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Abstract -Cardiovascular diseases like arrhythmia 

are a sig- nificant health concern worldwide, 

affecting both elderly and young population due to 

lifestlye changes. Early diagnosis of cardiac 

arrhythmia using Electrocardiogram (ECG) by 

trained cardiologists is vital to prevent heart 

ailments and save lives. With the growth of 

wearable and standard ECG monitoring devices 

and a dearth of qualified cardiologists required to 

analyse the vast amounts of data collected, 

automated arrhythmia detection by Machine 

Learning (ML) and Deep Learning (DL) 

techniques have become very popular in recent 

years. In this study, we have reviewed the literature 

and described standard ML and DL studies in ECG 

arrhythmia classification. While ML techniques do 

demonstrate very good metrics, ML classifiers like 

SVM, k- nearest-neighbours, Decision Trees, etc. 

need preprocessing and hand-crafted feature 

extraction. DL methods which use networks like 

Convolutional Neural Networks (CNN), Long-

Short-Term- Memory (LSTM) do not need any 

feature extraction as they automatically learn the 

features by themselves. Recent studies in DL have 

demonstrated very high performance metrics 

without the need for feature extraction. While some 

DL techniques do need noise filtering and 

determination of other features like the QRS 

complex, many of them can work with raw ECG 

signals and hence are ideally suited over their ML 

counterparts for real time ECG classification. DL 

networks can also be used as feature extractors and 

combined with ML classifiers. We thus conclude 

that state-of-the-art DL methods offer inherent 

advantages and flexibility over ML methods for 

automated arrhythmia classifica- tion. This review 

aggregates the niche features of leading ML and 

DL studies in this field which interested 

researchers can benefit from.  

Index Terms—Arrhythmia, ECG, SVM, kNN, 

Decision Tree, Feature Extraction, CNN, LSTM, 

MIT BIH  

I. INTRODUCTION 

The transition from healthy to sedentary lifestyle 

has led to tremendous increase in number of cases 

of cardiovascu- lar diseases worldwide primarily in 

low income and middle income countries including 

India ( [1]). Irregular heartbeats, or arrhythmias, 

coronary artery disease, heart attack, heart failure, 

stroke, deep vein thrombosis and pulmonary 

embolism, vascular disease are some of the most 

common types of car- diovascular diseases ( [2]). 

According to surveys conducted by WHO, 

cardiovascular diseases are one of the prominent 

causes of death globally, calculating an estimated 

17.9 million lives yearly ( [1], [2]). The mortality 

rate has increased substantially as there is less 

advancement in the domain of heart diseases 

prediction systems. According to studies it has also 

been observed that people who are suffering from 

coronary heart diseases including arrhythmia are 

more vulnerable to Covid- 19 viral infections ( [3]). 
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Arrhythmia, commonly referred as cardiac 

arrhythmia, is a cardiovascular condition in which 

there is high occurrence of irregular or abnormal 

heartbeat ( [4]). It can be either too fast– above 100 

beats per minute in adults known as tachycardia or 

too slow – below 60 beats per minute called as 

bradycardia. Apart from these there are other types 

listed as below: a premature or extra beat, 

supraventricular arrhythmias, atrial fibrillation 

(AFib), atrial flutter, paroxysmal supraventricular 

tachycardia (PSVT), Ventricular tachycardia (VT), 

Ventricular fibrillation (VFib), etc ( [5]). 

Arrhythmia needs early diagnosis and one of the 

recom- mended ways to detect the state of this 

disease is Electrocar- diogram (ECG). It is a graph 

depicting the electrical activity of the heart (voltage 

vs. time) measured using electrodes, which is a 

continuous sequence of depolarization (activation) 

of the ventricles and repolarization (recovery) 

occurring in each heartbeat ( [6]). Experienced 

cardiologists monitor ECG data and perform 

diagnosis. There exist varied waveforms of ECG 

corresponding to different types of arrhythmia. As 

the amount of ECG data is growing exponentially 

due to low cost monitoring equipment and 

wearable devices (like the Apple Watch), there is 

no efficient way of monitoring this cardiovascular 

disease because the analysis is time consuming. 

Also in India, there is a dearth of qualified 

cardiologists to perform arrhythmia diagnosis. One 

of the additional short- comings of ECG is in terms 

of variability. Many findings shows that patients 

suffering from same class of arrhythmia show 

different ECG signal patterns and also patients 

with different arrhythmic conditions show the 

presence of the same ECG waveforms ( [7]). The 

morphology and spatio-temporal characteristics of 

ECG are highly dynamic and vary from individual 

to individual. It is influenced by many factors like 

age, sex, health of the patient, ECG recording 

conditions etc. which decide the strength of the 

signal and outcome of the prediction. Accurate and 

timely detection of arrhythmia is vital to prevent 

severe life threatening complications in the future. 

Hence there is a need of an automated system 

which can assist medical practitioners to diagnose 

and provide timely treatment. To address this, there 

is an emergence of new machine learning (ML) and 

deep learning (DL) techniques that can make the 

process of detection and prediction easier, reliable 

and cost effective ( [8]–[10]). By automating the 

process of arrhythmia detection and classification, 

the vast amounts of ECG data generated can be 

reliably classified without manual intervention. 

The process of detection is also affected by bias of 

individual doctors hence the process of automation 

can augment manual diagnosis. Hence in this 

review, we aim to give an overview of the leading 

ML and DL techniques for arrhythmia 

classification and highlight the differences 

between them. We analyze the existing literature 

on these topics ex- tensively and describe the 

leading techniques in detail. Since there exist a 

large variety of ML and DL studies on arrhythmia 

classification, it can be a daunting task to go 

through them and gather information. Many data 

science researchers interested in arrhythmia 

classification might be familiar with ML and DL 

algorithms and their usage but not the medical 

literature and jargon related to arrhythmia, this 

review is aimed to make the review process easier. 

In addition, the existing reviews either comment on 

ML or DL techniques alone and not both of them. 

We review both approaches with a tilt towards DL 

as the method of choice. 

The paper is organized as follows. In the next 

section we briefly describe the methodology of 

writing this review, followed by sections on the 

ECG description, types of arrhyth- mia, datasets 

and final sections on ML and DL algorithms for 

classification. We end with a summary of our 

recommenda- tions for future research in 

Conclusions. 

II. MATERIALS AND METHODS 

There exist detailed review articles on deep 

learning tech- niques for arrhythmia classification 

in the literature ( [11]– [15]). References [11], [12] 

review the ML literature for ECG classification. 

They also describe arrhythmias and preprocess- ing 

methods to classify ECG. Reference [12] also 

reviews the literature for feature selection and 

extraction in detail. References [13]–[15] deal with 

DL techniques and describe studies related to 

various DL architectures. Reference [14] also 

contains techniques other than ECG in cardiology. 

Reference 

[15] has a comprehensive review of most of the DL 

related studies of arrhythmia classification, along 

with highly detailed tables listing the key features 

of each study. Reference [13] contains a systematic 

description of the major DL techniques. Starting 

from these papers, we extracted the studies that 

seemed most relevant to us from each review and 

studied them. In addition, we obtained highly cited 
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papers from internet searches and 

SemanticScholar. In addition, we also went 

through different journals and obtained the latest 

articles in this field. Our review not only combines 

the existing review articles together, but we have 

also described a few articles. 

