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Abstract: In this article, we consider a Generalized Lucas sequence {𝐺𝐿𝑛} defined by the recurrence relation                                           

𝐺𝐿𝑛 =  𝑎𝐿𝑛−2 + 𝑏𝐿𝑛−1 ; for all 𝑛 ≥ 2; where 𝐿0 = 2, 𝐿1 = 1. We derive its recursive formula using simple explicit form of 𝐺𝐿𝑛. 

We also arise some interesting identities for this sequence. 
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I. INTRODUCTION 

 

 The well-known Fibonacci sequence and the Lucas sequence are the two outstanding leads in the huge range of integer 

sequences. Both these sequences are famous for having great and wonderful properties and have been studied over several years. 

In the theory of numbers, Fibonacci sequence has always productive the ground for mathematicians. Both these sequences have 

been generalized in several different ways.  

In Recent years, various papers have been published related to different types of generalizations of Fibonacci sequence. One 

can refer [1,2,4,6,7] and the Fibonacci sequence is a source of many identities as appears in research works. One can refer [3,8].  

The Fibonacci sequence {𝐹𝑛}, named after Leonardo Pisano Fibonacci (1170−1250), is defined recursively by the relation 

𝐹𝑛 = 𝐹𝑛−1 +  𝐹𝑛−2, for 𝑛 ≥ 2, where 𝐹0 = 0, 𝐹1 = 1. This gives the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 … Also the 

sequence of Lucas numbers {𝐿𝑛} is defined by 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 , for all 𝑛 ≥ 2 with initial conditions 𝐿0 = 2 and 𝐿1 = 1. The 

Binet formula for Fibonacci sequence and Lucas sequence are respectively given by 𝐹𝑛 =  
𝛼𝑛−𝛽𝑛

𝛼−𝛽
=  

1

√5
{(

1+√5

2
)

𝑛

− (
1−√5

2
)

𝑛

} and 

𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛 = {(
1+√5

2
)

𝑛

+ (
1−√5

2
)

𝑛

}, where 𝛼 = (
1+√5

2
) is famously referred as ‘golden ratio’. one can refer [5,9,10] 

Here we consider the generalized Lucas sequence {𝐺𝐿𝑛} defined by the recurrence relation 𝐺𝐿𝑛 =  𝑎𝐿𝑛−2 + 𝑏𝐿𝑛−1 ; for all 

𝑛 ≥ 2; with 𝐿0 = 2, 𝐿1 = 1 and a, b are nonzero real numbers. First few terms of this generalized Lucas sequence {𝐺𝐿𝑛} are:       

    −𝑎 + 2𝑏 , 2𝑎 + 𝑏 , 𝑎 + 3𝑏 , 3𝑎 + 4𝑏 , … . 

 

II. A FEW SUMMATIONS FORMULA FOR THE NUMBERS OF GENERALIZED RECURSIVE SEQUENCE 

 

We remark the following interesting pattern for the generalized Lucas numbers: 

𝐺𝐿1 = −𝑎 + 2𝑏 = (𝐿1 − 2)𝑎 − (𝐿2 − 1)𝑏   
𝐺𝐿1 + 𝐺𝐿2 = 𝑎 + 3𝑏 = (𝐿2 − 2)𝑎 − (𝐿3 − 1)𝑏   
𝐺𝐿1 + 𝐺𝐿2 + 𝐺𝐿3 = 2𝑎 + 6𝑏 = (𝐿3 − 2)𝑎 − (𝐿4 − 1)𝑏 

𝐺𝐿1 + 𝐺𝐿2 + 𝐺𝐿3 + 𝐺𝐿4 = 5𝑎 + 10𝑏 = (𝐿4 − 2)𝑎 − (𝐿5 − 1)𝑏. 

From this pattern, we conclude that ∑ 𝐺𝐿𝑛
𝑛
𝑖=1 = (𝐿𝑛 − 2)𝑎 − (𝐿𝑛+1 − 1)𝑏. Now, we use the principle of Mathematical 

Induction (PMI) for verifying this result. 

