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1.   Abstract 

             The dynamics of two ecologically independent species which are being harvested with variable effort 

have been discussed. The dynamics of effort is considered separately. The local and global dynamics of the system 

is studied. The co-existence of species in the form of stable equilibrium point is possible.  
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2.  Introduction 

             Exploitation of biological resources as practiced in fishery, and forestry has strong impact on dynamic 

evolution of biological population. The over exploitation of resources may lead to extinction of species which 

adversely affects the ecosystem. However, reasonable and controlled harvesting is beneficial from economic and 

ecological point of view. The research on harvesting in predator-prey systems has been of interest to economists, 

ecologists and natural resource management for some time now.  

           The optimal management of renewable resources and their solution analytically has been extensively 

studied by many authors [1, 2, 3, 7, 8, 12-21]. The mathematical aspects of management of renewable resources 

have been discussed by [10]. He had investigated the optimum harvesting of logistically growing species. The 

problem of combined harvesting of two ecologically independent species has been studied [10, 13]. The effects 

of harvesting on the dynamics of interacting species have been studied Measterton-Gibbons [14], Chaudhuri et.al. 

[6-9] with constant harvesting, the prey predator model is found to have interesting dynamical behavior including 

stability, Hopf bifurcation and limit cycle [4, 5, 11, 15].  

            The multi species food web models have found to have rich dynamical behavior [16, 18]. S Kumar et. al. 

[17] have investigated the harvesting of predator species predating over two preys. 

            In this paper the dynamics of two ecologically independent species which are being harvested have been 

discussed when the dynamics of effort is considered separately. 
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3. The Mathematical Model 

              Consider two independent biological species with densities𝑋1and𝑋2with logistic growth. The 

Mathematical model of two harvesting prey species with effort rate is given by the following system of ordinary 

differential equations: 

                          
𝑑𝑋1

𝑑𝑇
= 𝑟1𝑋1 (1 −

𝑋1

𝐾1
) −

𝐴1𝑞1𝑋1𝐸

1+𝐵1𝑋1+𝐵2𝑋2
= 𝑋1𝑓1(𝑋1, 𝑋2, 𝐸) 

                           
𝑑𝑋2

𝑑𝑇
= 𝑟2𝑋2 (1 −

𝑋2

𝐾2
) −

𝐴2𝑞2𝐸𝑋2

1+𝐵1𝑋1+𝐵2𝑋2
= 𝑋2𝑓2(𝑋1, 𝑋2, 𝐸) 

                          
𝑑𝐸

𝑑𝑇
= 𝐸(ℎ(𝑋1, 𝑋2) − 𝐶) = 𝐸𝑘 (

𝑝1𝑞1𝐴1𝑋1+𝑝2𝑞2𝐴2𝑋2

1+𝐵1𝑋1+𝐵2𝑋2
− 𝐶) = 𝐸𝑓3(𝑋1, 𝑋2)      (1)        

The logistic growth is considered for the two preys. The model does not consider any direct competition between 

the two populations. The constants 𝐾𝑖 , 𝑟𝑖, 𝐴𝑖 ,andB𝑖, are model parameters assuming only positive values. The 

effort 𝐸is applied to harvest both the species and C is total cost of fishing. The harvesting is proportional to the 

product of effort 𝐸and the fish population density𝑋𝑖.The catch-ability coefficients 𝑞𝑖 are assumed to be different 

for the two species. In the model, the third equation considers the dynamics of effort E. The constants 𝑝1 and 

𝑝2are the price of the per unit prey species. The last equation of (1) implies that the rate of increase of the effort 

is proportional to the rate of net economic revenue. The constant 𝑘is the proportionality constant.  

