2 [0, 1] +3 = [1, 3] R4 is infeasible. 

R5 = {(x, y): 0 ≤ x ≤ 1 and 4 ≤ y ≤ 5}  –2 [0, 1] + 2 [4, 5] +3 = [9, 13] R5 is infeasible. 

 

Similarly, we can verify the rule for other subregions. 
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Figure 1. Linear inequality constraint satisfaction. 

 

The rule is equally applicable for a nonlinear constraint, say, g(x, y) ≤ 0.  The curve of g(x, y) = 0 and the corresponding region 

satisfied by the constraint g(x, y) ≤ 0 is shown in Figure 2. In this case, the subregions indicated by the symbol ‘o’ are feasible. 

For equality constraint, the feasible subregions are those through which the real curve passes. The equality constraint case is 

graphically shown in Figure 3. 

 

Now in each of the feasible subregion, the interval inclusion function values of the fractional objective function have been 

calculated with the help of basic interval arithmetic operations. We know from Moore’s (1979) discussion that the interval 

inclusion function F: InIof f(x) is a function having the property f(x) F(X) whenever X In. Let F(R) = ,f f 
 
  

 be the 

interval inclusion of the objective function f(x) in the -th subregion, R, where f  and  f  denote the lower and upper bounds of 

F(R) in R, computed by applying interval arithmetic. Now, comparing the objective function values calculated in the feasible 

subregions with the help of interval order relations, the subregion containing the best objective function value is accepted. Again, 

this accepted subregion is further subdivided into smaller disjoint subregions R(= 1, 2,…,mn) by the aforesaid process. Then 

applying the same constrained satisfaction procedure and the acceptance criteria of subregion we obtain a further reduced 

subregion. This process is terminated after reaching the desired degree of accuracy and finally, we get the best value of the 

objective function in interval form and also the corresponding values of each decision variable in the form of closed interval with 

negligible width. 

 

 
Figure 2. Nonlinear inequality constraint satisfaction. 
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Figure 3. Nonlinear equality constraint satisfaction. 

 

The above procedure is applied for multi-section division criterion of the accepted region developed recently by Karmakaret 

al.(2009). Since in our proposed technique no other vital information like the inclusion of the gradient or the inclusion of the 

Hessian regarding the interval inclusion function are available which are very important in some cases to fix the subdivision 

direction selection rule, so the multi-section technique is the best to use here. In this technique, all the directions of the decision 

variables are multi sectioned simultaneously. The idea of multi-section comes out from the concept of multiple-bisection, where 

several bisections are done at a single iteration cycle. For three-dimensional case, the accepted region is a rectangular 

parallelepiped (3D Box) that can be multi-sectioned into 23 = 8 (in case of triple bisection) sub-boxes. The pictorial 

representation is given in Figure 4 for m = 2, n = 3. 

 

Figure 4. Multi-section method. 

Table I:Computational results of FPP F1 – F5 

Test 

Problems 

Dimensio

n 

(n) 

m Objective function value 

No. of 

Function 

Evaluations 

Computational 

time of CPU 

F1 3 
5 [3.718639, 3.718639] 338 0.030 

10 [3.710924, 3.710924] 2544 0.080 

F2 3 
5 [2.862442, 2.862442] 66 0.005 

10 [2.861905, 2.861905] 52 0.008 

F3 3 
10 [3.000349, 3.000349] 15112 0.050 

20 [3.002924, 3.002924] 666 0.080 

F4 3 
5 [4.090703, 4.090703] 704 0.050 

10 [4.090703, 4.090703] 106 0.080 

F5 3 
5 [-1.900000, -1.900000] 84 0.007 

10 [-1.900000, -1.900000] 94 0.010 

 