Lemma 2.1: ∑ 𝐺𝐿𝑛
𝑛
𝑖=1 = (𝐿𝑛 − 2)𝑎 − (𝐿𝑛+1 − 1)𝑏. 

Proof: We use PMI to prove this result. For 𝑛 = 1 it is clear that  

−𝑎 + 2𝑏 = 𝐺𝐿1 = (𝐿1 − 2)𝑎 − (𝐿2 − 1)𝑏 = (1 − 2)𝑎 − (3 − 1)𝑏. 

We assume that the result holds for some positive integer not exceeding 𝑘 and we show that it also holds for 𝑛 = 𝑘 + 1. Now, 

∑ 𝐺𝐿𝑖
𝑘+1
𝑖=1 = ∑ 𝐺𝐿𝑖 + 𝐺𝐿𝑘+1

𝑘
𝑖=1 = (𝐿𝑘 − 2)𝑎 − (𝐿𝑘+1 − 1)𝑏 + 𝑎𝐿𝑘−1 + 𝑏𝐿𝑘  

               = 𝑎(𝐿𝑘 + 𝐿𝑘−1) + 𝑏(𝐿𝑘+1 + 𝐿𝑘) − 2𝑎 − 𝑏 

               = 𝑎𝐿𝑘+1 + 𝑏𝐿𝑘+2 − 2𝑎 − 𝑏. 

Thus, ∑ 𝐺𝐿𝑖
𝑘+1
𝑖=1 = (𝐿𝑘+1 − 2)𝑎 − (𝐿𝑘+2 − 1)𝑏, which proves the result by PMI. 

 We now derive a formula for the sum of first 𝑛 terms of sequence {𝐺𝐿𝑛} with odd subscripts, by two different techniques. 

Lemma 2.2: ∑ 𝐺𝐿2𝑖−1
𝑛
𝑖=1 = 𝐺𝐿2𝑛 − 𝐺𝐿0 = 3𝑎 + 𝑏. 

Proof: [First Method] By the definition of generalized Lucas recurrence numbers, we have 
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𝐺𝐿1 = 𝐺𝐿2 − 𝐺𝐿0 

𝐺𝐿3 = 𝐺𝐿4 − 𝐺𝐿2 

𝐺𝐿5 = 𝐺𝐿6 − 𝐺𝐿4 

⋮ 
𝐺𝐿2𝑛−3 = 𝐺𝐿2𝑛−2 − 𝐺𝐿2𝑛−4 

𝐺𝐿2𝑛−1 =  𝐺𝐿2𝑛 − 𝐺𝐿2𝑛−2 

Adding all these results we get ∑ 𝐺𝐿2𝑖−1
𝑛
𝑖=1 = 𝐺𝐿2𝑛 − 𝐺𝐿0. 

Now we prove the same result by PMI. 

Lemma 2.2: ∑ 𝐺𝐿2𝑖−1
𝑛
𝑖=1 = 𝐺𝐿2𝑛 − 𝐺𝐿0 = 3𝑎 + 𝑏. 

Proof: [Second method] For 𝑛 = 1 it is clear that 

– 𝑎 + 2𝑏 = 𝐺𝐿1 = 𝐺𝐿2 − 𝐺𝐿0 = 2𝑎 + 𝑏 − (3𝑎 − 𝑏). 

We assume that the result holds for some positive integer not exceeding 𝑘 and we show that it also holds for 𝑛 = 𝑘 + 1. Now, 

∑ 𝐺𝐿2𝑖−1
𝑘+1
𝑖=1 = ∑ 2𝑖 − 1𝑘

𝑖=1 + 𝐺𝐿2(𝑘+1)−1 = 𝐺𝐿2𝑘 − 𝐺𝐿0 + 𝐺𝐿2𝑘+1 = 𝐺𝐿2𝑘+2 − 𝐺𝐿0. 