Let the constant 𝑀0is the reference value of𝐸. Introduce the following dimensionless transformations: 

              𝑡 = 𝑟1𝑇, 𝑦𝑖 =
𝑋𝑖

𝐾𝑖
(𝑖 = 1,2), 𝑥 =

𝐸

𝑀0
, 𝑤1 =

𝐴1𝑞1𝐸0

𝑟1
, 𝑤2 = 𝐵1𝐾1, 𝑤3 = 𝐵2𝐾2 

              𝑤4 =
𝑟2

𝑟1
, 𝑤5 =

𝐴2𝑞2𝑀

𝑟1 0
, 𝑤6 =

𝑘𝐾1

𝑀0
, 𝑤7 =

𝑘𝐾2

𝑀0
;
 

The dimensionless nonlinear system is obtained as: 

                         
𝑑𝑦1

𝑑𝑡
= 𝑦1 (1 − 𝑦1 −

𝑤1𝑥

1+𝑤2𝑦1+𝑤3𝑦2
) = 𝑦1𝑓1(𝑦1, 𝑦2, 𝑥). 

                                  
𝑑𝑦2

𝑑𝑡
= 𝑦2 ((1 − 𝑦2)𝑤4 −

𝑤5𝑥

1+𝑤2𝑦1+𝑤3𝑦2
) = 𝑦2𝑓2(𝑦1, 𝑦2, 𝑥) 

                                   
𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑝1𝑤1𝑤6𝑦1+𝑝2𝑤5𝑤7𝑦2

1+𝑤2𝑦1+𝑤3𝑦2
− 𝐶) = 𝑥𝑓3(𝑦1, 𝑦2)                          (2) 

Theorem 3.1(Positivity of the Solution of the Mathematical Model): The solution (𝑦1, 𝑦2, 𝑥)   is positive for all 

t greater than and equal to zero.  

Proof: We have from the mathematical model equations 

      
𝑑𝑦1

𝑑𝑡
≥ −

𝑤1𝑥𝑦1

1+𝑤2𝑦1+𝑤3𝑦2
 ⇒

𝑑𝑦1

𝑦1
≥ −𝑀𝑑𝑡 ⟹ 𝑦1(𝑡) ≥ 0.𝑊ℎ𝑒𝑟𝑒 𝑚𝑎𝑥 (

𝑤1𝑥

1+𝑤2𝑦1+𝑤3𝑦2
) = 𝑀  

      
𝑑𝑦2

𝑑𝑡
≥ −

𝑤5𝑥 𝑦2 

1+𝑤2𝑦1+𝑤3𝑦2
⟹

𝑑𝑦2

𝑦2
≥ −𝑁𝑑𝑡 ⇒ 𝑦2

(𝑡) ≥ 0.   𝑤ℎ𝑒𝑟𝑒max (
𝑤5𝑥 𝑦2 

1+𝑤2𝑦1+𝑤3𝑦2
) = 𝑁 

       
𝑑𝑥

𝑑𝑡
≥ −𝐶𝑥 ⇒ 𝑥(𝑡) ≥ 0                           

Therefore, the solution (𝑦1 , 𝑦2, 𝑥) is positive for all t greater than and equal to zero.  
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4. Existence of Equilibrium Points 

            Since0 ≤ 𝑦𝑖 ≤ 1;   𝑖 = 1,2, the underlying non-linear model (2) is bounded and has a unique solution. 

There are at most seven possible equilibrium points of the nonlinear harvesting model: 

         𝐸0 = (0,0,0),  𝐸1 = (1,0,0),  𝐸2 = (0,1,0),  𝐸3 = (1,1,0), 

         𝐸4 = (𝑦1
∗, 0, 𝑥∗),   𝑥∗ =

(1−𝑦1
∗)(1+𝑤2𝑦1

∗)

𝑤1
;    𝑦1

∗ =
𝐶

(𝑤1𝑝1𝑤6−𝐶𝑤2)
 

 

        𝐸5 = (0, 𝑦2
∗, 𝑥∗),    𝑥∗ =

(𝑤4(1−𝑦2
∗)(1+𝑤3𝑦2

∗))

𝑤5
;    𝑦2

∗ =
𝐶

(𝑤5𝑝2𝑤7−𝐶𝑤3),
 

 

 

             𝐸6 = (𝑦1
∗, 𝑦2

∗, 𝑥∗). 