 

Fig. 1. An ECG waveform showing a cardiac cycle 

(taken from [16]) 

which are not found in any of these previous 

reviews. There is another aspect which sets our 

review apart from the existing articles. The 

previous reviews have surveyed a large number of 

articles but have provided very little description of 

the actual techniques used. We chose to restrict 

ourselves only to the most relevant studies and 

have described the most important aspects of these 

studies in good detail. There are some unique 

aspects about each study that sets them apart from 

the others and we have described those aspects in 

detail. Some of the very common aspects in all 

studies like the use of common activation 

functions, preprocessing steps, etc have been 

omitted and only the aspects that set each study 

apart from others are highlighted. 

III. ECG AND ARRHYTHMIA 

The heart is made of tissue that periodically 

polarizes and depolarizes resulting in pumping of 

blood across the body. A normal cardiac cycle 

consists of depolarization and repolarization cycles 

of the heart muscles leading to variation in 

electrical activity, which can be measured. The 

non-invasive cardiac diagnostic tool 

Electrocardiogram (ECG) is a graph of this 

electrical activity. A conventional ECG is 

measured by ten electrodes placed on the skin, 

which form 12 leads that record the heart activity 

from different views. By studying the ECG 

waveform, experienced cardiologists can 

determine if the heartbeat is healthy or abnormal. 

The latter case is called arrhythmia and can be 

usually detected due to abnormalities in the 

waveform. Arrhythmia leads to irregular electrical 

activity which manifests itself in the ECG. We 

describe the ECG signal and different types of 

arrhythmia in the next sub-sections. 

A. The ECG signal 

In Figure 1, a normal ECG waveform depicting a 

single heart beat is shown. We have voltage on the 

y-axis and time on the x-axis. The morphology of 

the ECG wave consists of various components and 

the intervals between them ( [17]). The first is the 

P-wave, which depicts atrial (upper heart 

chambers) depolarization or activation. The P-

wave is the first bump on the left. The PR interval 

is the time interval from the beginning of the P-

wave to the beginning of the QRS complex. The 

line from the end of the P wave to the beginning of 

the QRS complex is the PR segment. The next is 

the QRS complex which shows depolarization of 

the ventricles (lower heart chambers). The length 

of the QRS complex is the QRS duration and the 

peak amplitude is called the R peak, which is an 

important reference point for the whole signal. A 

short QRS duration indicates a healthy heart since 

it means that the ventricles have depolarized and 

have quickly become ready for the next cycle. A 

long QRS duration means the heart is sluggish. The 

time interval between two successive R peaks, 

called the R-R interval, is a very crucial factor used 

by most studies in ECG analysis. The next part is 

the ST segment which indicates the second part of 

the activation, followed by the T wave showing 

complete repolarization (recovery of ventricles). It 

is generally followed by a small amplitude U wave. 

Each of these components measure different stages 

of the cardiac cycle and are subtly altered during 

arrhythmia. The durations of the different phases 

can fluctuate, or the amplitude and shape can 

change. While highly trained cardiologists are able 

to identify these changes, automated algorithms 

that can accurately do the same task will be of 

immense value for healthcare. 

There are some practical challenges in analyzing 

ECG sig- nals. ECG signals are generally in the 0.5 

- 150 Hz frequency band and are hence easily 

corrupted by noise which have to be filtered out ( 

[7], [18]). Reference [12] has a thorough 

description of the various filtering techniques used. 
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While noise removal is a compulsory step in ML 

analysis as they rely on feature extraction, some 

DL studies reviewed here do not need filtering at 

all since they are robust enough to learn features 

even in the presence of noise. Another factor is the 

detection of ECG signal features like the QRS 

complex and R peak ( [19]). Most of the energy of 

the ECG signal is in the QRS complex and 

variations in this part of the waveform are a key 

indicator of arrhythmia. Once the R-peaks are 

determined, the RR interval is used as a feature 

descriptor, among several other morphological 

(shape) features of the waveform. R-peak detection 

is also key to segment the continuous ECG signal 

into individual heartbeats. The R-peak is used as a 

reference point and an appropriate number of 

samples from either side of the peak are considered 

to be a single heartbeat. We will not elaborate 

much on these aspects of preprocessing since the 

literature has ample descriptions of the process. 

B. Types of Arrhythmia 

The association for the advancement of medical 

instru- mentation (AAMI) classifies non-life-

threatening arrhythmias into non-ectopic (N), 

supraventricular ectopic (S), ventricular ectopic 

(V), fusion (F), and unknown (Q) ( [20], [21]). 

Most of the studies listed in this review classify 

ECG beats into these five common classes. A few 

common types of arrhythmia are premature beats, 

supraventricular types which include atrial 

fibrillation, atrial flutter, paroxysmal 

supraventricular tachy- cardia, ventricular types 

which include ventricular tachycardia, ventricular 

fibrillation, heart blocks which include right 

bundle branch block and left bundle branch block. 

Each of these conditions has some characteristic 

features that manifest in the ECG signal. 

IV. DATASETS 

We list some databases that are used for arrhythmia 

clas- sification. Reference [12] has a very thorough 

description of all the databases and we will not 

repeat the information here, instead we will only 

briefly list them here for completion. The most 

commonly used one is the MIT-BIH Arrhythmia 

Database (MITDB). It consists of 48 half-hour 

excerpts of two- channel ambulatory ECG 

recordings, these recordings are ob- tained by 

studying 47 subjects at BIH Arrhythmia 

Laboratory from year 1975 to 1979. Randomly 23 

recordings were chosen from a set of 4000 24-hour 

ambulatory ECG recordings which were collected 

from a population of inpatients and outpatients (40 

%) at Boston’s Beth Israel Hospital. In order to 

select less prevalent but medically prominent 

arrhythmias that would be poorly represented in a 

random sample, out of 48 half hour ECG 

recordings, remaining 25 need to be selected for 

representation. Two important components of the 

MITDB are: MIT-BIH Atrial Fibrillation database 

(AFDB), which has 25 long-term two-channel 

ECG recordings totalling 10 hours of patients with 

atrial fibrillation at a sampling frequency of 250 

Hz; MIT-BIH Supraventricular Arrhythmia 

database which has 78 half hour recordings with 

supraventricular arrhythmia. Another prominent 

one is the PhysioNet/CinC Challenge 2017 

database with single-channel short ECG recording 

and asso- ciate human annotations for 8528 and 

3658 human subjects at a sampling frequency of 

300 samples per second. Creighton University 

Ventricular Tachyarrhythmia (CUDB) has record- 

ings of 35 patients who suffered from sustained 

ventricular tachycardia, ventricular flutter, and 

ventricular fibrillation at a sampling frequency of 

250 samples per second. The American Heart 

Association (AHA) constructed a database 

comprising of arrhythmias and electrocardiograms 

(ECG) contained in two series by precisely editing, 

beat-by-beat, ECG recordings annotated by 

cardiologists, available on a USB drive. The 

University of California, Irvine machine learning 

repository is a database containing a mix of 

different types of attributes which are 279 in 

number, out of which 206 are linear valued and the 

remaining are nominal. 