Table II: Computational results of FPP F6 – F10 

Test 

Problem

s 

Dimensio

n 

(n) 

m Objective function value 

No. of 

Function 

Evaluations 

Computational 

time of CPU 

F6 2 
5 [4.932127, 4.932127] 38 0.005 

10 [4.736084, 4.736084] 54 0.008 

F7 2 
10 [4.430933, 4.430933] 84 0.005 

100 [4.608277, 4.608277] 368 0.010 

F8 2 
5 [1.347222, 1.347222] 1098 0.005 

10 [1.347222, 1.347222] 2980 0.008 

F9 2 5 [-147.666667, -147.666667] 3220 0.030 

O 

g(x, y) = 0 

x 

y 

5 

4 

3 

2 

1 

5 4 3 2 1 
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10 [-147.666667, -147.666667] 17624 0.080 

F10 2 
10 [0.818565, 0.818565] 14150 0.030 

20 [0.818565, 0.818565] 80886 0.170 

 

Table III: Computational results of FPP F11 – F14 

Test 

Problem

s 

Dimensio

n 

(n) 

m Objective function value 

No. of 

Function 

Evaluations 

Computational 

time of CPU 

F11 2 
10 [2.328547, 2.328547] 452 0.030 

20 [2.328407, 2.328407] 1282 0.080 

F12 2 
10 [1.883333, 1.883333] 882 0.030 

20 [1.883333, 1.883333] 1310 0.085 

F13 3 
5 [-0.534314, -0.534314] 2750 0.08 

10 [-0.534314, -0.534314] 15758 0.15 

F14 3 
5 [-0.380556, -0.380556] 3000 0.095 

10 [-0.380556, -0.380556] 18000 0.22 

 

Table IV: Summary of comparison of the computational results of FPPF1 – F9 

T.P. 

Shen and 

Wang 

(2006) 

Jiao et al. 

(2006) 

Wang and 

Shen (2008) 

Shen and 

Wang 

(2008) 

ICCGO 

F1 … … 
3.888365 

(2.968694 s) 
… 

3.710924 

(0.08 s) 

F2 … … 
3.002924 

(8.566259 s) 
… 

2.861904 

(0.008 s) 

F3 
3.002924 

(0.03 s) 
… … 

3.002924 

(0.01548 s) 

3.002924 

(0.08 s) 

F4 
4.090700 

(0 s) 
… … … 

4.090703 

(0.08 s) 

F5 
-1.900000 

(0 s) 
… … … 

-1.900000 

(0.010 s) 

F6 … … 
5.000000 

(1.089285 s) 
… 

4.736084 

(0.008 s) 

F7 
3.291667 

(0 s) 
… … 

3.291667 

(0.01651 s) 

4.608277 

(0.01 s) 

F8 … 
1.347222 

(< 2 s) 
… … 

1.347222 

(0.008 s) 

F9 … 
-83.250249 

(< 1 s) 
… … 

-147.666667 

(0.08 s) 

 

 

The stepwise solution procedure is presented in the following algorithm: 

 

Algorithm 
 
Step-1: Initialize m, the number of divided subregions in each direction and n, the number of decision 
variables.  
Step-2: Initialize the lower and upper bounds ljand uj (j =1, 2,…, n) of all the decision variables. Set Rf = D.  

Step-3: Divide the accepted region (initially it is the prescribed region of the problem or assumed region if it 

is not given) into mn equal distinct subregions Ri (i=1, 2,…,mn) such that 
1

.

nm

ii

f
R R


  

Step-4: Calculate only the lower bounds kg  for all the constraints of the form gk(x) ≤ 0 and both lower and 

upper bounds kh  and kh  respectively for all the equality constraints and check whether the constraint are 

satisfied or not. An inequality constraint gk (x) ≤ 0 is satisfied if 0kg   whereas an equality constraint hk (x) 

= 0 is satisfied when 0kh   and .0kh   

Step-5: Applying finite interval arithmetic, compute an interval value   [ , ]i i iF R f f  of the objective function in 

the feasible subregions Ri (i=1, 2,…,mn). 

Step-6: Select the feasible subregion Rf among Ri (i=1, 2,…,mn) which has the best objective function value 
by comparing the interval valued numbers F(Ri), i=1, 2,…, mn to each other with the help of the pessimistic 
order relations between any two interval numbers. 

Step-7:  Compute the widths of Rf, wj = uj – lj, j =1, 2,…, n. 
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Step-8: If wj<ε, a pre-assigned very small positive number, for j =1, 2,…, n, go to Step-9; otherwise, go to 
Step-3. 

Step-9: Print the values of the decision variables and the objective function in the form of closed intervals 
with negligible width. 

Step-10:  Stop. 

 

Table V: Summary of comparison of the computational results of FPPF10 – F14 

T.P. 
Jiao et al. 

(2006) 

Qu et al. 

(2007) 

Shen 

and 

Wang 

(2008) 

Jiao et al. 

(2008) 

Shen et 

al. 

(2009) 

Wang et al. 

(2010) 
ICCGO 

F10 … 
0.902000 

(…) 
… … 

0.833900 

(…) 

0.833333 

(1.89713 s) 

0.818565 

(0.03 s) 

F11 … … … … … 
3.714240 

(2.912117 s) 

2.328407 

(0.08 s) 

F12 … 
1.886829 

(…) 
… … 

1.883616 

(…) 
… 

1.883333 

(0.03 s) 

F13 … … … 
-0.534314 

(6.0 s) 
… … 

-0.534314 

(0.15 s) 

F14 … … … 
-0.380556 

(< 3.0 s) 
… … 

-0.380556 

(0.22 s) 

 

 

6. Numerical Experiments and Comparative Discussions 

 
To verify the performance of our intervalbranch and bound constraint handling technique ICCGO for a wide class of sum of ratios 

FPPs, a set of 14 test problems (T.P.) have been considered form the existing literature. This class of FPPs includes problems such 

as: linear and nonlinear sum of ratios problems, nonlinear product of ratios problems, polynomial ratios problems etc – over 

convex/nonconvex feasible region. The test problems are given in the Appendix. The problems F1 – F9, F13 and F14 are with 

linear sum of ratios objectives. The objective functions of the problems F10 – F12 are nonlinear sum of ratios.For the problems F13 

and F14, the constraints are also in the form of linear sum of ratios. Each problem has been solved by the proposed technique 

taking suitable values of m and error tolerance ε = 10-6. Tables – I to III contain a summary of the execution results including 

suitable values of m, optimum objective function values, number of function evaluations and computational time (CPU time) in 

second. The algorithm is coded in C programming language and implemented on a PC with INTEL® CORE ™ 2 Duo CPU @ 

2.00 GHz and 1 GB RAM in LINUX Operating System. 

 

We have compared our computational results including optimal objective function values and computational times taken by the 

PC to solve each problem with the same of eight existing methods which have been reported from the literature. The comparative 

results are shown in Table IV and V, from whichit is clear that the proposed interval oriented constrained handling technique 

ICCGO gives better solutions. In addition, for some problems (e.g., F6, F7, F9 and F11) our solutions are far better than the 

solutions obtained by the previous techniques. It is noteworthy that the elapsed time to solve each problem by ICCGO is 

significantly less than the computational time taken by the other existing methods. 

 

7. Conclusions 
 

In this paper, an interval-oriented branch and bound constraint-handling global optimization technique has been deployed to solve 

a variety of FPPs. It is significant that the used algorithm can effectively be applicable for wide class of FPPs. It uses interval 

arithmetic and the interval order relations with respect to the decision makers’ point of view developed by Sahoo et. al. (2012). 

This technique does not require any derivative information of the objective function. It is also different from any stochastic 

method or any heuristic or meta-heuristic methods. This method has global exploration as the feasible search space is reduced to 

1
nm

th times of prescribed/accepted search space in each iteration and finally, the accepted subregion tends to a point which is the 

solution of the problem. From the numerical experimental results, it is clear that in most of the cases, the used algorithm gives far 

better solution compared to the same obtained from the existing methods. Especially, the computational time is notably very less 

than the same for the others. 