Theorem 4.1 The equilibrium point 𝐸4 = (𝑦1
∗, 0, 𝑥∗) is feasible only when  

         𝐶 <
𝑤1𝑝1𝑤6

(1+𝑤2)
                                                          (3) 

Theorem 4.2 The equilibrium point 𝐸5 = (0, 𝑦2
∗, 𝑥∗) is feasible only when  

              𝐶 <
𝑤5𝑝2𝑤7

(1+𝑤3)
                                   (4) 

The proofs of the two theorems are straightforward as0 < 𝑦𝑖
∗ < 1;  𝑖 = 1,2. 

Theorem 4.3 The positive non-zero equilibrium 𝐸6 of nonlinear harvesting model (2) exists provided the following 

conditions are satisfied: 

        𝐶 <
𝑤1𝑝1𝑤6

𝑤2
;    𝐶 <

𝑤5𝑝2𝑤7

𝑤3
                                (5) 

Proof:  The isoclines of harvesting model (2) are given by  

      𝑓1(𝑦1, 𝑦2, 𝑥) = 0; 𝑓2(𝑦1, 𝑦2, 𝑥) = 0; 𝑓1(𝑦1, 𝑦2) = 0                                                       (6) 

Using first of (6) we get  𝑥∗ =
(1−𝑦1

∗)(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)

𝑤1
 

Solving first and second of (6) we get 

             (𝑝1𝑤1𝑤6 − 𝑤2𝐶)𝑦1
∗ + (𝑝2𝑤5𝑤7 − 𝑤3𝐶)𝑦2

∗ = 𝐶                                               (7)

 
Using third of (6) we get 

        𝑦1
∗ − (

𝑤4𝑤1

𝑤5
)𝑦2

∗ =
(𝑤5−𝑤4𝑤1)

𝑤5
                      (8)

 
Now solving (7) and (8) we get 

             𝑦1
∗ =

(𝑤5−𝑤1𝑤4)(𝑤7𝑝2𝑤5−𝐶𝑤3)+𝐶𝑤1𝑤4

 𝑤5(𝑤7𝑝2𝑤5−𝐶𝑤3)+ 𝑤1𝑤4(𝑤1𝑝1𝑤6−𝐶𝑤2)
 

            𝑦2
∗ =

𝐶𝑤5−(𝑤5−𝑤1𝑤4)(𝑤1𝑝1𝑤6−𝐶𝑤2)

 𝑤5(𝑤7𝑝2𝑤5−𝐶𝑤3)+ 𝑤1𝑤4(𝑤1𝑝1𝑤6−𝐶𝑤2)
 

The positive non-zero biological equilibrium𝐸6 = (𝑦1
∗, 𝑦2

∗, 𝑥∗)exists provided the conditions (5) are satisfied. 

It may further be observed that conditions (3) and (4) imply (5), that is if 𝐸4 = (𝑦1
∗, 0, 𝑥∗) and 𝐸5 = (0, 𝑦2

∗, 𝑥∗)exists 

then 𝐸6will also exists. However, the existence of 𝐸6 is possible irrespective of 𝐸4and 𝐸5provided the condition (5) is 

satisfied. 

Theorem 4.4 The flow of nonlinear harvesting model (2) contracts volume uniformly for positive non-zero 

equilibrium 𝐸6  provided the following condition is satisfied [15]: 
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                                            𝑥∗ <
(𝑦1

∗+𝑤4𝑦2
∗)(1+𝑤2𝑦1

∗+𝑤3𝑦2
∗)2

𝑤1𝑤2+𝑤3𝑤4
 

Proof: Because the divergence of the vector field for the positive non-zero equilibrium 𝐸6 is 