A. Performance Metrics 

We list the following metrics popular in literature 

to mea- sure the quality of classification. If TP, TN 

are the correct predictions of positive and negative 

class and FP, FN are the corresponding incorrect 

predictions then: 

• Accuracy (Acc) = TP + TN/(TP + TN + FP + 

FN ) 

• Sensitivity (Sen) = TP/(TP + FN ) 

• Specificity (Spec) = TN/(TN + FP ) 

• Precision (Prec) = TP/TP + FP 

• Recall = TP/(TP + FN ) 
• F score = 2. (Prec × Recall)/(Prec + 

Recall) 
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V. MACHINE LEARNING TECHNIQUES FOR ECG 

CLASSIFICATION 

In this section, we describe some studies which 

have used traditional machine learning (ML) 

techniques for arrhythmia classification. The best 

known ML algorithms are decision tree, support 

vector machine, k mean clustering, and k nearest 

neighbours. A common aspect among these ML 

algorithms is the necessity of performing feature 

extraction from the input ECG waveforms. These 

features are of various types like temporal, 

frequency and statistical. The magnitude of these 

features will differ among various arrhythmia 

classes and are used to train the ML algorithms. 

The success of ECG classification using traditional 

ML is critically dependent on the choice of features 

which have to be carefully handcrafted for different 

algorithms. These also depend on the dataset 

selected. Feature selection methods are grouped 

into three categories, called filter, wrapper, and 

embedded methods ( [12]). Filter methods 

construct a classifying model by cal- culating 

feature relevancies using various scoring 

techniques independently. On the contrary, 

wrapper methods select fea- tures based on some 

rules and criteria of search algorithms and learning 

models which select subsets of features. Those 

methods consider feature dependencies and 

provide interaction between feature subset search 

and choice of a learning model. However, they are 

computationally expensive with respect to the 

filters. Embedded methods are designed in such a 

manner that there is an optimal way of integrating 

feature selection with the training phase. Thus they 

are similar to wrappers but less computationally 

intensive. Some studies on ECG signal analysis 

using feature selection methods are given in these 

subsections. We mention this to show that there is 

no unique way of selecting the best features which 

can be consistent across all data sets and machine 

learning algorithms, as each individual algorithm 

has its own pros and cons and it’s difficult to 

determine one standard optimized way of feature 

selection which can yield higher classification 

accuracy. Random search algorithm (RSA) is one 

of the feature selection algorithms wherein, from 

the dataset consisting of full set of features of size 

N , subsets of features of features from size 1 to N 

- 1 are selected. After this a grid search algorithm 

is applied to obtain an optimized version of the 

random forest model. 

There exist various techniques to determine the 

most significant features for ML training in 

complex datasets since choice of relevant attribute 

can improve the performance metrics. Before 

moving to specific ML algorithms, we describe 

some feature selection and extraction approaches 

followed in some studies. In [22] authors suggest a 

few feature selection algo- rithms such as hybrid 

grid, random search algorithms which can help us 

in choosing the best features for further classifica- 

tion or prediction approaches. In [23] the authors 

claim that as compared to previous research papers 

in the domain of heart disease detection using 

machine learning techniques with the Cleveland 

dataset, their technique of implementing artificial 

neural network outperformed other traditional 

approaches with an accuracy of 100 % using 

minimum features. The authors aimed to improve 

accuracy by reducing the dimensionality of 

features as a part of the feature selection process. 

Decision tree achieved accuracy of 88 % and 

na¨ıve Bayes of 85 %. In [24] the authors used 

discrete wavelet transformation, auto correlation 

coefficients and principal component analysis to 

extract features from frequency, time and 

morphology respectively. Reference [25] uses the 

random search algorithm to iteratively select a 

subset of features N number of times as a result of 

which the process of feature selection is com- 

putationally expensive. The dataset was initially 

supplied to the random search algorithm (RSA), 

which produced different subsets of features of 

sizes from 1 to N -1, where N denotes the size of 

full features in the dataset. For each subset of 

features, the optimized version of random forest 

model was obtained by exploiting exhaustive grid 

search algorithm. In [26] the authors highlight the 

selection of significant features based on their 

ranking. ML algorithms such as Random trees 

(RTs), decision tree of C5.0, Chi-squared 

automatic interaction detection (CHAID), and 

support vector machine (SVM) are used here to 

determine the significance of important features 

and assign the priority or rank. The authors used an 

updated data repository called the Z-Alizadeh Sani 

dataset. 

Reference [11] surveys different approaches 

implemented in order to extract features like R-

peaks, QRS complex and conclude that the Hilbert 

transform based methods are an effective approach 

in extracting discriminative features in ECG beat 

classification. It has the ability to distinguish 

dominant peaks among other peaks in ECG signal. 
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Reference [27] uses Empirical Mode Detection 

with adaptive thresholding to detect the QRS 

complex and R peak. 

We now describe studies based on key ML 

algorithms for arrhythmia classification and the 

results are summmarized in Table I. 

A. Decision tree 

In [28], the authors analysed the performance of the 

C5.0 decision tree model with additional boosting 

on the ECG signal feature vector dataset. It was 

found that the process of boosting could 

remarkably improve the accuracy. The algorithm 

builds models in a sequential manner and the 

subsequent model tries to correctly classify 

misclassified labels by the preceding model. 

Multiple decisions were incorporated together to 

form one final choice in order to classify new 

labels. The boosted C5.0 DTs model performance 

in terms of accuracy was compared with other 

classifiers and the results of the experiment showed 

that it gained 99 % classification accuracy for ECG 

signals as normal or abnormal(arrhythmia). 

Reference [29] used the 2017 PhysioNet/CinC 

Challenge dataset for classifying ECG signals into 

normal sinus rhythm, atrial fibrillation (AF), 

alternative rhythm, and unclassified rhythm. They 

developed an approach incorporating decision tree 

classifier with AdaBoost.M2 algorithm for training 

pur- pose along with 30 extracted features from 

ECG recordings. The method obtained an overall 

F1 score of 0.84.  

B. SVM 

 

In [30] the authors used discrete wavelet 

transforms for the purpose of extracting features 

which indicate the presence of arrhythmia. A total 

of 190 features were extracted from the pre-

processed dataset using Discrete Wavelet 

Transform (DWT), which was chosen as it has the 

ability to vary the window size depending on the 

frequency. Experimentally it was observed that the 

classification accuracy of the SVM classifier 

model is 95.92 %. Reference [31] used the dataset 

taken from University of California at Irvine 

Machine Learn- ing Data Repository to classify 

patients into one of the sixteen subclasses, wherein 

one class indicates non-existence of ar- rhythmia 

and the other fifteen classes represents ECG 

records of different subtypes of arrhythmia. Due to 

the presence of abundant data there was a need of 

pre-processing hence reduc- ing the dimensionality 

of features like wrapper based feature selection 

method built on random forest algorithm. For mul- 

ticlass classification, support vector machines 

based methods were employed which consisted of 

one-against-one (OAO), one-against-all (OAA), 

the output of classification indicated that OAO 

method of SVM outperformed all other classifiers 

by achieving an accuracy rate of 81.11% and 92.07 

% depending upon the splitting proportion. 

Reference [32] proposed a pre- diction model by 

building two support vector machines (SVM) to 

predict heart disease efficiently. The first svm 

model, serves the purpose of removing 

insignificant features, and the second one is applied 

for prediction. In addition to this the authors have 

used the HGSA (hybrid gird search algorithm) to 

enhance the efficiency of these two methods. By 

using this model, they have achieved 3.3 % better 

accuracy than the conventional SVM models. 

Reference [33] proposed the design of the SVM 

classifier for classifying four types of arrhythmia 

on MIT- BIH database with an accuracy of 93 %. 

Optimization was achieved by integrating SVM 

classifier along with genetic algorithms for 

searching the best attributes and choosing the ones 

which can enhance the classification function. The 

authors of [34] came up with a new approach of 

detecting and classifying arrhythmia by combining 

morphological and dynamic features. 

Morphological features were extracted by applying 

wavelet transform and independent component 

anal- ysis to each heartbeat which further extracts 

corresponding coefficients. Dynamic feature were 

also generated due to the rhythm around the 

corresponding heartbeat (RR interval). Both the 

features were combined and fed to support vector 

machine for classification of heartbeats into 15 

classes. Another unique feature was that this study 

combined information from two leads. The 

procedure was applied to the data generated by 

segmentation of two ECG leads independently and 

the results from two signals were merged together 

to give one single decision. If two results were 

inconsistent then the one with greater confidence 

was chosen. The experiment was performed on 

MIT-BIH Arrhythmia database which gives an 

accuracy of 99.66 %. The method of segmentation 

of ECG signals to obtain the features demands 

more work in detection of R peaks as it has direct 

implication on the dynamic features. Reference 

[35] uses SVM for arrhythmia classification. After 

denoising, segmentation was performed on the 

noise free filtered signal for accurate feature 
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extraction. Peak to peak Interval (R-R Interval), 

BPM (Beats per minute), P wave to QRS peak were 

extracted. This algorithm classifies the input ECG 

signal with varying feature parameters to two 

different types of arrhythmia. This approach 

achieved an accuracy of 91 % and the performance 

regarding other criteria such as precision, recall 

and F1 score were high, indicating the success of 

the proposed method. In [36], the MIT-BIH dataset 

was used for arrhythmia classification using SVM 

monitored by optimization algorithms like PS0, 

GWO, MGWO. The ECG signals were filtered to 

remove power-line interference and baseline 

wander. Normalisation was done using methods 

like Principal component analysis and SKF, after 

which these normalized signals were applied to the 

SVM classifier. It was seen that the MGWO was 

the best performing optimizer. In [30], the Discrete 

Wavelet Transform (DWT) was used to classify 

signals from the MIT-BIH database. 190 features 

were extracted using the D and  

C. K nearest neighbors 

In [37], a model for diagnosing heart arrhythmias 

by extract- ing morphological features of ECG 

signals. The signals taken from MIT-BIH 

arrhythmia database were initially modelled using 

hermitian basis function and then optimization was 

done to minimize the model error. Next, the feature 

vector was fed as input to k-nearest neighbour 

(kNN), classifier. Here, classification of seven 

different types of arrhythmias have been done 

attaining the sensitivity of 99.00 % and specificity 

of 99.84 %. The major benefit of using hermitian 

model for extracting parameters and classification 

process using kNN is, it takes almost 0.56 seconds 

for each beat which is considerably lesser than a 

normal ECG heart beat duration. Hence this 

method is most suited for real- time diagnosis in 

medical emergency. The study [38] presented the 

recognition of five types of ECG beats using a 

three- step system. The first step is responsible for 

detecting peaks in ECG signals using Pan-

Tompkins algorithm (PTA). Second step does the 

job of extracting interval features i.e. QRS time, 

higher order statistics (HOS), min-max and 

temporal features. In third step, K-Nearest 

Neighbour (KNN) is employed for classification of 

ECG beats. The signals were obtained from 

MIT/BIH arrhythmia database for classifying 

heartbeats as normal or abnormal.The results from 

the experiments stated that the proposed technique 

gained an accuracy of 98.40 %. 

I. DEEP LEARNING TECHNIQUES FOR ECG 

CLASSIFICATION 

In this section we will review the literature on deep 

learning (DL) techniques for ECG classification. 

Most DL papers related to arrhythmia 

classification use Convolutional Neural Networks 

(CNN) or Long Short Term Memory (LSTM) net- 

works, or a combination of these. 

A. ECG Classification using CNN 

Convolutional Neural Networks are a class of feed-

forward neural networks modeled on the 

mammalian visual cortex ( [41], [42]). These are 

primarily used for image processing and operate on 

2D matrices, but can also work with 1D data. 

CNN’s have shown great success in a variety of 

fields like image processing, speech recognition, 

etc. A number of CNN’s like AlexNet ( [43]), 

VGGNet ( [44]) and GoogleNet ( [45]) trained on 

the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) dataset have increased the 

popularity and usage of CNN’s. We will briefly 

describe the architecture of the CNN and the 

inspiration behind it and then describe the various 

studies which have used CNN’s for arrhythmia 

classification using ECG signals. 

A study of the cat visual cortex determined that it 

comprises of a number of neurons, each of which 

responds to a small portion of its field of vision, 

called its receptive field ( [46]). With such a 

structure, the visual cortex, whose basic operations 

are similar across the mammalian hierarchy, first 

learns local features like edges, corners, etc. in a 

given visual stimulus, with successive neurons 

learning higher order features. The architecture of 

CNN is directly inspired by this and as we shall see, 

confers great computational advantages compared 

to an ordinary fully connected ANN. 

A CNN comprises of an input layer followed by a 

few convolutional layers, interspersed with pooling 

layers and a fully connected output layer. We will 

describe the architecture of a 2D CNN first, a 1D 

CNN acts in a similar way but with modifications 

( [47]–[50]). A convolutional layer performs a 

‘convolution’ operation on the input image with a 

few small square matrices generally of size 3 or 5, 

whose elements are 1’s and 0’s in different 

arrangements. These filters are slid across the input 

and an element-wise dot product over the overlap 

area is taken, and the sum is written to the top-left 

corner, generally, of the output matrix. Each 
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element in the output matrix represents a ‘neuron’ 

corresponding to a small region in the visual field. 

The value of this ‘neuron’ yields the local value of 

the particular feature corresponding to the filter 

being used. The filter is slid across with a an offset 

called a ‘stride’, which is one of the 

hyperparameters. A stride of 1 means the filter is 

applied to the immediate next elements, a stride of 

2 means a column is skipped and so on. Larger 

strides lead to smaller convoluted matrices. 

Different filters yield outputs which differ in the 

quality of local information. in the input. For 

example, some filters might pick out edges in a 

particular orientation, etc. Thus the output of this 

layer is a set of so-called feature maps, with all 

neurons in a given map sharing the same filter 

weights. The purpose of generating this feature 

map is to extract small-scale information in the 

input, with each filter yielding a given feature. 

