Proof of Beal’s Conjecture

Edward Szaraniec

pro tem on the Committee of Geophysics, Polish Academy of Sciences, Warsaw;
retired in law from the Department of Electrical and Computer Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

Abstract

Equation constituting the Beal conjecture is rearranged and squared, then rearranged again and raised to power \(k > 2 \). The result, standing as an equivalent having the same property, is emerging as a singular primitive Pythagorean equation with no solution. So, the conjecture is proved. General line of proving the Pythagorean equation is observed as a moving spirit.

Key words and phrases: Beal conjecture; elementary number theory; Fermat last theorem; Pythagorean triple

Introduction

Originally, the Beal conjecture \([1]\) states that if
\[
A^x + B^y = C^z
\]
(1.1)

where \(A, B, C, x, y, z \) are positive integers and \(x, y, z \) are all greater than 2, then \(A, B, \) and \(C \) must have a common prime factor;

Identically \([1], [2]\), the conjecture states that there are no solutions (there does not exist) to the equation
\[
a^x + b^y = c^z
\]
(1.2)
in positive integers \(a, b, c, x, y, z \) with all of \(x, y, z \) being greater than 2 and with \(a, b, \) and \(c \) being pairwise coprime.

The point can be seen as a generalization of Pythagorean issue \(x = y = z = 2 \) embracing the Fermat last theorem as well.

Unmodern mathematical tools are used to prove the theorem (hitherto conjecture). General line of proving the Pythagorean triple \([3]\) is observed as a moving spirit. Generally, original (1.1) and alike (1.2) statements concerning the Bealian form refer to non-primitive and primitive triple, respectively. So, trivial or non-trivial solutions are to be under consideration. More, there is an unexplored potential in consecutive steps known from ancient times, exploded barely now.
The alternative statements concerning the Bealian form (1.2), point to two sub-forms indicated in the proof below. The known identities, like \(7^3 + 13^3 = 2^9\) and \(3^5 + 11^4 = 122^2\) and else \(17^7 + 76271^3 = 21063928^2\) are in the bottom of a forethought about.

Proving the conjecture, we refer to divisibility and parity of integers [3, chap. 2]. In particular, there is

Lemma 1. If \(\gcd(u,v)=1\), then \(\gcd(u+v,u-v)=1\) or 2; definitely it is 1 provided that \(u\) and \(v\) are of different parity and it is 2 otherwise.

This is almost to the letter citation from elementary theory providing also a formal proof [3, pp. 69;353].

The lemma admits conversion:

Lemma 2. If \(\gcd(u+v,u-v)=1\), then \(\gcd(u,v)=1\) or 2, and it is 1 when \(u+v\) and \(u-v\) are of different parity or it is 2 otherwise.

For most elementary demonstration in the subject suppose \(u\) and \(v\) are integers. Then \(\gcd(u,v)\) divides \(u\) and \(v\), and hence divides \(u+v\) and \(u-v\), and thence divides \(\gcd(u+v,u-v)\). So, if \(\gcd(u+v,u-v)=1\) or 2, then \(\gcd(u,v)=1\) or 2, and vice versa.

The Lemmas lead to conclusions [3, p.353].

Corollary 1. If \(\gcd(u,v)=1\) and also \(\gcd(u+v,u-v)=1\), then \(u\) and \(v\) are of opposite parity and more there is an alternative for \((u+v)/2\) and \((u-v)/2\) to be either of different parity or odd, one and the other.

Corollary 2. If \(u\) and \(v\) are odd and \(\gcd(u,v)=1\), then \(\gcd(u+v,u-v)=2\) and more \((u+v)/2\) and \((u-v)/2\) are of different parity.

The proof is arranged like the pages of elementary theory [3, pp.76-77] concerning the Pythagorean triples, preserving moving spirit above all.

The Beal theorem

The \(3\)-tuple \((a,b,c)\) of positive integers with the property that \(a,b\) and \(c\) have no positive common divisor other than unity will be referred to as primitive.

In the Pythagorean spirit, the theorem is slightly restated.

The Beal theorem. If \((a,b,c)\) is a primitive \(3\)-tuple, where \(x, y\) and \(z\) are positive integers greater than 2, then there are no solutions in positive integers \(a, b, c, x, y, z\) to the equation (1.2)

\[
a^x + b^y = c^z
\]

Proof. If \((a,b,c)\) is a primitive \(3\)-tuple, then \(a\) and \(b\) are coprime in pairs and so are their powers. If \(a\) and \(b\) are even then \(c\) is even, a contradiction. If \(a\) and \(b\) are odd then \(c\) is even. If \(c\) is odd then one of \(a\) and \(b\) is even and the other is odd. If \(c\) is even then \(a\) and \(b\) are both either odd or even. Hence, there are at most two potentially possible sub-forms of the Bealian (1.2).