           
𝜕

𝜕𝑦1

𝑑𝑦1

𝑑𝑡
+

𝜕

𝜕𝑦2
 
𝑑𝑦2

𝑑𝑡
+

𝜕

𝜕𝑥
 
𝑑𝑥

𝑑𝑡
= 𝑦1 (−1 +

𝑤1𝑥𝑤2

(1+𝑤2𝑦1+𝑤3𝑦2)
2) + 𝑦2 (−𝑤4 +

𝑤3𝑥𝑤5

(1+𝑤2𝑦1+𝑤3𝑦2)
2) < 0 

 When  

       𝑥∗ <
(𝑦1

∗+𝑤4𝑦2
∗)(1+𝑤2𝑦1

∗+𝑤3𝑦2
∗)2

𝑤1𝑤2+𝑤3𝑤4
 

Hence the result. 

Theorem 4.5: Periodic Solution does not exist at non zero equilibrium point. 

Proof: Let  𝑛 = 𝑦1𝑖 +  𝑦2𝑗 + 𝑥𝑘 𝑎𝑛𝑑 𝐹 = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘  be the vectors. Let 𝐹1 = 𝑦1𝑓1(𝑦1, 𝑦2, 𝑥), 𝐹2 =

𝑦2𝑓2(𝑦1, 𝑦2, 𝑥), 𝐹3 =  𝑥𝑓3(𝑦1, 𝑦2) be the scalar field in mathematical model (2). Let 𝑁 = 𝑁1𝑖 + 𝑁2𝑗 + 𝑁3𝑘 be 

the vector then consider the vector field  𝑛 × 𝐹 = 𝑁1𝑖 + 𝑁2𝑗 + 𝑁3𝑘 , Here 𝑓1(𝑦1, 𝑦2, 𝑥) = 0, 𝑓2(𝑦1, 𝑦2, 𝑥) = 0,

𝑓3(𝑦1, 𝑦2) = 0 are the isocline of the mathematical model for nonzero positive equilibrium point. Then we have 

Curl N=0. Thus, Periodic Solution does not exist at non zero equilibrium point. 

5. Stability Analysis     

   The variational matrix about the point 𝐸0 is given by 

              𝐽0 = [
1 0 0
0 𝑤4 0
0 0 −𝐶

]     

From the above variational matrix, it is seen that there are two unstable manifolds along both𝑋,𝑌 axis and one stable 

manifold along 𝑍axis. Therefore, the point𝐸0is a saddle point, that is, at very small densities of species the effort decreases 

and tends to zero, while for small efforts the densities of harvesting species will start increasing, 

The variational matrices about the axial point 𝐸1 = (1,0,0) and 𝐸2 = (0,1,0)are given by 

              𝐽1 = [

−1 0 −1/(1 + 𝑤2)
0 𝑤4 0

0 0
𝑤1𝑝1𝑤6

1+𝑤2
− 𝐶

]    and 𝐽2 = [

1 0 0
0 −𝑤4 −𝑤5/(1 + 𝑤3)

0 0 (
𝑤5𝑝2𝑤7

1+𝑤3
− 𝐶)

] respectively. 

From the matrix𝐽1, it is seen that there exists a stable manifold along𝑋 axis and an unstable manifold along 𝑍 axis. Stable 

manifold along  𝑌 axis exists provided𝑤1𝑝1𝑤6 − 𝐶(1 + 𝑤2) < 0. Observe that this condition violates the existence of  

𝐸4 = (𝑦1
∗, 0, 𝑥∗). The point 𝐸1 is a saddle point.  

Similarly, from the matrix𝐽2, it is seen that there exists a stable manifold along 𝑌 axis and an unstable manifold along 𝑋 

axis. Stable manifold along  𝑍 axis exists provided𝑤1𝑝1𝑤6 − 𝐶(1 + 𝑤2) < 0. This condition excludes the existence of 

equilibrium point 𝐸5 = (0, 𝑦2
∗, 𝑥∗). The point 𝐸2 is a saddle point. 