 

However, for higher dimensional problems, sometimes the multi-section algorithm may not work with its expected level of 

efficiency. Also, the theoretical proof of convergence of the algorithm is not provided due to the unavailability of complete 

interval ordering definition and some limitations of existing interval mathematics. In future, further developments of this 

algorithm can be done by overcoming this couple of drawbacks.  
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Appendix 

 
List of Test Problems: 

 

  1 2 3 1 3 1 2 3 1 2 3

2 3 1 2 3 1 2 3 2 3

4 3 3 50 3 4 50 2 4 50 2 4 50
: Minimize

3 3 50 4 4 5 50 5 5 50 5 4 50

x x x x x x x x x x x
Z x

x x x x x x x x x x

          
   

         
1F

 

(Wang and Shen (2008)) 

    Subject to      g1(x) = 2x1 + x2 + 5x3 10                                                                                   

g2(x) = x1 + 6x2 + 2x3 10 

g3(x) = 9x1 + 7x2 + 3x3≥ 10 

Search region:   xi[0, 2],  i = 1, 2, 3. 

F2:  Minimize   1 2 3 1 2 31 2

1 2 3 1 2 3 1 2 3

3 5 3 50 4 2 4 503 4 50

3 4 5 50 4 3 2 50 5 4 3 50

x x x x x xx x
Z x

x x x x x x x x x

      
  

          

(Wang and Shen (2008)) 

    Subject to      g1(x) = 2x1 + x2 + 5x3 10 

 g2(x) = x1 + 6x2 + 2x3 10 

g3(x) = 9x1 + 7x2 + 3x3≥ 10 

Search region:   xi[0, 2],  i = 1, 2, 3. 

F3:  Maximize   1 2 3 1 2 31 2

1 2 3 1 2 3 1 2 3

3 5 3 50 4 2 4 503 4 50

3 4 5 50 4 3 2 50 5 4 3 50

x x x x x xx x
Z x

x x x x x x x x x

      
  

          

(Shen and Wang (2008)) 

    Subject to      g1(x) = 6x1 + 3x2 + 3x3 10 

g2(x) = 10x1 + 3x2 + 8x3 10 

Search region:   xi[0, 2],  i = 1, 2, 3. 

  1 2 3 1 3 1 2 3 1 2 3

2 3 1 2 3 1 2 3 2 3

4 3 3 50 3 4 50 2 4 50 2 4 50
: Maximize

3 3 50 4 4 5 50 5 5 50 5 4 50

x x x x x x x x x x x
Z x

x x x x x x x x x x

          
   

         
4F

 

(Shen and Wang (2006)) 

    Subject to      g1(x) = 2x1 + x2 + 5x3 10                                                                                

g2(x) = x1 + 6x2 + 3x3 10 

g3(x) = 5x1 + 9x2 + 2x3 10 

g4(x) = 9x1 + 7x2 + 3x3≤ 10 

Search region: xi[0, 10],  i = 1, 2, 3. 

  1 2 3 1 2 3 1 2 31 2

1 2 3 1 2 3 2 3 2 3

3 5 4 50 2 4 50 4 3 3 503 4 50
: Maximize

3 5 4 50 5 5 4 50 5 4 50 3 3 50

x x x x x x x x xx x
Z x

x x x x x x x x x x

         
   

         
5F

 

(Shen and Wang(2006)) 

    Subject to      g1(x) = 6x1 + 3x2 + 3x3 10                                                                              

g2(x) = 10x1 + 3x2 + 8x3 10 

Search region: xi[0, 10],  i = 1, 2, 3. 

F6:  Minimize    1 2 1 2

1 2 1 2

37 73 13 63 18 39

13 13 13 13 26 13

x x x x
Z x

x x x x

   
 

   
(Wang and Shen, 2006) 

    Subject to      g1(x) = 5x1 – 3x2 = 3 

Search region:   xi[0, 2],  i = 1, 2. 

  1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

37 73 13 63 18 39 13 13 13 13 26 13
: Maximize

13 13 13 13 26 13 63 18 39 37 73 13

x x x x x x x x
Z x

x x x x x x x x

       
   

       
7F

 

(Shen and Wang [35]) 

    Subject to      g1(x) = 5x1 – 3x2 = 3                                                                                           

    Search region:  xi[0, 100],  i = 1, 2. 

F8:  Minimize    1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 3 5 8

2 4 6 9

x x x x x x x x
Z x

x x x x x x x x

       
   

         

(Jiao et al.(2006)) 

    Subject to      g1(x) = x1x2
2 + x2x1

2 ≤ 10 

    Search region:  xi[1, 2],  i = 1, 2. 