The firth case is: \(a\) and \(b\) must be of different parity and \(c\) odd. Without loss of generality, let \(a\) be even and \(b\) be odd.

The second case is: \(a\) and \(b\) must be odd and \(c\) even. Without loss of generality, let \(b\geq a\).

The rearranged sub-forms are

\[
a_r^x = c_o^z - b_o^y
\] (2.1)
\[c_i^z = a_o^x + b_o^y \] \hspace{1cm} (2.2)

where the subscripts \(e \) or \(o \) refer to parity of a positive integer involved. For instance, when \(a \) refers to a positive integer then \(a_e \) and \(a_o \) refer to even and odd parity of \(a \), respectively.

Supposition A. In addition, for a proof by contradiction suppose the equation \((1.2)\) is satisfied (there exists).

\[c, \ a^x+b^y = c^z \] \hspace{1cm} (1.2.1).

Consequently, the rearranged equivalent equations \((2)\) are squared

\[a_e^{2z} = (c_o^z-b_o^z)^2, \quad \text{or} \quad c_o^{2z} = (a_o^z+b_o^z)^2 \]

then rearranged again and raised to power \(k>2 \),

\[(a_o^z c_o^z)^k = [(b_o^2 z + c_o^2 z - a_o^2 z) / 2]^k \] \hspace{1cm} (3.1)

or

\[(a_o^z b_o^z)^k = [(a_o^2 z + b_o^2 z - c_o^2 z) / 2]^k \] \hspace{1cm} (3.2)

where

\[a_o^z c_o^z = w \quad \text{or} \quad a_o^z b_o^z = w, \quad \text{respectively} \]

and

\[w = a^e c^z \quad \text{where} \quad a^e \text{ and } c^z \text{ are odd} \]

or

\[w = a^o b^y \quad \text{where} \quad a^o \text{ and } b^y \text{ are odd} \]

(4.1)

(4.2)

Since \(c-a \) and \(c+a \) must be even, or \(b-a \) and \(b+a \) must be even, respectively, let

\[(c^z + a^k z) = 2s \quad \text{and} \quad (c^z - a^k z) = 2t \] \hspace{1cm} (5.1)

or

\[(b^k z + a^k z) = 2s \quad \text{and} \quad (b^k z - a^k z) = 2t \] \hspace{1cm} (5.2)

then

\[w^k = s^2 - t^2 \] \hspace{1cm} (6)

where \(s \) and \(t \) are relatively prime numbers, one of which is even and the other odd (by the Corollaries 1 and 2 above).

Solution to the equation \((6)\), if exists, contradicts our suppositiin A, then Beal’s theorem \((1.2)\) holds true.

We can prove more however. The \(k \) is available at choice (optional). Specifying the power \(k \) as even , \(k = 2k^\ast \), it could be proved that solution to \((6)\) does not exists.. For instance, specifying the power \(k \) as \(k=4 \) yields

\[t^2 + (w^2)^2 = s^2 \] \hspace{1cm} (7)

to be considered as a singular primitive Pythagorean triple. For, \(s \) has to be odd and \(t \) even, while \(w \) is odd as a product of odd integers. It follows [3] that \(t=2uv, \ w^2=u^2-v^2, \ s=u^2+v^2 \) where \(u \) and \(v \) are relatively prime numbers of opposite parity. Hence, \(u-v \) and \(u+v \) must be of different parity, in the virtue of Corollary 1 above. Since
\[w^2 = (u-v)(u+v) \text{ and } \gcd(u-v, u+v) = 1, \text{ } u-v \text{ and } u+v \text{ must be perfect squares, say } u-v = f^2 \text{ and } u+v = g^2, \text{ where one of } f \text{ and } g \text{ is even and the other is odd. It follows that equation (1.2) is equivalent to} \]
\[
\begin{align*}
 f^4 + g^4 &= 2(u^2 + v^2) \\
 \text{when supposed to have the solution.}
\end{align*}
\]

Left-hand side of the equation (8) is odd as a sum of integers of different parity, whereas the right-hand side is visibly even, a contradiction terminating the proof, for fallacy then lack of solutions.

References: