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Abstract—Emotion recognition from electroencephalography (EEG) signals has become a pivotal aspect of 

affective computing. This research proposes the concatenation of two novel deep neural network architectures 

to advance the state-of-the-art in EEG-based emotion classification. The first model termed Hybrid STANN 

with Graph-Smooth Signals, employs a unique combination of spatiotemporal encoding and recurrent 

attention network blocks. Graph signal processing tools are applied as a preprocessing step for spatial graph 

smoothing, enhancing the interpretability of physiological representations. The model outperforms existing 

methods on the DEAP dataset for emotion classification. Additionally, its robustness is demonstrated through 

successful transfer learning from DEAP to DREAMER and the Emotional English Word (EEWD) datasets, 

showcasing its effectiveness across diverse EEG-based emotion classification tasks. The second model, 

named 3DCANN: Spatio-Temporal Convolution Attention Neural Network, addresses the dynamic nature of 

EEG signals in emotional states. The 3DCANN model features a spatiotemporal feature extraction module 

and an EEG channel attention weight learning module. By effectively capturing the dynamic relationships 

and internal spatial relations among multi-channel EEG signals, the model surpasses state-of-the-art 

performance on the (SEED) Dataset. The integration of dual attention learning and SoftMax classification 

enhances the model's ability to discern intricate patterns in EEG signals, resulting in superior emotion 

recognition accuracy. Both proposed models contribute to EEG-based emotion recognition by introducing 

innovative architectural elements and demonstrating their efficacy through comprehensive evaluations of 

diverse datasets. This research opens avenues for further exploration in physiological data-driven affective 

computing applications. 

Index Terms—Emotion Recognition, Graph Filtering, Spatio-Temporal Encoding, 3D Convolution Attention 

Neural Network, Dual Attention Learning, Transfer Learning. 
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I. INTRODUCTION 

Deep learning (DL) models typically demand a substantial number of parameters for training, presenting a 

departure from the parameter requirements of traditional machine learning methods [1]. Consequently, a 

substantial volume of labeled data becomes imperative for the effective training of DL models. Within the 

domain of electroencephalography (EEG) tasks, the integration of DL poses a specific challenge owing to the 

scarcity of labeled data about analogous tasks [2]. Mitigating this challenge, transfer-based methodologies 

have been proposed, utilizing a pre-existing dataset of considerable magnitude, denoted as the source dataset. 

However, the incongruities between target and source domains necessitate a fine-tuning process to align the 

network with the nuances of the target data. This research endeavors to elucidate the transferability of 

knowledge acquired through our proposed hybrid architecture in the context of akin emotion classification 

tasks. Leveraging transfer learning and subsequent fine-tuning, we explore the generalizability of our model 

by evaluating its performance across various tuning layouts using constrained EEG data. As the target data, 

we scrutinize EEG signals sourced from the publicly available DREAMER dataset [3] and an Emotional 

English Word dataset (EEWD) recorded at Sabanci University. These datasets encompass diverse stimuli 

types, providing insights into the adaptability of our proposed model in the realm of cross-modal emotion 

learning [4]. Through this investigation, we aim to contribute nuanced perspectives on the efficacy and 

adaptability of our proposed hybrid architecture in scenarios where labeled data for target tasks is limited. 

Multichannel electroencephalography (EEG) serves as a valuable tool for recording neural activity in cortical 

regions, capturing spectral and rhythmic characteristics of brain signals [5]. In comparison to alternative non-

invasive recording methods, EEG stands out for its superior temporal resolution, allowing the acquisition of 

brain signals on a millisecond timescale. This temporal precision, coupled with its user-friendly nature, 

positions EEG as a practical choice for tasks associated with cognitive and affective reactions. Nonetheless, 

the efficacy of EEG is tempered by challenges such as a low signal-to-noise ratio (SNR) and suboptimal 

spatial resolution, distinguishing it less favorably when compared to magnetic resonance imaging (MRI) and 

functional near-infrared spectroscopy (fNIRS) [6], [7]. Consequently, leveraging EEG signals for downstream 

tasks presents inherent challenges due to these limitations, prompting a careful consideration of the trade-offs 

involved in selecting the appropriate neuroimaging modality for specific applications. 