The variational matrix about the point 𝐸3 = (1,1,0) is given by 

               𝐽3 =

[
 
 
 
 −1 0 −

𝑤1

(1+𝑤2+𝑤3)

0 −𝑤4 −
𝑤5

(1+𝑤2+𝑤3)

𝑎31 𝑎32
𝑤1𝑝1𝑤6+𝑤5𝑝2𝑤7

(1+𝑤2+𝑤3)
− 𝐶]

 
 
 
 

 

Thus, the equilibrium point 𝐸3 = (1,1,0) is stable provided the following condition is satisfied: 
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𝑤1𝑝1𝑤6+𝑤5𝑝2𝑤7

(1+𝑤2+𝑤3)
− 𝐶 < 0                    (9) 

Theorem 5.1: The equilibrium point 𝐸4 = (𝑦1
∗, 0, 𝑥∗)is locally asymptotically stable provided  

          
(𝑤2−1)

2𝑤2
< 𝑦1

∗ <
(𝑤1−𝑤5)

𝑤5
< 1                                         (10) 

Proof. The variational matrix about the point 𝐸4 = (𝑦1
∗, 0, 𝑥∗)is given by 

              𝐽4 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎23

] 

              𝑎11 = 𝑦1
∗ [−1 +

𝑤1𝑤2𝑥∗

(1+𝑤2𝑦1
∗)2

],    𝑎12 =
𝑤1𝑤3𝑦1

∗𝑥∗

(1+𝑤2𝑦1
∗)2

 ,     𝑎13 = −
𝑤1𝑦1

∗

(1+𝑤2𝑦1
∗)

; 

              𝑎22 = [𝑤4 −
𝑤5𝑥∗

(1+𝑤2𝑦1
∗)
],        𝑎21 = 𝑎23 = 𝑎33 = 0 

              𝑎31 =
𝑥∗𝑤1𝑤6𝑝1

(1+𝑤2𝑦1
∗)2

;      𝑎32 =
𝑥∗(𝑤7𝑤5𝑝2+𝑦1

∗(𝑤2𝑤7𝑤5𝑝2−𝑤3𝑤1𝑤6𝑝1))

(1+𝑤2𝑦1
∗)2

; 

The equilibrium point𝐸4is locally stable if the following conditions are satisfied: 

          𝑤1𝑥
∗ > 𝑤2(1 − 𝑦1

∗)2;   and    𝑦1
∗ <

(𝑤1−𝑤5)

𝑤5
; 

Substitution for x* and simplification yields the stability conditions as  

        (
(𝑤2−1)

2𝑤2
) < 𝑦1

∗ < (
(𝑤4𝑤1−𝑤5)

𝑤1𝑤4
) < 1   

The equilibrium𝐸4is unstable when the condition (10) is violated.  

 Similarly, the stability conditions for the equilibrium 𝐸5 are stated in the theorem 5.2. Its proof is omitted.   

Theorem 5.2: The equilibrium point 𝐸5 = (0, 𝑦2
∗, 𝑥∗)is locally asymptotically stable provided  

          
(𝑤3−1)

2𝑤3
< 𝑦1

∗ <
(𝑤1−𝑤5)

𝑤5
< 1                                                                         (11) 

The equilibrium 𝐸5 is unstable when the condition (11) is violated.  

The following theorem gives the conditions for the locally stability of the nonzero positive equilibrium point𝐸6 =

(𝑦1
∗, 𝑦2

∗, 𝑥∗). 

Theorem 5.3: The positive non-zero biological feasible equilibrium𝐸6 = (𝑦1
∗, 𝑦2

∗, 𝑥∗)is locally asymptotically stable 

if the following conditions are satisfied: 

               𝑥∗ > 𝑤2(1 − 𝑦1
∗)2;                                                                                                               (12) 

              𝑤4𝑤1
2𝑥∗ > 𝑤3𝑤5(1 − 𝑦1

∗)2                                                                                                   (13) 

              𝑤1
2𝑥∗𝑦1

∗ > (𝑤1𝑤2𝑦1
∗ + 𝑤3𝑤5𝑦2

∗)(1 − 𝑦1
∗)2                                                                          (14) 