Since the filter size is small, local features like 

lines, corners, etc are readily picked out without 

averaging by the whole image space. Thus, the 

convolutional layer is the key component in a CNN 

that extracts highly local information from the 

input. These are then passed through an activation 

function, which is mostly the rectified linear unit 

(ReLu), since it retains positive data only and 

introduces non-linearity in the network. After the 

convolutional layer, there is a pooling layer that 

reduces the dimensionality of the sv 

The size of the pooling layer is another 

hyperparameter. This is done so as to reduce noise 

in the input so that irrelevant data are removed, 

reducing the number of computations while still 

retaining all essential information about the input. 

Depending on the ap- plication, different 

combinations of alternating convolutional and 

pooling layers are used. Finally, a CNN uses a fully 

connected layer for final classification, where each 

output neuron receives input from every neuron in 

the previous layer. Softmax activation is used 

mostly for classification. Also, layers like batch 

normalization ( [51]), dropout are used to reduce 

overfitting ( [52]). Backpropagation is used for 

training. An advantage over ANN’s is the 

reduction in computational cost for an input of a 

given size. This is because convolution only uses 

small filters and for a given feature we have only a 

small number of weights. Since an ANN uses all 

possible connections between successive layers, 

the number of weights increases exponentially. 

These advantages make CNN a very attractive 

technique for feature learning and classification. 

Thus, we will describe the results of various 

arrhythmia classification studies that have made 

use of CNN. The results 

are tabulated in Table II. 

1) 1D CNN: One of the first works to use 1D CNN 

for arrhythmia classification was by Kiranyaz ( 

[53]). Here the authors use 1D arrays of ECG 

data instead of 2D matrices, with 1D filters in 

the convolutional layer. After beat detection, 

three successive ECG beats were fed at once to 

learn temporal patterns, and another extended 

pattern with Fourier data is also used. The latter 

was used to check if addition of frequency 

information in training yields any advantage. A 

mix of beats were used, which consisted of 

beats common to all patients and beats specific 

to each patient, the latter being used to 

introduce patient-specific training. The CNN 

itself was shallow with 3 convolutional and 2 

fully connected layers. It was determined that 

the base representation was the best both in 

terms of performance measures and 

computational cost, especially since the CNN 

had only a few layers with with 32 and 16 

neurons in the convolutional part and 10 in the 

hidden part. The output had 5 neurons for the 5 

beat classes. The accuracy was 99 % for VEB 

and 97.6 % for SVEB, the latter performance 

being poorer due to underrepresentation of 

beats in this class as the dataset was 

unbalanced. Acharya et. al, have a number of 

different approaches for ECG classification 

using CNN. In [9] the authors used the MIT 

BIH dataset and a 9 layer CNN, with 

imbalanced, noisy beats. The accuracy for 

imbalanced dataset was 89.07 % and 89.3 % for 

noisy and noise free data. The dataset was 

balanced by generating synthetic data such that 

the number of beats in S,V,F and Q classes 

matched those in N class, since the latter had 

most number of beats. On this balanced data, 

the accuracy rose to 93.47 % and 94.03% for 

noisy and noise free datasets. In [54], the 

authors used two different CNN’s trained with 

2 second and 5 second segments of ECG data to 

classify Atrial Fibrillation, Atrial Flutter, 

Ventricular Fibrillation and Normal beats. The data 

was taken from a variety of public databases for 

these different arrhythmia types. The CNN’s had 

different architectures for the two types of input 

segments. The main highlight of this work is that 

the authors did not perform any QRS complex 
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detection and instead used whole segments of ECG 

for training. This was done to make the process 

comparable to a real world ECG measurement 

where doctors measure a segment of ECG. The 

accuracy was 92.5 

% and 94.9 % for the 2 and 5 second data which is 

expected as the 5 second network had more data. 

However the PPV and specificity were better for 

the 2 second network, showing that sometimes, the 

nonlinear nature of ECG data can lead to better 

performance even with lesser data. In [10], the 

authors used a 11 layer CNN to classify 

Myocardial Infarction (MI), using data from the 

Physikalisch-Technische Bundesanstalt diagnostic 

ECG database( [55]). R peak selection was done 

and there were only two output classes, normal and 

MI. With and without noise, the accuracy was 

93.53 % and 95.22 % respectively. Here, the other 

measures were also better for denoised than noisy 

data. 

Most studies use the morphological features of 

parts of the ECG signal like the QRS complex. 

Yildirim et al. ( [56]) used 10 second fragments of 

the ECG signal to recognize 17 arrhythmia classes 

with no QRS detection, segmentation or noise 

filtering. 1000 signal fragments from 45 patients 

was used from the MIT BIH Arrhythmia database. 

The CNN had 16 layers and was used to classify 

subsets of 13 and 15 classes of beats in addition to 

the full 17 classes. The metrics varied among the 

three output numbers and for the 17 class case, the 

overall accuracy was 91.33 %. The network was 

compu- tationally cost-effective since there was no 

preprocessing of any kind involved, taking 0.015 

seconds to classify a single 10 second fragment. 

However, the drawback of this method is each 

fragment had to contain only one class of beat. 

Also, a related study using genetic ensembles of 

classifiers for 17 arrhythmia classes ( [57]) 

obtained a comparable accuracy of 91.4 % Nurm 

aim  ei al. ( [58]) recently have classified atrial fib- 

relation arrhythmia using data from three databases 

and an Indonesian hospital. Several novel insights 

have been provided with a 1D CNN where the 

hyperparameters were varied extensively and the 

whole process is described in detail, as against 

most other papers where the parameter tuning 

process is not explained in detail as the authors in 

those papers chose to concentrate on other factors. 

The raw ECG signal was first normalized and 

filtered with the Discrete Wavelet Transform 

technique with a Sym5 mother wavelet as this 

produced the best results. The signal was 

segmented into samples of different lengths. The 

number of convolutional layers too were varied 

between 7, 10 and 13 it was determined that the 

CNN with 13 layers and the smallest input segment 

length of 9 seconds (vs 60 seconds) performed best. 

The imbalanced dataset was balanced with 10-fold 

splitting. Finally for 3 classes, the CNN achieved 

an accuracy of 99.17 %. In addition, the authors 

also presented the computational cost of using 7, 

10 and 13 layers using 5 different CPU-GPU 

combinations. 

An interesting study of a very large dataset of 

30000 patients was done by Rajpurkar et al. ( [8]) 

with a CNN of 34 layers and a special block 

architecture, with 14 output classes. The data was 

collected using a wearable device called the Zio 

patch monitor ( [59]) and is much larger than the 

usual MIT BIH dataset normally used in most 

studies of ECG classification. This CNN precision 

and recall scores outperformed those of 

committees of certified cardiologists (0.8 vs 0.723 

in precision and 0.784 vs 0.724 in recall) and was 

the first to accomplish such a feat, hence we will 

describe the methodology in a bit of detail. A total 

of 64123 ECG records were obtained from 29163 

patients using the device. Each record contains 

more than one rhythm was 30 seconds long and 

was annotated by a clinical ECG expert. For 

testing, 336 records from 328 patients were used 

and ground truth annotations were obtained by a 

committee of three cardiologists. Three different 

committees were used for different parts of the test 

data. In addition, six other individual cardiologists 

also separately annotated the data, thus forming a 

rigorous testing protocol. The CNN itself 

comprised of 16 blocks with 2 convolutional layers 

per block, and an increasing filter length every 4 

blocks. Batch normalization and dropout were 

used. A similar study was repeated in [60]. We 

highlight this study as this shows that collecting 

large amounts of data for arrhythmia detection is 

very useful for deep learning methods. 