The analysis of electroencephalogram (EEG) signals often involves the examination of specific frequency 

bands, including theta (θ: 4-8 Hz), alpha (α: 8-12 Hz), beta (β: 12-29 Hz), and gamma (γ: > 30 Hz). Early 

endeavors in EEG-based emotion classification typically encompass two primary stages: feature extraction 

and the implementation of a supervised machine learning framework. In a study by Wang et al. [8], the 

performance of three distinct features—power spectral density (PSD), wavelet entropy, and nonlinear 

dynamical features—was evaluated using a kernel support vector machine (SVM). Zheng et al. [9] delved 

into the identification of critical frequency bands and channels, employing differential entropy (DE), DE 

asymmetry, and PSD features. Their investigation encompassed the assessment of different features utilizing 

K-nearest neighbors (K-NN), SVM, and deep belief networks (DBN). In a separate work [10], the authors 

introduced a method to compute spectral and temporal entropies by decomposing EEG data through Fourier-

Bessel series expansion-based empirical wavelet transform. This was followed by the computation of K-NN 

and Shannon entropies post multi-scaling operations in the spectral and temporal domains. A novel rhythmic 

sequencing approach was proposed in [11] to discern optimal rhythmic features from the sequence of multi-

channel EEG data. Finally, the work by [12] addressed the challenge of the distribution shift between training 

and test data through the application of transfer learning, providing a strategy to mitigate the impact of this 

shift on the performance of EEG-based emotion classification models. These diverse approaches underscore 

the evolution and multifaceted nature of methodologies applied to extract informative features and enhance 

the effectiveness of supervised machine learning models in the domain of EEG-based emotion classification. 

The primary objective of this study is to devise an innovative deep architecture aimed at augmenting the 

efficacy of current algorithms employed in EEG-based emotion recognition. Recognizing the established 

effectiveness of Convolutional Neural Networks (CNNs) in capturing spatial representations and Recurrent 

Neural Networks (RNNs) in capturing temporal dependencies across diverse domains [13], we leverage the 

temporal and spatial structures inherent in EEG data acquired from multiple electrodes over the scalp. 

Successfully analyzing these structured time series necessitates the assimilation of information extracted from 
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both spatial structures and temporal dynamics [14]. In response to this imperative, we propose the integration 

of a Hybrid End-to-End Spatio-Temporal Attention Neural Network (STANN) with graph-smooth signals, 

offering a comprehensive treatment of both aspects within a unified architecture with 3DCANN. The pivotal 

contribution of this work lies in the design of STANN, comprising two parallel blocks: the spatio-temporal 

encoding block and the recurrent attention network block. Acknowledging the intricate nature of brain signals 

and their time-varying characteristics, we introduce a novel pre-processing step involving the application of 

the graph Fourier transform (GFT) and low-pass graph filtering [15]. This innovative approach aims to 

enhance the representation and analysis of EEG data by effectively incorporating spatial and temporal 

structures, thereby advancing the state-of-the-art in EEG-based emotion recognition. 

The significant contributions of our research are succinctly outlined as follows: 

1. Innovative Deep Architecture: Introducing a novel deep architecture designed to effectively capture both 

spatial and temporal information inherent in time-series data, this research is specifically tailored for EEG 

emotion classification. The proposed hybrid network seamlessly integrates the Spatio-Temporal Attention 

Neural Network (STANN) and attentive temporal information within the 3D Convolution Attention Neural 

Network (3DCANN). 

2. Spatial-Spectral Consideration: This paper addresses the interrelation among neighboring EEG electrodes, 

harnessing their spatial-spectral characteristics to enhance the representation of EEG data. A crucial aspect of 

our approach involves the application of low-pass graph filtering, a mechanism employed to enforce graph 

smoothness in the spatial domain. 

3. Integration of Transfer Learning: The research incorporates the Transfer Learning paradigm within the 

3DCANN-STANN approach. This strategic integration extends the adaptability and generalizability of the 

proposed architecture, allowing knowledge transfer from a source dataset, such as DEAP, to improve 

performance on target datasets like the DREAMER, (SEED) Dataset and the Emotional English Word dataset 

(EEWD). This not only demonstrates the versatility of our model but also underscores its potential 

applicability in scenarios where labeled data for target tasks is limited. 

II. LITERATURE REVIEW 

The conventional model for EEG emotion recognition typically involves two distinct stages: feature extraction 

and classification. Obtaining the most discriminative features is crucial in the context of EEG signal 

characteristics. Common feature extraction approaches analyze EEG features individually from the time 

domain, frequency domain, and time-frequency domain. For instance, a study [31] evaluates ten time-domain 

EEG signal features for negative emotion recognition, highlighting the significance of the first-order 

difference feature in emotion classification. However, reliance on a single feature often results in suboptimal 

classification outcomes for emotional states. To enhance classification performance, researchers [32] 

introduce a comprehensive approach where nine time-frequency EEG features are collectively input into a 

random forest classifier for emotion recognition. This approach significantly improves upon the limitations 

of single-feature methodologies. In instances involving single-channel EEG signals, an approach [33] 

integrates features from both the time domain and frequency domain into a neural network, thereby leveraging 

the strengths of both traditional features and neural networks. Another avenue explored by researchers 

involves the calculation of statistical features of EEG signals to enhance the discriminability of emotional 

features for efficient emotion recognition. In a specific instance [34], an emotion classification algorithm is 

proposed, incorporating the fusion of late positive potential (LPP) and support vector machines (SVM). This 

amalgamation achieves the integration of statistical features and frequency-domain features, contributing to 

the effective processing of EEG data for emotion recognition. 

Electroencephalography (EEG) represents a complex, nonlinear, and high time-resolution signal, making it 

challenging to fully encapsulate all details solely through traditional time-domain feature extraction 

techniques. Signal decomposition, involving the division of data into different frequencies using distinct 

transformations, proves to be a valuable strategy. Applying different processing methods to various 

frequencies effectively enhances EEG signal classification [35]. Widely employed transforms such as wavelet 

transform, empirical mode decomposition (EMD), and variational mode decomposition (VMD) find 
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application in EEG data processing. For instance, Zhang et al. [36] propose an EEG signal feature extraction 

method based on EMD and autoregressive model (AR), validating its reliability and stability in emotion 

recognition. In another study [37], discrete wavelet transform (DWT) is utilized to extract information from 

a small number of EEG channels and frequency bands. Subsequently, support vector machine (SVM) and k-

nearest neighbor classifiers (KNN) are employed to recognize EEG features, demonstrating commendable 

classification performance. Signal decomposition technologies contribute to optimizing the performance 

indices of EEG signal classification algorithms within the machine learning paradigm. However, manual 

feature extraction falls short in capturing high-level semantic information and multi-level details embedded 

in EEG signals. Deep learning emerges as a promising solution to this limitation, offering a pathway to 

extracting intricate information from EEG signals that may not be attainable through traditional methods. 

Undoubtedly, the integration of spatio-temporal joint features in EEG yields superior signal representation 

performance, making spatio-temporal network models [38] a focal point in emotion recognition research. The 

effectiveness of Convolutional Neural Networks (CNNs) is intricately tied to the structure and parameter 

configuration of the network. Consequently, researchers often leverage adjustments to the network structure 

to enhance classification performance. The Two-Dimension Convolution Neural Network (2DCNN) applies 

the convolution layer to a two-dimensional feature map, capturing only the spatial information of the EEG 

signal. In contrast, the three-dimensional convolution Neural Network (3DCNN) [39] introduces a time 

dimension through an additional convolution layer on the three-dimensional feature map. This augmentation 

allows the extraction of more comprehensive spatio-temporal information from EEG data. Unlike 2DCNN, 

3DCNN not only ensures synchronization of the time dimension but also extracts detailed information from 

both time and space domains, facilitating effective fusion of temporal and spatial features. In EEG signal 

processing, traditional 2D convolution may overlook the amplitude fluctuation within each period, capturing 

only the connection between the EEG channel and the amplitude. Conversely, utilizing 3D convolution for 

continuous-time EEG signals enables the capture of time-varying fluctuation information and the exploration 

of associated inter-channel dynamics. This distinction underscores the enhanced capability of 3DCNN in 

mining intricate spatio-temporal patterns in EEG data. 

Moreover, scientific investigations have elucidated that distinct functions are attributed to each part of the 

cerebral cortex, and cooperative functional distribution is observed across various regions of the brain. To 

emulate this intricate brain activity, the attention mechanism (AM) has been proposed. AM can learn and 

establish the mapping relationship between different brain regions and emotional tasks. This allows it to 

emphasize disparities in spatial and temporal features associated with different emotions. For instance, a study 

introduced channel attention-based emotion recognition networks (CAERN) [40], demonstrating the efficacy 

of the feature extraction method based on AM in acquiring emotion recognition features. In a similar vein, Jia 

et al. [41] presented a spatial-spectral-temporal attention 3D dense network (SST-EmotionNet), exploring the 

correlation between emotional EEG signals and temporal changes. The application of AM in EEG emotion 

recognition is deemed feasible. In this paper, we formulate a 3D Convolution Attention Neural Network 

(3DCANN) to classify EEG emotions. Within 3DCANN, 2D EEG data undergoes conversion into a 3D 

representation, enabling the extraction of deep spatio-temporal information through the 3DCNN network. 

Subsequently, the spatio-temporal features are amalgamated with the weights obtained from dual attention 

learning. Finally, the fused features are input into the softmax classifier for emotion classification. This 

architecture leverages the strengths of the attention mechanism to enhance the discernment of emotional 

patterns within EEG signals. 

Furthermore, Petrantonakis et al. [42] have substantiated that distinct brain areas within the cerebral cortex 

execute specific functions. Remarkably, changes in emotional states exhibit discernible variations in particular 

brain regions, notably the prefrontal and temporal lobes. This underscores the varying degrees of correlation 

between different brain regions and emotion recognition tasks. Opting for brain regions exhibiting high 

correlation holds practical significance. Consequently, our research explores the selection of channels in 

emotional state investigations, aiming to alleviate the computational load of the emotion recognition model 

by utilizing a limited number of EEG channels. The judicious selection of EEG channels not only streamlines 

computational requirements but also provides valuable insights for the development of innovative portable 

EEG equipment, offering scientific contributions to advancements in the field. 
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III. RESEARCH METHODOLOGY 

With the widespread adoption of EEG processing and advancements in computer science, the intersection of 

emotion research involving Convolutional Neural Networks (CNNs) and EEG has seen gradual development. 

In this context, we introduce a novel CNN architecture termed 3DCANN. Comprising both a 3D 

Convolutional Neural Network (3DCNN) and an Attention Mechanism (AM), 3DCANN facilitates both 

temporal and spatial analyses. The 3DCNN component is employed for efficient spatiotemporal analysis, 

while the AM delves into studying the mapping relationship between EEG emotion features and specific brain 

regions. Through this innovative fusion of 3DCNN and AM, 3DCANN emerges as a robust framework 

capable of realizing efficient classification across various emotions. The temporal and spatial insights 

provided by 3DCNN, coupled with the mapping relationship elucidated by the AM, collectively contribute to 

the enhanced capabilities of 3DCANN in deciphering and classifying intricate emotional patterns from EEG 

data. With the widespread adoption of EEG processing and advancements in computer science, the 

intersection of emotion research involving Convolutional Neural Networks (CNNs) and EEG has seen gradual 

development. In this context, we introduce a novel CNN architecture termed 3DCANN. Comprising both a 

3D Convolutional Neural Network (3DCNN) and an Attention Mechanism (AM), 3DCANN facilitates both 

temporal and spatial analyses. The 3DCNN component is employed for efficient spatiotemporal analysis, 

while the AM delves into studying the mapping relationship between EEG emotion features and specific brain 

regions. The proposed architecture of the STANN-3DCANN attention network is illustrated in Figure 1.  

 

Fig. 1. Overview of the proposed 3DCANN-STANN architecture. 

In the 3DCANN framework, spatial features of EEG signals are extracted through the 3D Convolutional 

Neural Network (3DCANN). The attention mechanism (AM) is then leveraged to enhance emotion-related 

electrodes while suppressing emotion-independent electrodes in the first AM block module, achieved through 

the learning of the weight matrix. Subsequently, the second AM block module strengthens or weakens the 

influence of different electrodes in emotion recognition, contributing to the attainment of highly 

discriminative high-dimensional EEG features. Given the high complexity and limited sample size of EEG 

data, a dropout layer with a ratio of 0.2 is incorporated in 3DCANN to mitigate the risk of overfitting within 

the neural network. The output of the dropout layer is then fed into the Flatten layer, enabling the realization 

of probability estimation for various emotional states through three fully connected layers. The Rectified 

Linear Unit (ReLU) activation function is employed in the first two layers of the fully connected network, 

while the SoftMax activation function is applied in the final layer to estimate the probabilities associated with 

different emotional states. The spatial-temporal feature extraction and attention mechanism of the network are 

expounded upon in the subsequent sections. 

The linear transformation W ∈  Rn∗m is used to transform the m - dimensional vector into the n - dimensional 

vector, while bias is denoted as b ∈  Rn . In 3DCANN, the last fully connected layer determines the emotional 

state corresponding to EEG signals through SoftMax activation function, which can be expressed as 
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pk =  
exp (wk

Tx)

∑ exp (wk
Tx)j

 

where x represents a sample, k represents an emotional state. ∑ (wk
Tx)j  is the normalization term and the sum 

of the guaranteed probabilities is 1. The SoftMax classifier has unique advantages when dealing with natural 

language, multi-dimension signals, and color image data, and is popularized in deep learning models. 

Exploring structural and functional connectivity of the brain [16] and tracking the relative spatial positions of 

EEG nodes could be in use of decoding responses elicited from sensory stimuli [17]. To exploit GSP tools, 

we need to define an underlying graph. Thus, we calculate the pairwise Euclidean distances of EEG electrodes 

and build the graph accordingly. In this way, we solely require the Cartesian coordinates of electrodes while 

the classical common spatial pattern (CSP) filtering depends on individual subjects or tasks. Let us consider 

an undirected, weighted graph G(V, E, A), where V =  {1, 2, . . . , n} is the set of nodes or EEG channels, E ⊆

 V ×  V is the set of edges or spatial connections, and A ∈  R n × n is the adjacency matrix. The edge weights 

Aij are inversely proportional to the pairwise Euclidean distances between node i and j.  

For each electrode, K-NN is considered to construct the adjacency matrix while keeping it symmetric to 

represent the brain topology [18]. To avoid a densely-connected graph, we set K to 2 and 4. In the literature, 

a 2-NN topology was motivated by separating the graph into frontotemporal and parieto-occipital networks 

[19]. The 4-NN graph brings engagement with central areas as well. Figure 2 shows the final adjacency 

matrices for these K values and their corresponding scalp topology 

Since the electrodes installed in adjacent locations detect electrical activities of common sources [20], we 

apply smoothing via lowpass graph filtering concerning the defined graph. This will ensure the similarity of 

the behavior among neighbor electrodes. Low frequencies in the graph correspond to small eigenvalues. 

Considering h˜ =  [h˜ 1, h˜ 2, . . . , h˜ n] the ideal lowpass filter with bandwidth w ∈  {1, 2, . . . , n} where 

h˜ i =  0 if i >  w, the GFT coefficients corresponding to the low frequencies with respect to G are given by: 

X̃low =  h̃X̃ 

where h̃ is equal to one for w =  [1, n/2 ] and zero otherwise. While we choose the filter bandwidth as n/2, 

users can choose a different number depending on the level of smoothing they want to apply. A smaller 

bandwidth would lead to more smoothing. 

The Proposed Hybrid STANN-3DCANN Network: 

In several sequence-based applications such as semantics analysis, natural language processing, and medical 

imaging, certain time steps of the input data might contain the most discriminative information and attention 

mechanism addresses this issue by focusing on specific time steps [21]. In this mechanism, the most 

discriminative task-related features are calculated by multiplication of outputs of hidden states by trainable 

weights. The output of the attention layer, v, is computed as below: 

v =  ∑ αihi

i

 

αi =  
exp (Whi + b)

∑ exp (Whi + b)j
 

where hi denotes the output of the i_th LSTM layer, and W and b are trainable parameters. 

Transfer Learning:  

To examine the performance of the proposed network, the features of STE and RAN block are fused and fed 

to the dense layer. Next, the encoded representation is fed to the final SoftMax classifier. The cross-entropy 

loss, L, is calculated as follows: 

L =  ∑ Yi

i

log Ỹ̂i 
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where Yi is the ground truth emotion label for each data sample and Ỹ̂i is the predicted label. Finally, the 

weights and the biases are trained with batch gradient descent. 

To investigate the possibility of using this trained network in similar EEG-based emotion recognition tasks, 

we propose and implement a transfer learning (TL) approach. The goal of TL is to test our model ability in 

real-life conditions where the available amount of labeled data is not sufficient. TL helps to improve the 

learning capability of the target data by leveraging the knowledge of the source domain. In this study, we 

investigate transferring the learned model parameters assuming that individual models across different 

datasets with similar tasks should share some parameters. Firstly, the model is fully trained using sufficient 

labeled data (source dataset). Second, we peruse different schemes to tune the pre-trained network via the 

target dataset. The source and target datasets involve EEG-based emotion recognition experiments with 

different stimuli. 

 
Fig. 2. The proposed transfer learning scheme 

Figure 2 demonstrates five different schemes we consider in the calibration (fine-tuning) session. The TL 

schemes in our STE blocks are inspired by observations in CNN-based TL frameworks in computer vision 

where usually the later network layers are retrained, as the earlier layers are responsible for generic features 

[22]. In our work, we consider different retrainable cells in both STE and RAN blocks. Going from scheme 

(a) to scheme (e), we change the status of exactly one layer either to retrainable or non-retrainable (frozen) at 

each step. In each scheme, blocks marked with a cross are left unchanged during fine-tuning of the network. 

The number of retrainable parameters in scheme (a) to scheme (e) is equal to 239100, 311420, 280295, 

207975, and 53735, respectively. 

Due to the variations in inter-dataset samples, we use a small part of the new data (target data), N, to calibrate 

and fine-tune our pre-trained model. Since the amount of calibration data is limited, we scale down the initial 

learning rate to avoid clobbering in initialization [23]. Scaling down the initial learning rate η with the scale 

α can be defined as: 

Φi+1 = (1 − α)ϕi +  α(ϕi − η∂Φ
∂ℒ ) 

where Φ i is the trainable parameters at the i_th iteration and L is the cross-entropy loss function. Here, α is 

set to 0.1. 

IV. RESULTS & DISCUSSION 

The 3D convolution attention neural network includes two parts: 3DCNN feature extraction and EEG channel 

attention weight learning. The spatial and temporal characteristics of different emotional states were obtained 

by 3DCNN and the channel attention is used to learn the weight matrix of different electrodes affecting the 

emotional state. 
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TABLE 1 PARAMETERS SETTING OF 3DCANN 

Layer  Type  Output/Shape  Kernel 

Size 

1 Conv3D 5*62*200*32 5*5*5 

2 Permute  1*64*50*62 1*1*2 

3 Dense 1*64*50*62 2*1*2 

4 MaxPooling3D 2*62*100*32 2*1*2 

5 Multiply  1*62*50*64 1*2*2 

6 Dropout 1*62*50*64 2*1*2 

 

It is noteworthy that the transformation of 2D EEG into 3D EEG is accomplished using a sliding window, a 

technique that preserves the temporal information of EEG signals to the maximum extent. By amalgamating 

the spatio-temporal feature extraction capabilities of 3D Convolutional Neural Networks (3DCNN) with the 

attention mechanism, the 3DCANN method adeptly enhances the comprehensiveness of EEG features. 

Furthermore, it effectively captures and reflects the intricate relationships between different channels and 

emotional states. This approach leverages the synergistic benefits of both 3DCNN and the attention 

mechanism, contributing to an optimized representation of EEG data that encapsulates both spatial and 

temporal dimensions for improved emotion recognition. In the comparison with state-of-the-art solutions, the 

performance of the proposed 3DCANN-SSTANN method for valence and arousal classification on wide-band 

EEG data from the DEAP dataset is evaluated against several contemporary approaches, including DCCA 

[24], ECLGCNN [25], DGCNN [26], CVCNN [27], CRAM [28], ACRNN [29], and S-EEGNet [30]. DCCA 

computes Differential Entropy (DE) features across four frequency bands, followed by the extraction of 

representations for two modalities through multiple stacked layers of nonlinear transformations. ECLGCNN 

integrates graph convolutional neural networks with Long Short-Term Memory (LSTM) units, employing DE 

of windowed EEG data as input. DGCNN1 computes DE features and employs a 2400-feature vector as the 

input for graph CNN processing. CVCNN combines raw EEG and normalized EEG data with Power Spectral 

Density (PSD) features. CRAM extracts spatio-temporal information and attentive temporal dynamics in a 

cascaded format, utilizing a CNN layer with a fixed kernel and filter size. ACRNN utilizes an attention 

technique to assign different weights to each EEG channel, followed by CNN processing for spatial feature 

extraction. SEEGNet applies Hilbert–Huang transform preprocessing before feeding the data to a separable 

CNN. Casc-CNN-LSTM employs hybrid convolutional recurrent neural networks by transforming 1D EEG 

vector sequences into 2D mesh-like matrices. Table 2 provides a comprehensive comparison of the proposed 

SS4-STANN method on wide-band data against the state-of-the-art methods from recent literature. The 

results, reported with subject-dependent 10-fold cross-validation, underscore the superior performance of the 

proposed approach. In instances where a 4-fold cross-validation was performed by other authors, the proposed 

method continues to exhibit superiority. 

TABLE 2 COMPARISON OF THE PROPOSED 3DCANN-STANN METHOD WITH RECENT STATE-

OF-THE-ART SOLUTION FOR VALENCE AND AROUSAL CLASSIFICATION 

Method Valence (%) Arousal 

(%) 

S-EEGNet [30] 89.9 % 88.3 % 

ACRNN [29] 89.9 % 88.3 % 

CVCNN [27]  88.8 % 86.9 % 

DGCNN [26] 92.5 % 93.5 % 

ECLGCNN [23] 90.5 % 90.6 % 

DCCA [24] 84.3 % 85.6 % 

Proposed 

method [Hybrid 

STANN-

3DCANN] 

96.4 %  97.5 % 
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Evaluating Transfer Learning Performance To show that the learned representations based on 3DCANN-

STANN have the generality to be applied in similar tasks that have limited labeled data, we perform TL in 

cross-dataset TL. To make a fair comparison among the different amounts of calibration data, we set 10% of 

the target data samples as a test set, and the calibration data is selected among the rest 90% of the data. 

 

Fig 3: Custom Combination Chart showing comparative analysis 

For the cross-dataset Transfer Learning (TL), our proposed model is initially trained on the entire DEAP 

dataset, and subsequently fine-tuned on new EEG emotion recognition datasets that were collected with 

different stimuli. Specifically, we choose to apply TL on the publicly available DREAMER dataset and the 

Emotional English Word dataset (EEWD). To ensure consistency in dataset characteristics, including EEG 

electrodes, frequency bands of interest, and the sliding window for segmentation, we adopt the following 

settings. We select fifteen common electrodes that are present across all datasets, namely AF3, F7, F3, FC5, 

T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The same data-slicing process is applied to the DREAMER 

dataset. Given that the trial length in DREAMER varies from trial to trial, we opt to select the last 60 seconds 

of each trial and segment it into 1-second data samples. This ensures uniformity in the data representation 

across datasets, facilitating the effective transfer of learned features from the source (DEAP) to the target 

datasets (DREAMER and EEWD). 

To assess the transfer learning capability of models initially trained with EEG responses to video clips when 

applied to EEG signals elicited by written words, we focus on the Emotional English Word Dataset (EEWD). 

In this evaluation, we specifically address a binary valence classification scenario, as all the words in the 

EEWD experiment are selected from the high arousal group. For this binary valence classification, we 

designate trials with rating values lower or equal to 3 as indicative of negative valence, while trials 

corresponding to rating values higher or equal to 7 are considered as representing positive valence. This 

classification scheme allows us to effectively distinguish between negative and positive valence categories in 

the context of the EEWD dataset. 