Thus ∑ 𝐺𝐿2𝑖−1
𝑘+1
𝑖=1 = 𝐺𝐿2(𝑘+1) − 𝐺𝐿0, which proves the result for every positive integers 𝑛 by PMI. 

 We next obtain similar result for the even subscripts. 

Lemma 2.3: ∑ 𝐺𝐿2𝑖
𝑛
𝑖=1 = 𝐺𝐿2𝑛+1 − 𝐺𝐿1, 𝐺𝐿1 = −𝑎 + 2𝑏. 

Proof: We use PMI to prove the result. 

For 𝑛 = 1 it is clear that 2𝑎 + 𝑏 = 𝐺𝐿2 = 𝐺𝐿3 − 𝐺𝐿1 = (𝑎 + 3𝑏) − (−𝑎 + 2𝑏). 

Assume that the result holds for some positive integer not exceeding 𝑘 and we show that it also holds for𝑛 = 𝑘 + 1. Now, 

∑ 𝐺𝐿2𝑖
𝑘+1
𝑖=1 = ∑ 𝐺𝐿2𝑖 + 𝐺𝐿2(𝑘+1) =𝑘

𝑖=1 𝐺𝐿2𝑘+1 − 𝐺𝐿1 + 𝐺𝐿2𝑘+1 = 𝐺𝐿2𝑘+3 − 𝐺𝐿1 . 

Thus ∑ 𝐺𝐿2𝑖 = 𝐺𝐿2(𝑘+1)+1 − 𝐺𝐿1
𝑘+1
𝑖=1 , which proves the result by PMI. 

 Next we prove an important result for 𝐺𝐿𝑛. 

Lemma 2.4: ∑ (𝐺𝐿𝑖)2𝑛
𝑖=1 = 𝐺𝐿𝑛𝐺𝐿𝑛+1 + (3𝑎2 − 7𝑎𝑏 + 2𝑏2). 

Proof: We prove this result by the principle of mathematical induction. For 𝑛 = 1 it is clear that 

 (−𝑎 + 2𝑏)2 = (𝐺𝐿1)2 = 𝐺𝐿1𝐺𝐿2 + (3𝑎2 − 7𝑎𝑏 + 2𝑏2) 

                      = (−𝑎 + 2𝑏)(2𝑎 + 𝑏) + (3𝑎2 − 7𝑎𝑏 + 2𝑏2). 

 Now let us assume that the result holds for some positive integer not exceeding 𝑘 and we show that it also holds for                                            

𝑛 = 𝑘 + 1. Now, 

∑ (𝐺𝐿𝑖)2𝑘+1
𝑖=1 = ∑ (𝐺𝐿𝑖)2𝑘

𝑖=1 + (𝐺𝐿𝑘+1)2           

                        =  𝐺𝐿𝑘𝐺𝐿𝑘+1 + (3𝑎2 − 7𝑎𝑏 + 2𝑏2) + (𝐺𝐿𝑘+1)2 

                        =  𝐺𝐿𝑘+1(𝐺𝐿𝑘 + 𝐺𝐿𝑘+1) + (3𝑎2 − 7𝑎𝑏 + 2𝑏2)  

∴ ∑ (𝐺𝐿𝑖)
2𝑘+1

𝑖=1 = 𝐺𝐿𝑘+1𝐺𝐿𝑘+2 + (3𝑎2 − 7𝑎𝑏 + 2𝑏2). 

Thus, by PMI this result is true for every positive integer 𝑛. 

 The following interesting result follows easily from this lemma. 

Corollary 2.5:(𝐺𝐿𝑛)2 = 𝐺𝐿𝑛𝐺𝐿𝑛+1 − 𝐺𝐿𝑛−1𝐺𝐿𝑛; for every positive integer n. 

Proof: Using the lemma 2.5, we have 

𝐺𝐿𝑛𝐺𝐿𝑛+1 = (𝐺𝐿𝑛)2 + (𝐺𝐿𝑛−1)2 + ⋯ + (𝐺𝐿1)2 − (3𝑎2 − 7𝑎𝑏 + 2𝑏2) and 

𝐺𝐿𝑛−1𝐺𝐿𝑛 = (𝐺𝐿𝑛−1)2 + (𝐺𝐿𝑛−2)2 + ⋯ + (𝐺𝐿1)2 − (3𝑎2 − 7𝑎𝑏 + 2𝑏2). 