While all these above studies focused ECG 

classification from a single lead, Liu et al. ( [61]) 

used all 12 leads for MI classification into 5 types. 

The Physikalisch-Technische Bundesanstalt (PTB) 

diagnostic ECG database ( [55]) was used, with 

549 records from 290 patients. The dataset was 

imbalanced and the authors retained it that way to 

reflect real world recording conditions. The 

rationale behind the paper is that a complete picture 
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of heart activity is obtained by combin- ing 

information from all 12 leads rather than focusing 

narrowly on just one lead. Hence, a multi-feature 

branch CNN (MFB- CNN) was developed where 

each lead information is supplied to a feature 

extracting convolutional part and a fully connected 

layer at the end combines information from all 

leads. Each feature branch was independent of the 

others and had 7 layers, which are the input layer 

followed by 3 convolutional and 3 pooling layers. 

By combining all available information fromthe 

ECG, a classification accuracy of 99.95 % was 

reported. An important point to be noted here is 

that most studies use a single lead since 

computational cost multiplies with more leads and 

hence, in this study, the network was rather 

shallow. However, with clever use of high 

performance computing, it should be possible to 

use all 12 leads with deeper networks to achieve 

competitive results for arrhythmias other than MI 

as well. This is our recommendation for future 

research to combine the various leads. 

1) 2D CNN: While 1D CNN’s use either the 

filtered or raw ECG signal, there are studies of 

arrhythmia classification where additional 

information, mostly from the frequency do- 

main using Short Time Fourier Transforms 

(STFT), Discrete Wavelet Transforms (DWT) 

etc. are used to augment the input signal and 

convert it into a 2D matrix. Since CNN’s are 

primarily used for image classification, 

converting a pure 1D time series like the ECG 

into an image allows to use some of the core 

strengths of CNN’s for arrhythmia 

classification. 

One of the first studies to use 2D CNN’s was [62]. 

A spectrogram was formed from ECG data and was 

classified with the GoogleNet CNN. However, in 

that study, a 1D CNN with 16 layers and skip 

connections that decreased training time, 

performed better than the 2D version. However 

other studies have demonstrated good success with 

the 2D method. Another study is [63] where the 

authors coverted ECG data after filtering into a 

wavelet, by the Morlet method and STFT 

representation to train a CNN. Cardiologist 

annotated data was used for this purpose. 

In [64], the authors used STFT and Stationary 

Wavelet Transform (SWT) to convert the ECG 

signal into a 2D matrix to classify Atrial 

Fibrillation using the MIT BIH database. Two 

different CNN architectures were used to classify 

the STFT and SWT versions. An STFT is a time-

frequency rep- resentation of the signal which 

shows the dynamic evolution of frequencies 

through time and is expected to encode the signal 

morphology, showing differences between a 

healthy and arrhythmic heartbeat. The SWT works 

on a similar principle, the difference is that in an 

SWT, this information is encoded in the wavelet 

coefficients which vary with time, a total of 12 

coefficients were used here. Hence the SWT input 

is a 2D matrix of coefficients indexed by time. The 

original dataset was balanced first. After extracting 

5 second segments of the signal and filtering, the 

STFT was generated using a Hamming window of 

128 samples. The SWT matrix was constructed by 

using a Daubechies 5 wavelet. The best 

architecture for STFT and SWT was determined by 

experimentation and was different for both types. 

With an RGB spectrogram for STFT, the accuracy 

was 98.29% and with a grayscale it was 97.74%. 

With SWT the accuracy was 98.63 % and the other 

metrics were better too, showing that the SWT was 

better at classification. 

A 2D CNN was used in [65] which did not use any 

frequency domain information. The MIT BIH 

database was used to classify into the 5 usual 

classes, while focussing on V and S beats. The 

dataset used had a common part and a patient 

specific part. The heartbeats were segmented over 

a durationof 10 seconds around a given beat and 

then scaled up to the same size for all beats. 

Finally, the authors constructed column vectors of 

two adjacent beats and the input to the CNN was 

the outer product of two such consecutive vectors. 

The CNN had 3 convolutional, 2 pooling and a 

final connected layer. For training, the S beats from 

the common part were chosen carefully, since for 

S beats, the morphology varied from beat to beat 

and this was also seen in other similar studies, due 

to which S beats were misclassified as N beats. By 

randomly choosing 75 N and S beats and 

performing training, a final set of 75 S beats with 

highest accuracy were selected for training. With 

these changes, the final classification accuracy of 

V and S beats were 98.6 % and 97.5 % 

respectively. It was also seen that the positive 

prediction rate for S beats was highest when the 

most representative S beats were used for training 

(73.9 % vs 57.4 %). This highlights the fact that in 

most imbalanced ECG datasets, choice of the 

correct beat classes for training significantly 

improves the CNN performance. 
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In [66], the authors used a CNN pretrained on the 

ImageNet database and used a transfer learning 

approach to use this CNN on their input ECG data. 

The datasets used were MIT- BIH arrhythmia, 

Incart and SVDB. The raw ECG signals were 

filtered and the QRS complex was extracted. The 

signals were converted to a 2D image 

representation using Contin- uous Wavelet 

Transform (CWT). Three different wavelets, the 

Daubechies, Biorthogonal and Coiflet were used 

together. For pretraining, the authors used the 

VGG model with five convolutional layers. The 

pretraining was done on the Ima- geNet database 

with 1.2 million RGB images which comprised of 

general scenes like animals, scenery, etc. On 

passing the input 2D images through the CNN, a 

one dimensional feature vector of size 4096 was 

produced, which was applied to an additional layer 

that did the final classification. Through this 

unique approach, the authors obtained overall 

accuracies of 99.9 % and 99.8 % for VEB and 

SVEB respectively. This demonstrates that using a 

pretrained CNN can also be very effective at 

classification since CNN’s are versatile feature 

learners. 

In [67], the authors used the PhysioNet Challenge 

2017 dataset and a novel CNN to classify 

arrhythmia into 4 classes for Atrial Fibrillation 

detection. The dataset was first balanced by 

resegmenting. Then discrete wavelet frames 

(DWF) are used to extract information at various 

scales, enabling a multi- scale decomposition of the 

ECG signals. The key feature of this paper is the 

construction of two CNN’s of different 

architecture. The first is called FDResNet (Fast 

down-sampling residual CNN) which is composed 

of a fast down-sampling module, which has two 

convolutional layers with a stride of 3, reducing the 

dimension of the input. This is followed by the 

residual module with 3 convolutional layers of 

increasing width, max-pooling and a residual short 

circuit. The last is a fully connected classification 

module. The other type of CNN is called multi-

scale residual CNN (MSResNet), which has three 

FDResNets all of the same architecture but trained 

at different wavelet scales. Thus each FDResNet 

here learns features at different scales of the input 

waveform. The output of this is combined together 

in a single vector and a fully connected neural net 

does the final classification. It was seen that the 

FDResNet with skip connections performed better 

than ones without any skipping and overall, the 

MSResNet performed the best. Although the test 

accuracy was 92.1 %, the CNN’s used in this study 

are unique and deserve further attention. 