              𝑤4𝑤1
2𝑥∗𝑦2

∗ > (𝑤1𝑤2𝑦1
∗ + 𝑤3𝑤5𝑦2

∗)(1 − 𝑦1
∗)2                                                                     (15) 

Proof: Assume 𝑦1 = 𝑦1
∗ + 𝑢, 𝑦2 = 𝑦2

∗ + 𝑣, 𝑦3 = 𝑦3
∗ + 𝑤;     where  𝑢, 𝑣, 𝑤 are small perturbations. The 

coefficients f the variational matrix about 𝐸6 = (𝑦1
∗, 𝑦2

∗, 𝑥∗) are given by 

 𝑎11 = 𝑦1
∗ [−1 +

𝑤1𝑤2𝑥∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)2
];  𝑎12 =

𝑤1𝑤3𝑦1
∗𝑥∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)2
;  𝑎13 = −

𝑤1𝑦1
∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)
; 

 𝑎21 =
𝑤2𝑤5𝑦2

∗𝑥∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)2
;  𝑎22 = 𝑦2

∗ [−𝑤4 +
𝑤3𝑤5𝑥∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)2
];  𝑎23 = −

𝑤5𝑦2
∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)
 

 𝑎31 =
[𝑤1𝑤6𝑝1+(𝑤3𝑤6𝑤1𝑝1−𝑤5𝑤7𝑤2𝑝2)𝑦2

∗]𝑥∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)2
; 
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 𝑎32 =
[𝑤7𝑤5𝑝2+(𝑤5𝑤7𝑤2𝑝2−𝑤1𝑤6𝑤3𝑝1)𝑦1

∗]𝑥∗

(1+𝑤2𝑦1
∗+𝑤3𝑦2

∗)2
;     𝑎33 = 0; 

The corresponding characteristic equation is 

             𝜆3 + 𝑎0𝜆
2 + 𝑎1𝜆 + 𝑎2 = 0 with 𝑎0 = −(𝑎11 + 𝑎22), 𝑎1 = 𝑎11𝑎22 − 𝑎12𝑎21 − 𝑎32𝑎23 − 𝑎13𝑎31 

and 𝑎2 = 𝑎11𝑎23𝑎32 + 𝑎13𝑎31𝑎22 − 𝑎12𝑎23𝑎31 − 𝑎13𝑎21𝑎32               (16) 

According to Routh-Hurwitz criterion for stability, the conditions are 

 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0and  𝑎0𝑎1 − 𝑎2 > 0. 

The necessary condition for 𝑎0 > 0gives stability conditions (12) and (13). The positive ness of 𝑎0 ensures that 

𝑎1 > 0, 𝑎2 > 0 

Further the necessary condition for 𝑎0𝑎1 − 𝑎2 > 0 gives the stability conditions (14) and (15). 

Thus, the positive non-zero biological feasible equilibrium𝐸6is locally asymptotically stable if the conditions given 

by (12-15) are satisfied. 

The following theorem gives the conditions for the global stability of the nonzero positive equilibrium point. 

Theorem 5.4 Let the local stability conditions given by (12-15) hold. The positive non-zero biological feasible 

equilibrium𝐸6 = (𝑦1
∗, 𝑦2

∗, 𝑥∗)is global stable if the following condition is satisfied: 

              (𝑤3 − 𝛼𝑤2𝑤4)
2 < 4𝛼𝑤4((1 + 𝑤2𝑦1

∗ + 𝑤3𝑦2
∗) − 𝑤2)((1 + 𝑤2𝑦1

∗ + 𝑤3𝑦2
∗) − 𝑤3) 

               𝜶 =
𝒘𝟏(𝒘𝟕𝒘𝟓𝒑𝟐−𝒘𝟑𝑪)

𝒘𝟓(𝒘𝟏𝒘𝟔𝒑𝟏−𝒘𝟐𝑪)
> 𝟎                                                                                                   (17) 

Proof: Assume 𝑦1 = 𝑦1
∗ + 𝑢, 𝑦2 = 𝑦2

∗ + 𝑣, 𝑦3 = 𝑦3
∗ + 𝑤;     where  𝑢, 𝑣, 𝑤 are small perturbations.   