On subtraction, we get (𝐺𝐿𝑛)2 = 𝐺𝐿𝑛𝐺𝐿𝑛+1 − 𝐺𝐿𝑛−1𝐺𝐿𝑛;  𝑛 ≥ 1 , as required. 

 

III. EXTENDED BINET’S FORMULA FOR THE GENERALIZED LUCAS NUMBERS  

 

 Almost all of these properties can be derived from Binet’s formula. A main objective of this paper is to prove that many of 

the properties of the Fibonacci sequence can be stated and verified for a much larger class of sequences, namely the generalized 

Fibonacci sequence. We now develop extended Binet’s formula for the generalized Lucas numbers.  

 

Theorem 3.1: [Extended Binet’s formula] 

The terms of the generalized Lucas sequence {𝐺𝐿𝑛} are given by 𝐺𝐿𝑛 = 𝑐𝛼𝑛 + 𝑑𝛽𝑛 ; where 𝑐 = 𝑎 + (𝑎 − 𝑏)𝛽, 𝑑 = 𝑎 + (𝑎 − 𝑏)𝛼 

and 𝛼 = (
1+√5

2
) , 𝛽 = (

1−√5

2
). 

Proof: We have 𝐺𝐿𝑛 = 𝑎𝐿𝑛−2 + 𝑏𝐿𝑛−1  

                                  = 𝑎(𝛼𝑛−2 + 𝛽𝑛−2) + 𝑏(𝛼𝑛−1 + 𝛽𝑛−1) 

                          =  𝛼𝑛 (
𝑎

𝛼2 +
𝑏

𝛼
) + 𝛽𝑛 (

𝑎

𝛽2 +
𝑏

𝛽
) 

                          =  𝛼𝑛{𝑎𝛽2 + 𝑏(𝛼𝛽)𝛽} + 𝛽𝑛{𝑎𝛼2 + 𝑏(𝛼𝛽)𝛼}. 

Here it can be observed that 𝛼𝛽 = −1, 𝛼2 = 1 + 𝛼 and 𝛽2 = 1 + 𝛽. Thus we have  

𝐺𝐿𝑛 =  𝛼𝑛{𝑎(1 + 𝛽) − 𝑏𝛽} + 𝛽𝑛{𝑎(1 + 𝛼) − 𝑏𝛼}  
        =  𝛼𝑛{𝑎 + (𝑎 − 𝑏)𝛽} + 𝛽𝑛{𝑎 + (𝑎 − 𝑏)𝛼}. 

Hence, 𝐺𝐿𝑛 = 𝑐𝛼𝑛 + 𝑑𝛽𝑛, when 𝑐 = 𝑎 + (𝑎 − 𝑏)𝛽 and 𝑑 = 𝑎 + (𝑎 − 𝑏)𝛼. 

 

Remark: 𝑐𝑑 = {𝑎 + (𝑎 − 𝑏)𝛽}{𝑎 + (𝑎 − 𝑏)𝛼} 

                     = 𝑎2 + (𝑎 − 𝑏)2𝛼𝛽 + 𝑎(𝑎 − 𝑏)𝛼 + 𝑎(𝑎 − 𝑏)𝛽    

                     = 𝑎2 + (𝑎 − 𝑏)2(−1) + 𝑎(𝑎 − 𝑏)(𝛼 + 𝛽) 

                     =  𝑎2 + 𝑎𝑏 − 𝑏2. 

 This constant occurs in many of the formulas for generalized Lucas numbers. We call it the characteristic of the generalized 

Lucas sequence. We write 𝜇 = 𝑐𝑑 =  𝑎2 + 𝑎𝑏 − 𝑏2. 

 We now use this extended Binet’s formula to prove some interesting identities for this sequence. In the following theorem,           

we derive the extended Cassini’s identity for the generalized Lucas numbers which connects three consecutives 𝐺𝐿𝑛’s together. 
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Lemma 3.2: [Extended Cassini’s identity] 

𝐺𝐿𝑛+1𝐺𝐿𝑛−1 − (𝐺𝐿𝑛)2 = 5𝜇(−1)𝑛−1. 

Proof: We have 

 𝐺𝐿𝑛+1𝐺𝐿𝑛−1 − (𝐺𝐿𝑛)2 = (𝑐𝛼𝑛+1 + 𝑑𝛽𝑛+1)(𝑐𝛼𝑛−1 + 𝑑𝛽𝑛−1) − (𝑐𝛼𝑛 + 𝑑𝛽𝑛)2 

                                      = 𝑐𝑑(𝛼𝑛+1𝛽𝑛−1 + 𝛼𝑛−1𝛽𝑛+1) − 2𝑐𝑑(−1)𝑛 

                                      = 𝜇(𝛼𝛽)𝑛−1(𝛼2 + 𝛽2) − 2𝜇(−1)𝑛 . 

Since 𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛 and 𝐿2 = 3, we have 

𝐺𝐿𝑛+1𝐺𝐿𝑛−1 − (𝐺𝐿𝑛)2 = 𝜇(−1)𝑛−1(3) − 2𝜇(−1)𝑛 = −3𝜇(−1)𝑛 − 2𝜇(−1)𝑛. 

Hence, 𝐺𝐿𝑛+1𝐺𝐿𝑛−1 − (𝐺𝐿𝑛)2 = −5𝜇(−1)𝑛 = 5𝜇(−1)𝑛−1, as required.   

 We next prove more generalized form of extended Catalan’s identity which connects three consecutives 𝐺𝐿𝑛’s with suffixes 

in arithmetic progression for fixed n. 

Lemma 3.3: [Extended Catalan’s identity] 

(𝐺𝐿𝑛)2 − 𝐺𝐿𝑛+𝑟𝐺𝐿𝑛−𝑟 = 𝑐𝑑(−1)𝑛(2 + 𝐿2𝑟). 

Proof: Using extended Binet’s theorem for generalized Lucas numbers, we have 

 (𝐺𝐿𝑛)2 − 𝐺𝐿𝑛+𝑟𝐺𝐿𝑛−𝑟 

               = (𝑐𝛼𝑛 + 𝑑𝛽𝑛)2 − (𝑐𝛼𝑛+𝑟 + 𝑑𝛽𝑛+𝑟)(𝑐𝛼𝑛−𝑟 + 𝑑𝛽𝑛−𝑟) 

               = 𝑐2𝛼2𝑛 + 2𝑐𝑑(𝛼𝛽)𝑛 + 𝑑2𝛽2𝑛 − 𝑐2𝛼2𝑛 − 𝑐𝑑𝛼𝑛+𝑟𝛽𝑛−𝑟 − 𝑐𝑑𝛼𝑛−𝑟𝛽𝑛+𝑟 − 𝑑2𝛽2𝑛 

               = 2𝑐𝑑(𝛼𝛽)𝑛 − 𝑐𝑑(𝛼𝛽)𝑛𝛼𝑟(−𝛼)𝑟 − 𝑐𝑑(𝛼𝛽)𝑛𝛽𝑟(−𝛽)𝑟  

               = 2𝑐𝑑(−1)𝑛 − 𝑐𝑑(−1)𝑛𝛼𝑟(−𝛼)𝑟 − 𝑐𝑑(−1)𝑛𝛽𝑟(−𝛽)𝑟  

               = 𝑐𝑑(−1)𝑛(2 + 𝛼2𝑟 + 𝛽2𝑟). 

 Hence,  (𝐺𝐿𝑛)2 − 𝐺𝐿𝑛+𝑟𝐺𝐿𝑛−𝑟 = 𝑐𝑑(−1)𝑛(2 + 𝐿2𝑟). 