B. ECG classification with LSTM 

There are some studies on arrhythmia classification 

using neural nets working on different principles 

than CNN. One of them is Long Short Term 

Memory Network ( [72]). They have units that 

introduce memory in the network, which helps in 

classifying temporal patterns. The temporal 

sequence in an ECG signal contains information 

about different arrhythmia and LSTM’s are ideally 

placed in detecting these patterns. 

We will describe some LSTM based studies here 

and list the results in Table III. 

In [73], the authors tackle the problem of Atrial 

Fibrillation (AF) classification with a bidirectional 

LSTM. The occurrence of AF is unpredictable and 

is interspersed with a large number of normal sinus 

rhythms. Thus, long duration sequences have to be 

collected to accurately detect AF, which is possible 

by monitoring the patients even outside the 

hospital since AF rhythms, though lethal, are very 

intermittent in nature. This makes the use of 

automated analysis essential to classify the long 

duration signals collected. The input was MIT BIH 

AF dataset of 23 patients, 20 of which were used 

for training and 10-fold cross validation, the 

remaining were used for blind-fold validation. 

Each dataset was 10 hours long with RR 

annotation, from which the RR intervals were split 

into overlapping sequences of 100 beats. Beat 

sequences with one or more AF beat were 

classified as AF. The LSTM classifier had forward 

and backward LSTM cells constituting the LSTM 

layer, followed by a global max pooling and a fully 

connected layer. Tthe number of cells in forward 

and backward direction were twice the input length 

sequence and max pooling was used between the 

LSTM layers. Dropout layers were used to prevent 

overfitting. Finally the LSTM network had an 

accuracy of 98.51 % and a blindfold accuracy of 

99.77 %. However, as the authors acknowledge, 

the use of a small dataset hampers the training 

quality and computational time is also large for this 

particular network, hindering a more thorough 

exploration of the parameter space. 

In [74], the authors used four different types of 

LSTM networks to classify ECG from the MIT-

BIH database into 5 classes. Unidirection, 

Bidirectional and both versions with a new input 

layer using wavelets were the four types. In the 
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wavelet networks, the wavelet coefficients were 

used along with the main signal as inputs. DWT 

with a filter bank was used to decompose the ECG 

signals and wavelet coefficients were extracted at 

different levels with the Daubechies family. All 

four networks had two LSTM layers (uni or bi) of 

64 and 32 dimensions after the wavelet layer and 

two terminal dense layers of dimensions 128 and 5. 

Dropout layers were used between the two LSTM 

layers and between the dens layers to prevent 

overfitting. It was seen that the networks without 

wavelets performed poorly and a correlation 

analysis showed that certain classes whose features 

were correlated, were misclassified. The best 

performing networks were the unidirectional 

LSTM with wavelets decomposed to 3 levels, with 

accuracy of 99.25 % and the bidirectional LSTM 

with 2 level wavelets with accuracy of 99.39n %. 

An interesting point is that with additional wavelet 

levels, both networks underperformed, and the 

given wavelet numbers were the best. This again 

shows that a large amount of detail can confuse 

highly non-linear classifiers like LSTM’s. 

LSTM’s have been used to tackle imbalanced 

datasets in [75] using data from the MIT-BIH 

arrhythmia DB to classify into 8 classes. Over and 

undersampling methods have been mentioned 

before to address these but they involve resampling 

and modification of the dataset. Hence the authors 

use a loss function called Focal Loss ( [76]) 

combined with LSTM, which concentrates on 

difficult to characterize arrhythmia beats while 

reducing the importance of normal ECG beats 

which are large in number compared to the 

unhealthy beats of greater interest. The focal loss 

function is a dynamically scaled cross-entropy, 

which multiplies beats which are wrongly clas- 

sified by a factor close to 1 and leaves its 

importance un- changed. A scaling parameter is 

used for tuning the focal loss function. Mostly 

normal beats are easy to classify and are multiplied 

by a factor less than one, leading to a balanced 

classification. As for opertation, first the ECG 

signals were denoised with a Daubechies wavelet 

method and segmented into samples of length 250 

with R-peak annotation. The LSTM had an input, 

1 LSTM and two fully connected output layers. For 

network optimization, a combination of Adam and 

NAG methods were used. After extensive 

experimentation it was determined that dropout 

was not required and a stable value of the focal loss 

parameter was determined. It was determined 

finally that with the normal cross entropy loss 

function, an accuracy of 98.7 % was achieved. 

With the improved focal loss function, the 

accuracy increased to 99.26 %, whowing that the 

focal loss method indeed improves classification 

performance. This example shows a way to 

account for an imbalanced dataset by suitable 

choosing a loss function. For future work, 

researchers could explore different varieties of loss 

function taking inspiration from this approach. 

I. CONCLUSION 

This literature survey provides an overview of 

various machine learning (ML) and deep learning 

(DL) techniques implemented for the purpose of 

arrhythmia detection and classification. Through 

many experimental results it has been found that 

deep learning techniques have an edge over 

machine learning algorithms in various aspects. 

For example, ML techniques requires an essential 

step before classification i.e. pre-processing step 

mainly responsible for noise removal, data 

cleaning and hand-crafted feature selection. On the 

other hand, DL methods can perform very well 

even in the absence of pre-processing steps since 

the input i.e. raw ECG signals can be fed to the 

classifier directly without the need for feature 

extraction. However, it has to be noted that some 

level of preprocessing might be necessary for some 

of the DL methods presented here to be fully 

effective. With the ML approach, there is no 

standardized universal method for feature 

extraction which can be applicable for all types of 

datasets and arrhythmias, instead these steps 

depends on various factors such type and size of 

dataset, type of ECG signal, type of ML algorithm 

employed etc. In previous works, many authors 

have integrated feature selection algorithms with 

core machine learning techniques. It was found that 

different feature selection algorithms on same 

datasets and can give output of different set of 

selected features based on dissimilar criteria during 

selection process, whereas DL methods bypass the 

feature selection step which makes the overall 

process computationally less expensive and 

improves efficiency and other performance 

metrics. We have also reviewed some studies 

where DL methods needed significant pre-

processing like R-peak detection, QRS complex 

detection, RR-interval estimation and noise 

filtering which were necessary for these DL 

methods to perform to their highest potential. At 

the same time, we have also presented studies with 

DL where no preprocessing and/or filtering of any 

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2024 IJCRT | Volume 12, Issue 1 January 2024 | ISSN: 2320-2882 

IJCRT2401313 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c600 
 

kind was required and the raw ECG could be fed 

directly as input. Thus, we can conclude that 

although some DL techniques might need basic 

preprocessing, it is not a necessity. In contrast, ML 

techniques demand preprocessing and it is a must-

have not a luxury. It must be noted that while DL 

methods appear superior, they do suffer certain 

disadvantages. DL techniques generally need 

significant amounts of data for training, which is a 

challenge. In addition, arrhythmia datasets are 

mostly imbalanced since all the datasets described 

here have a large proportion of normal beats as 

against beats with arrhythmia. With imbalanced 

data, DL methods can lead to incorrect 

classification since beats of some arrhythmia 

classes are very similar compared to others. When 

the number of samples of these classes are small, 

the DL method can confuse one class for the other. 