Consider the following positive definite function for arbitrarily chosen positive constants 𝐷1, 𝐷2 and  𝐷3: 

 𝑉(𝑡) = 𝐷1 (𝑢 − 𝑦1
∗ 𝑙𝑜𝑔 (1 +

𝑢

𝑦1
∗)) + 𝐷2 (𝑣 − 𝑦2

∗ 𝑙𝑜𝑔 (1 +
𝑣

𝑦2
∗)) + 𝐷3 (𝑤 − 𝑥∗ 𝑙𝑜𝑔 (1 +

𝑤

𝑥∗)) 

Then 

         
𝑑𝑉

𝑑𝑡
= 𝐷1𝑢 [1 − 𝑦1

∗ − 𝑢 −
𝑤1(𝑥∗+𝑤)

1+𝑤2𝑦1+𝑤3𝑦2
] + 𝐷2𝑣 [𝑤4(1 − 𝑦2

∗ − 𝑣) −
𝑤5(𝑥∗+𝑤)

1+𝑤2𝑦1+𝑤3𝑦2
] 

+𝐷3𝑤 (
𝑝1𝑤1𝑤6𝑦1 + 𝑝2𝑤5𝑤7𝑦2

1 + 𝑤2𝑦1 + 𝑤3𝑦2
− 𝐶) 

Rearranging and choosing arbitrary constants 𝐷1and 𝐷2 as 

             𝐷2 = 𝛼𝐷1;   where   𝛼 =
𝑤1(𝑤7𝑤5𝑝2−𝑤3𝐶)

𝑤5(𝑤1𝑤6𝑝1−𝑤2𝐶)
> 0, we get 

            
𝑑𝑉

𝑑𝑡
= −

𝐷2

(1+𝑤2𝑦1+𝑤3𝑦2)
[𝑚1𝑢

2 + 𝑚2𝑣
2 − 𝐶 ′𝑢𝑣] 

𝑤ℎ𝑒𝑟𝑒   𝑚1 = ((1 + 𝑤2𝑦1
∗ + 𝑤3𝑦2

∗) − 𝑤2) > 0  , 

            𝑚2 = 𝑤4𝛼((1 + 𝑤2𝑦1
∗ + 𝑤3𝑦2

∗) − 𝑤3) > 0 ,   𝐶 ′ = (𝑤3 + 𝛼𝑤2𝑤4) > 0 

Therefore 
𝑑𝑉

𝑑𝑡
< 0 provided  

             (𝑤3 + 𝛼𝑤2𝑤4)
2 < 4𝛼𝑤4((1 + 𝑤2𝑦1

∗ + 𝑤3𝑦2
∗) − 𝑤2)((1 + 𝑤2𝑦1

∗ + 𝑤3𝑦2
∗) − 𝑤3). 

Further simplification yields 

             (𝑤3 − 𝛼𝑤2𝑤4)
2 < 4𝛼𝑤4((1 + 𝑤2𝑦1

∗ + 𝑤3𝑦2
∗) − 𝑤2)((1 + 𝑤2𝑦1

∗ + 𝑤3𝑦2
∗) − 𝑤3) 
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Thus, 
𝑑𝑉

𝑑𝑡
 is negative definite when the condition (17) is satisfied. Therefore, V is a Lyapunov function provided 

condition (17) is satisfied. 

9. Conclusions 

            In this model, separate dynamics of harvesting effort is considered. The positivity of the species and effort 

rate is shown analytically. The solution of the system about non zero positive equilibrium contract volume 

uniformly is analyzed. The nonexistence of periodic solution analytically is carried out. Local and global 

persistence of the harvested preys has been analyzed.  
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