 We now express GL𝑛 explicitly in terms of powers of 𝛼. 

Theorem 3.4: 𝐺𝐿𝑛 = 𝑑 [
𝑐

𝑑
𝛼𝑛], where [x] represents the integer part of x. 

Proof: Using the extended Binet’s formula for 𝐺𝐿𝑛 we have 𝐺𝐿𝑛 = 𝑐𝛼𝑛 + 𝑑𝛽𝑛, where  𝑐 = 𝑎 + (𝑎 − 𝑏)𝛽 and  𝑑 = 𝑎 + (𝑎 − 𝑏)𝛼. 

This gives 
𝐺𝐿𝑛−𝑐𝛼𝑛

𝑑
= 𝛽𝑛. Then, 

|
𝐺𝐿𝑛−𝑐𝛼𝑛

𝑑
| = |𝛽𝑛| = |𝛽|𝑛 = |

1 –√5

2
|

𝑛

=  (0.618)𝑛 < 1, as 𝑛 → ∞. 

This gives 𝐺𝐿𝑛 = 𝑑 [
𝑐

𝑑
𝛼𝑛] , as required. 

 The next result shows how extended Binet’s formula is used to express 𝐺𝐿𝑛+1 in terms of 𝐺𝐿𝑛.  

Lemma 3.5: 𝐺𝐿𝑛+1 = 𝛼𝐺𝐿𝑛 − 𝑑√5𝛽𝑛, where 𝑐 = 𝑎 + (𝑎 − 𝑏)𝛽 and 𝑑 = 𝑎 + (𝑎 − 𝑏)𝛼. 
Proof: We have 𝐺𝐿𝑛 = 𝑐𝛼𝑛 + 𝑑𝛽𝑛. Then, 

𝛼𝐺𝐿𝑛 = 𝑐𝛼𝑛+1 + 𝑑𝛼𝛽𝑛        

          = 𝑐𝛼𝑛+1 + 𝑑(𝛼𝛽)𝛽𝑛−1 

          = 𝑐𝛼𝑛+1 − 𝑑𝛽𝑛−1    

          = (𝑐𝛼𝑛+1 + 𝑑𝛽𝑛+1) − 𝑑(𝛽𝑛−1 + 𝛽𝑛+1)   

          = 𝐺𝐿𝑛+1 − 𝑑𝛽𝑛−1(𝛽2 + 1)  

          = 𝐺𝐿𝑛+1 − 𝑑𝛽𝑛−1(−√5𝛽)  

               = 𝐺𝐿𝑛 + 1 + 𝑑√5𝛽𝑛.  

Thus, 𝐺𝐿𝑛+1 = 𝛼𝐺𝐿𝑛 − 𝑑√5𝛽𝑛. 
 Following result follows immediately from this result by taking 𝑛 → ∞ and keeping in mind that |𝛽| < 1. 

Corollary 3.6: 𝐺𝐿𝑛+1 = 𝛼𝐺𝐿𝑛 . 

 We next show that limiting ratio of any two consecutive terms of this sequence converge to a fixed real number. 

Lemma 3.7: 𝑙𝑖𝑚
𝑛→∞

𝐺𝐿𝑛+1

𝐺𝐿𝑛
= 𝛼. 

Proof: We have  𝐺𝐿𝑛 = 𝑑 [
𝑐

𝑑
𝛼𝑛] . Now we know that for any arbitrary real number 𝑥, we have [𝑥] = 𝑥 − 𝜃, where 0 < 𝜃 < 1. Then, 

𝑙𝑖𝑚
𝑛→∞

𝐺𝐿𝑛+1

𝐺𝐿𝑛
= 𝑙𝑖𝑚

𝑛→∞

𝑑[
𝑐

𝑑
𝛼𝑛 +1]

𝑑[
𝑐

𝑑
𝛼𝑛]

= 𝑙𝑖𝑚
𝑛→∞

𝑐

𝑑
𝛼𝑛+1−𝜃 1
𝑐

𝑑
𝛼𝑛−𝜃2

 . 