Techniques have been presented to reduce the 

impact of imbalanced data, but obtaining a 

balanced dataset from the source could be much 

better for classification which is a challenge that 

DL researchers must consider seriously. While 

writing a review, it is often difficult to compare 

different studies. While the various authors might 

use the very popular MIT BIH arrhythmia 

database, they employ vastly different techniques 

for preprocessing and/or classification, often dif- 

fering in the number of target classes. Hence it is 

difficult to objectively rank different studies. 

Hence we aim at no such ranking and instead 

describe in an objective manner the niche aspects 

of various studies, summarizing their results in the 

tables. 
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Reference Dataset Arrhythmia Classes ML 
algorithm 
used 

Performance 
Metrics 

[23] Cleveland 
dataset 

2 - Normal and Abnormal Decision
 tre
e 
and
 na ı̈
ve Bayes 

DT Acc 88 % 
NB Acc 
85 % 

[38] MIT-BIH 2 - Normal and Abnormal KNN Acc 98.4 % 
[24] MIT-BIH 8 - LBBB, RBBB, PVC, FUSION, 

APC,PB, FLWAV, FPUS 
Random 
Forest 

Acc 99.7 % Sen 
95.56 
% Spec 99.83 % 

[30] MIT-BIH, 
BIDMC 

3 - Normal Sinus Rhythm, Congestive 
Heart Failure and Cardiac 
Arrhythmia 

SVM Acc 95.92 % 

[36] MIT-BIH Normal and Preventricular Arrhythmia SVM 
classifier 
monitored
 by 
optimizati
on 
algorithms 
like PS0,
 GW
O, 
MGWO 

SVM with 
MGWO Acc 
100 % % 

[34] MIT-BIH 15 SVM Acc 99.66 % 
[31] University    

of 
California 
at Irvine 
Machine 
Learning 
Data 
Repositor
y 

15 SVM Acc of 81.11 % 
and 
92.07% 
depending upon 
the splitting 
proportion 

[33] MIT-BIH 4 SVM Acc 93 % 
[37] MIT-BIH 7 kNN Acc 99.0 % 
[28] UCI 2 - Normal or Abnormal Decision 

Tree 
Acc 99 % 

[29] 2017
 Phys
- 
ioNet/CinC 
Challenge 

4 - normal sinus rhythm, atrial fibrillation 
(AF), alternative 
rhythm, and unclassified rhythm 

Decision 
Tree 

Normal 0.93, 
AF 0.86, 
Other 0.79 
Final F1 score 
0.84 

[39] MIT-BIH 5    -     Normal(N),     Premature     
Ventricular     Contraction 
(PVC),Premature Atrial Contraction 
(APC), Left Bundle Branch Block (LBBB) 
and Right Bundle Branch Block (RBBB) 

SVM Sensitivity:99.2
 % 
Specificity:99.7
0 % 
Accuracy
 :98.6
0% 
positive
 predic
tive value  
(PPV)  :99.90 
% negative 
predictive value 
(NPV):97.60 % 

[40] MIT-BIH 5 - Normal, Premature Ventricular 
Complex (PVC), Atrial 
Premature Contraction (APC), Right 
Bundle Branch Block (RBBB), and Left 
Bundle Branch Block (LBBB) 

Decision 
Tree 

Acc 98.88 % 
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Reference Dataset Arrhythmia Classes DL 
technique 
used 

Performance 
Metrics 

[73] MIT-BIH 2 - Normal and AF LSTM Acc 98.51 % 
Sen 98.32 
% Spec 98.67 % 

[74] MIT-BIH 5 - Normal Sinus Rhythm (NSR), 
Ventricular Premature Con- 
traction (VPC), Paced Beat (PB), Left 
Bundle Branch Block (LBBB) and Right 
Bundle Branch Block (RBBB) 

LSTM Unidirectional  
LSTM 
with wavelet 
Acc 99.25 
% 
Bidirectional
 LST
M with wavelet 
Acc 99.39 
% 

[75] MIT-BIH 8 - N, LBBB, RBBB, APC, NESC, 
ABERR, NPC, AESC 

LSTM Acc   99.26    %    
Spec 
99.14 % Recall 
99.26 
%   Prec   99.3   
%   F1 
Score 99.27 

[77] MIT-BIH 5 - NSR, LBBB, RBBB, Atrial Premature 
Beats (APB), Pre- 
mature Ventricular Contraction 

LSTM, 
CNN 

Acc 98.1 % Sen 
97.5 % 
Spec 98.7 % 

[78] MIT-BIH, 
MIT 
AF, MIT 
NSR 

2 - Normal and AF LSTM, 
CNN 

Acc 97.8 % Sen 
98.98 
% Spec 96.95 % 

[79] MIT-BIH 5 - N, S, V, F, Q Stacked 
bidirectio
nal 
LSTM,
 2
D CNN 

Acc 99.5 % Sen 
99.9 % 
Spec 98.2 % 

[80] CPSC 9 - N, AF, LBBB, RBBB, 1-degree 
Atrioventricular Block, Pre- 
mature Atrial Contraction, Premature 
Ventricular Contraction, ST segment 
depression, ST segment Elevation 

LSTM, 
CNN 

F1 Score 0.806 
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Reference Dataset Arrhythmia Classes 

DL 

technique 

used 

Performance 

Metrics 

[53] MIT-BIH 5 - N, S, V, F, Q 1D CNN 

VEB Acc 99 %, 

Sen 

93.9 %, Spe 

98.9 %, 

Ppr 90.6 %. 

SVEB Acc 
97.6, Sen 60.3 

%, Spe 99.2 %, 

Ppr 63.5 % % 

[9] MIT-BIH 5 - N, S, V, F, Q 1D CNN 

Noisy data: Acc 

93.47 

%, Sen: 96.01 

%, spec: 

91.64 %. 

Denoised   
data:  Acc 

94.03 %, Sen: 

96.71 %, 

spec: 91.54 %. 

[54] 

Creighton 

University, 

MIT BIH 
Atrial 

Fibrillatio

n, MIT

 BI

H 

Arrhythmia 4 - AFib, AFlu, VFib, Normal 1D CNN 

2   second   input:   

Acc 

92.5 % Sen 

98.09 % 

Spec 93.13 % 

5 second input: 
Acc 94.9 % Sen 

99.13 % Spec 

81.44 % 

[10] 

Physikalisc

h- 

Technische 
Bundesanst

alt 2 - Normal and MI 1D CNN 

Noisy data: Acc 

93.53 

% Sen 93.71 % 

Spec 

92.83 % 

Denoised   
data:  Acc 

95.22 % Sen 

95.49 % 

Spec 94.19 % 

[56] MIT-BIH 17 1D CNN 

Acc   91.33   %,   

Sen: 

83.91 %, Spec: 

99.41 % 

Prec 89.52 % 

Rec 83.91 

% F-Score 85.38 

MIT-BIH  

AF, 

PhysioNet 

AF,  MIT-

BIH 

Malign

ant 

Ventric

ular 

Ectopy

, 

Indone

sian 3 Normal sinus rhythm (NSR), atrial 

Acc 99.17 % 

Sen 98.9 

% Spec 99.17 
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