TABLE 3 TL RESULTS FOR DIFFERENT SCHEMES ON VALENCE AND AROUSAL 

CLASSIFICATION OF DREAMER USING THE PROPOSED 3DCANN-STANN MODEL (DEAP → 

DREAMER→SEED)  

Amount of calibration 

data (N) 

Valence Arousal 

1 trial per class 64.0 % 64.9 % 

10% of data samples 75.0 % 81.0 % 

20% of data samples 82.8 % 83.4 % 

90% of data samples 83.5 % 87.3 % 
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Fig. 4. Surface map of representative samples in the last dense layer ahead of the classification 

SoftMax layer, visualized using t-SNE. 

To validate the efficacy of the proposed model and demonstrate the impact of Transfer Learning (TL) in 

segregating components related to each class, we randomly select EEG samples from one subject in the 

DREAMER dataset and visualize them using t-distributed Stochastic Neighbor Embedding (t-SNE) (Figure 

4). The scatter plot in Figure 4 depicts the samples in the last dense layer before the classification SoftMax 

layer without TL and fine-tuning. Subsequently, the figure illustrates the outcomes after applying TL and fine-

tuning. The initial representations before fine-tuning reveal a more mixed configuration of samples across 

different classes. However, with the integration of TL and fine-tuning, the representations become more 

distinct and separable, emphasizing the effectiveness of TL in enhancing the model's ability to differentiate 

components associated with each class. This visual analysis provides insight into the improved feature 

separation achieved through the proposed TL approach. 

V. CONCLUSION 

In this study, a novel deep-learning architecture for subject-dependent EEG-based emotion classification tasks 

was proposed. The 3DCANN-STANN involves a hybrid structure with parallel Spatio-Temporal Encoding 

(STE) and Recurrent Attention Network (RAN) blocks, complemented by an attention mechanism. In this 

study, an EEG research framework based on the three-dimensional convolution attention neural network 

(3DCANN) is presented, demonstrating its effective optimization for emotion recognition performance. This 

architecture adeptly captures both spatial and temporal information inherent in multi-channel EEG data, 

concurrently ensuring graph smoothness in the spatial domain through graph signal processing. The proposed 

approach demonstrated superior performance compared to state-of-the-art solutions, achieving classification 

accuracies exceeding 97.0% for valence, arousal, and dominance on the DEAP dataset. The exploration of 

critical frequency bands and regions further validated the efficacy of the proposed method. The 3DCANN 

method comprises a feature extraction component using 3D convolutional neural networks (3DCNN) and a 

channel attention weight learning module. Firstly, the 3D convolution in the 3DCNN module not only 

calculates features in the spatial dimension but also extracts dynamic information in the time domain, 

effectively capturing complex features in EEG data and demonstrating strong performance in biosignal 

recognition tasks. The incorporation of 3D max-pooling significantly reduces the dimension of the feature 

map, preventing overfitting. Secondly, to reduce feature redundancy and investigate the relationship between 

EEG channels and emotional states, the attention mechanism (AM) block is employed to learn the channel 

attention weight matrix. The attention weight distribution of 65 electrodes is obtained through the SoftMax 

activation function, providing insights into the connection between different brain regions and emotions. 

Additionally, the applicability of the learned representations across different EEG emotion recognition tasks 

was showcased, demonstrating cross-modal transferability potential. The model exhibited robust performance 

with both similar and different stimulus modalities, emphasizing the generalization capabilities of the trained 

architecture. Finally, based on the algorithm's evaluation results, 3DCANN optimizes the characteristic 

information of EEG signals and leverages hidden spatio-temporal characteristics to achieve optimal 

performance in emotion recognition tasks. For future research, investigations into the impact of integrating 
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different modalities alongside EEG in similar problem domains are planned. Furthermore, the aim is to extend 

the spatio-temporal feature learning concepts presented here to address challenges involving other modalities 

of physiological data, such as functional MRI (fMRI) or magnetoencephalography (MEG). This expansion 

could contribute to a more comprehensive understanding of emotional states across various 

neurophysiological domains. 
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