Since 0 < 𝜃 1 , 𝜃 2 < 1, we have 𝑙𝑖𝑚
𝑛→∞

𝐺𝐿𝑛+1

𝐺𝐿𝑛
= 𝛼. 

 

 

IV. GENERALIZED LUCAS SEQUENCE WITH NEGATIVE SUBSCRIPTS 

 

 We now extend the generalized Lucas sequence backward with negative subscripts. In fact, if we try to extend the generalized 

Lucas sequence backwards still keeping to the rule that any generalized Lucas sequence is the sum of the two numbers on its left, 

we get the following:   

𝑛 𝐺𝐿−𝑛 

⋮ ⋮ 
−3 −11𝑎 + 7𝑏 

−2 7𝑎 − 4𝑏 

−1 −4𝑎 + 3𝑏 

0 3𝑎 − 𝑏 

1 −𝑎 + 2𝑏 

2 2𝑎 + 𝑏 

3 𝑎 + 3𝑏 

⋮ ⋮ 
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 We can now consider 𝐺𝐿𝑛 being defined for all integer values of n, both positive and negative and the generalized Lucas 

sequence extending infinitely in both the positive and negative directions. We observe here that 𝐺𝐿−𝑛 = (−1)𝑛(𝑎𝐿𝑛+2 − 𝑏𝐿𝑛+1). 

We prove this result in the following theorem.  

Theorem 4.1: 𝐺𝐿−𝑛 = (−1)𝑛(𝑎𝐿𝑛+2 − 𝑏𝐿𝑛+1). 
Proof: We have 𝐺𝐿𝑛 = 𝑐𝛼𝑛 + 𝑑𝛽𝑛. Now considering −𝑛 in place of 𝑛, we get 𝐺𝐿−𝑛 = 𝑐𝛼−𝑛 + 𝑑𝛽−𝑛. Since 𝛼𝛽 = −1, we have  

 𝐺𝐿−𝑛 = 𝑐𝛼−𝑛 + 𝑑𝛽−𝑛 

           = 𝑐(−𝛽)𝑛 + 𝑑(−𝛼)𝑛 

           = (−1)𝑛(𝑐𝛽𝑛 + 𝑑𝛼𝑛) 

           = (−1)𝑛({𝑎 + (𝑎 − 𝑏)𝛽}𝛽𝑛 + {𝑎 + (𝑎 − 𝑏)𝛼}𝛼𝑛)    

           = (−1)𝑛(𝑎𝛽𝑛 + (𝑎 − 𝑏)𝛽𝑛+1 + 𝑎𝛼𝑛 + (𝑎 − 𝑏)𝛼𝑛+1) 

           = (−1)𝑛(𝑎(𝛼𝑛 + 𝛽𝑛) + (𝑎 − 𝑏)(𝛼𝑛+1 + 𝛽𝑛+1)) 

           = (−1)𝑛(𝑎𝐿𝑛 + (𝑎 − 𝑏)𝐿𝑛+1) 

           = (−1)𝑛(𝑎𝐿𝑛 + 𝑎𝐿𝑛+1 − 𝑏𝑎𝐿𝑛+1)      

           = (−1)𝑛(𝑎(𝐿𝑛 + 𝐿𝑛+1) − 𝑏𝐿𝑛+1) 

Hence,  𝐺𝐿−𝑛 = (−1)𝑛(𝑎𝐿𝑛+2 − 𝑏𝐿𝑛+1). 

We next obtain two beautiful results which show connection between the Fibonacci numbers, Lucas numbers and generalized 

Lucas numbers. 

Theorem 4.2: 𝐺𝐿𝑛+𝑚 = 𝐹𝑛+1𝐺𝐿𝑚 + 𝐹𝑛𝐺𝐿𝑚−1 = 𝐹𝑚𝐺𝐿𝑛+1 + 𝐹𝑚−1𝐺𝐿𝑛 . 

Proof: We shall prove this result by induction over 𝑛 keeping m fixed. 

 For 𝑛 = 1, we have 𝐺𝐿𝑚+1 = 𝐹2𝐺𝐿𝑚 + 𝐹1𝐺𝐿𝑚−1 = 𝐺𝐿𝑚 + 𝐺𝐿𝑚−1.This proves the result for 𝑛 = 1, since 𝐹1 = 𝐹2 = 1. 

 Now assume that result holds for some positive integer 𝑛 = 𝑘. Then by assumption, 𝐺𝐿𝑘+𝑚 = 𝐹𝑘+1𝐺𝐿𝑚 + 𝐹𝑘𝐺𝐿𝑚−1 holds. 

Now  𝐺𝐿𝑘+1+𝑚 =  𝐺𝐿𝑚+𝑘+1 =  𝐺𝐿𝑚+𝑘 + 𝐺𝐿𝑚+𝑘−1 

                        = 𝐹𝑘+1𝐺𝐿𝑚 + 𝐹𝑘𝐺𝐿𝑚−1 + 𝐹𝑘𝐺𝐿𝑚 + 𝐹𝑘−1𝐺𝐿𝑚−1 

                        = (𝐹𝑘+1 + 𝐹𝑘)𝐺𝐿𝑚 + (𝐹𝑘 + 𝐹𝑘−1)𝐺𝐿𝑚−1 

                        = 𝐹𝑘+2𝐺𝐿𝑚 + 𝐹𝑘+1𝐺𝐿𝑚−1, which is precisely our identity when 𝑛 = 𝑘 + 1.        

Thus, result is true for every positive integer 𝑛. 

The second part of the result follows immediately by interchanging 𝑚 and n.  

 We use this result to prove the analogous of d’Ocagne’s identity.  

Theorem 4.3: [Extended d’Ocagne’s identity] 

𝐺𝐿𝑛−𝑚 = (−1)𝑚[𝐹𝑚+1𝐺𝐿𝑚 − 𝐹𝑚𝐺𝐿𝑛+1]. 
Proof: 𝐺𝐿𝑛−𝑚 = 𝐹−𝑚−1𝐺𝐿𝑚 + 𝐹−𝑚𝐺𝐿𝑛+1 

                     = (−1)𝑚+2𝐹𝑚+1𝐺𝐿𝑚 + (−1)𝑚+1𝐹𝑚𝐺𝐿𝑛+1    

                     = (−1)𝑚+1[𝐹𝑚𝐺𝐿𝑛+1 − 𝐹𝑚+1𝐺𝐿𝑚] 
∴ 𝐺𝐿𝑛−𝑚 = (−1)𝑚[𝐹𝑚+1𝐺𝐿𝑚 − 𝐹𝑚𝐺𝐿𝑛+1] . 
 The following result follows from the above two reduction formulae. 

Corollary 4.4: 𝐺𝐿𝑛+𝑚 + (−1)𝑚𝐺𝐿𝑛−𝑚 = 𝐺𝐿𝑛𝐿𝑚. 

Proof: By the above two lemmas, we have 

𝐺𝐿𝑛+𝑚 = 𝐹𝑚𝐺𝐿𝑛+1 + 𝐹𝑚−1𝐺𝐿𝑛 and 𝐺𝐿𝑛−𝑚 = (−1)𝑚[𝐹𝑚+1𝐺𝐿𝑛 − 𝐹𝑚𝐺𝐿𝑛+1]. 
Thus 𝐺𝐿𝑛+𝑚 + (−1)𝑚𝐺𝐿𝑛−𝑚 = [𝐹𝑚𝐺𝐿𝑛+1 + 𝐹𝑚−1𝐺𝐿𝑛] + [𝐹𝑚+1𝐺𝐿𝑛 − 𝐹𝑚𝐺𝐿𝑛+1] 
                                                 = 𝐺𝐿𝑛[𝐹𝑚−1 + 𝐹𝑚+1]. 
Since 𝐹𝑚−1 + 𝐹𝑚+1 = 𝐿𝑚 , the required result follows immediately.     
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