F9: Minimize   1
1

2 2

5
0.5

x
Z x x

x x
   (Jiao et al.(2006)) 

    Subject to         2
1 2 1 2

3

0.01 0.01 0.0005 1
x

g x x x x
x
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    Search region:  x1[70, 150], x2[1, 30], x3[0.5, 21]. 

F10: Minimize   
2 2
1 2 1 2 1

2 2 2
3 1 2 1 1 2 2

2 1

5 2 8 20

x x x x x
Z x

x x x x x x x

  
 

    
(Wang et al.(2008)) 

    Subject to          2 2
1 1 2 3 5g x x x x   

 

   
2 2 2

2 1 2 12 5g x x x x    
 

Search region:  x1[1, 3], x2[1, 3], x3[1, 2]. 

F11:  Minimize  
2 2
1 1 2 2 2

2 2
1 1 1 2 2

3 3 3.5

1 2 8 20

x x x x x
Z x

x x x x x

    
 

      

(Wang et al.(2008)) 

    Subject to      g1(x) = 2x1 + x2 6 

g2(x) = 3x1 + x2 8 

g3(x) = x1 – x2 1 

Search region: xi[0.1, 3],  i = 1, 2. 

F12:  Minimize  
2 2
1 1 2 2 2

2 2
1 1 1 2 2

3 3 10

1 2 8 20

x x x x x
Z x

x x x x x

   
  

      

(Shen et al.(2009)) 

    Subject to      g1(x) = 2x1 + x2
2 – 6x2 0 

 g2(x) = 3x1 + x2 8 

g3(x) = x1
2 – x1 – x2 0 

Search region:   xi[1, 3],  i = 1, 2. 

 

F13:  Minimize    1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

2 1 2 2 3 5 1.5 6

2 2 2 2 3 2 3 4 1.5 5

x x x x x x x x x x x x
Z x

x x x x x x x x x x x x

           
   

             

(Jiao et al.(2013)) 

    Subject to       1 2 3 1 2 3 1 2 3 1 2 3
1

1 2 3 1 2 3 1 2 3 1 2 3

2 2 2 2 5 2 3 6 1.5 2 7
2.4

2 3 2 4 2 2 5 1.5 2 6

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
     

           
 

  1 2 3 1 2 3 1 2 3 1 2 3
2

1 2 3 1 2 3 1 2 3 1 2 3

1.5 3 2 4 2 5 3 6
3.8

1.5 4 2 5 2 6 3 7

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
    

             

  1 2 3 1 2 3 1 2 3 1 2 3
3

1 2 3 1 2 3 1 2 3 1 2 3

4 5 3 6 7
3.9

5 2 6 7 8

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
    

             

  1 2 3 1 2 3 1 2 3 1 2 3
4

1 2 3 1 2 3 1 2 3 1 2 3

5 6 9 10
0.1

6 2 7 8 9

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
    

           
 

    Search region:  xi[1, 3],  i = 1, 2, 3. 

F14:  Minimize    1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 5 6

2 3 2 2 4 5

x x x x x x x x x x x x
Z x

x x x x x x x x x x x x

           
   

             

(Jiao et al.(2013)) 

Subject to     1 2 3 1 2 3 1 2 3 1 2 3
1

1 2 3 1 2 3 1 2 3 1 2 3

2 5 6 7
2

3 4 5 6

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
     

           
 

  1 2 3 1 2 3 1 2 3 1 2 3
2

1 2 3 1 2 3 1 2 3 1 2 3

3 4 5 6
3.59

4 5 6 7

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
    

             

  1 2 3 1 2 3 1 2 3 1 2 3
3

1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 7
3.6

5 6 7 8

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
    

             

  1 2 3 1 2 3 1 2 3 1 2 3
4

1 2 3 1 2 3 1 2 3 1 2 3

5 6 7 8
3.7

6 7 8 9

x x x x x x x x x x x x
g x

x x x x x x x x x x x x

           
    

           
 

Search region:  xi[1, 3],  i = 1, 2, 3. 
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