The Number Of $\mathbf{I}^{\text {th }}$ Smallest Parts Of R-Mi $\mathrm{i}_{\text {i }}$ Partitions Of \mathbf{N}

K. Janakamma
PG Department of Mathematics
S.K. Arts \& H. S. K. Science Institute, Hubli-580031
Karnataka, India
Abstract:
In this paper, we derive the generating functions for the number of $\mathbf{i}^{\text {th }}$ smallest parts ofr-MI ${ }_{i}$ partitions of n. We obtained results for even and odd partitions.
Mathematics Subject Classification 2020: 11P81.

Keywords: M1 partition; M2 partition; r-partition;over partitions; generating function.

1. Introduction

Ahlgren, Bnringmann and lovejoy [1] defined M2spt(n) to be the number of smallest parts in the partitions of n without repeating the odd numbers and smallest part even. Hanumareddy defined [3] ith smallest part and derived the relation between $\mathrm{i}^{\text {th }}$ smallest parts and $\mathrm{i}^{\text {th }}$ greatest parts of partitions and over partitions of n in general form. In this paper derivation of generating functions for the number of $i^{\text {th }}$ smallest parts of $r-\mathrm{MI}_{i}$ partitons of n. For more details on partitions see [2,4,5,6,7].

We first obtain a formula for the generating function of r -partitions of n whose $\mathrm{i}^{\text {th }}$ smallest part is the first part.

Definition and notations:

- A $\quad \mathrm{r}-\mathrm{j}^{\text {th }}$ partition over of n whose th $\mathrm{i}^{\text {th }}$ smallest parts are of the form $\mathrm{a}^{\mathrm{k}-1}$ is denoted by $\mathrm{r}^{\mathrm{j}} \mathrm{j}^{\text {th }}$ partition.
- A M1 partition of n is a partition with unrepeated even number and smallest part odd number.
- A M2 partition of n is a partition with unrepeated odd number and with even smallest parts.
- A $\mathrm{M} 1_{\mathrm{i}}$ partition of n is a partition with unrepeated odd numbers and $\mathrm{i}^{\text {th }}$ smallest part even.
- A M2 partition of n is one with unrepeated odd numbers and $i^{\text {th }}$ smallest part even. As usual $\mathrm{M} 2_{\mathrm{i}} \xi(\mathrm{n})$ stands for the set of such partitions and $\mathrm{M} 2_{\mathrm{i}} \mathrm{p}(\mathrm{n})$, for the cardinality of this set.
- $A M 1_{i} \xi(n)$ stand for the set of $M 1_{i}$ partitions and $M 1_{i} p(n)$ for the cardinality of this set.

For r-partitions, the corresponding $\mathrm{MJ}_{\mathrm{i}} \xi_{\mathrm{r}}(\mathrm{n}), \mathrm{MJ}_{\mathrm{i}} \mathrm{p}_{\mathrm{r}}(\mathrm{n})$ can be defined similarly for $\mathrm{J}=1$ and $\mathrm{J}=2$.

If $\mathrm{J} \in\{1,2\}, \mathrm{MJ}_{\mathrm{i}} \mathrm{spt}_{\mathrm{j}}(\mathrm{n})$ denotes the number of j^{th} smallest parts including repetitions in all MJ_{i} partitions of n and sum $\mathrm{MJ}_{\mathrm{i}} \mathrm{spt}_{\mathrm{j}}(\mathrm{n})$ denotes the sum of the $\mathrm{j}^{\text {th }}$ smallest parts.

If $1 \leq r \leq n$ and $I \in\{1,2\}$ write $f_{r, s}(I, N)$ for the number of $r-M I$ partitions of n with least part s.

Let us write $r-\xi_{e}(n)$ for the set of all r-partitions of n with unrepeated even numbers as parts and $p_{r, e}(n)$ for the cardinality of this set. Similarly let $r-\xi_{0}(n)$ stand for the set of all r-partitions of n with unrepeated odd numbers as parts and $\mathrm{p}_{\mathrm{r}, \mathrm{o}}(\mathrm{n})$ for the cardinality of this set. Also, write $\mathrm{r}-\operatorname{spt} \xi_{\mathrm{e}}(\mathrm{n})$ for the set of all r-partitions of n with smallest part even and $r-s p t \xi_{0}(n)$ for that of all r-partitions of n with smallest part odd. Then

$$
\begin{aligned}
& r-M 2 \xi(n)=r-M 2 \xi_{0}(n) \cap r-s p t \xi_{0}(n) \\
& \text { and } r-M 1 \xi(n)=r-M 2 \xi_{e}(n) \cap r-\operatorname{spt} \xi_{e}(n)
\end{aligned}
$$

Examples

(i) $\quad(7,5,4,4,3,2,2)$ is $7-\mathrm{M} 2$ partition of 27
this is $7-\mathrm{M} 2_{3}$, partition but not $7-\mathrm{M} 2_{4}$ partition nor $7-\mathrm{M} 2_{5}$ partition.
(ii) $(6,5,5,4,3,3)$ is $6-\mathrm{M} 1$ partition, which is also $6-\mathrm{M} 1_{\mathrm{i}}$, partition for $\mathrm{i}=1$ and 3 but not for $\mathrm{i}=2$ and 4 .

The sets $\mathrm{r}-\operatorname{MI} \xi(\mathrm{n}), \mathrm{I}=1,2$:

2. Main Results

Theorem 2.1 If $k \in N$ and $1 \leq k \leq\left[\frac{n}{2 r}\right]$ then the number $f_{r, 2}(2 k, n)$ of $r-M 2$ partitions of n with least part 2 k is

$$
\mathrm{f}_{\mathrm{r}, 2}(2 \mathrm{k}, \mathrm{n})=\mathrm{p}_{\mathrm{r}-1,0}(\mathrm{n}-2 \mathrm{kr})
$$

Proof. let $\mathrm{n}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{r}}\right)$ be a $\mathrm{r}-\mathrm{M} 2$ partition of n with least part 2 k i.e, $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r-1}, \lambda_{2 k}\right)$

By reducing each part by $2 \mathrm{k}-2$ we get
$\mathrm{n}-(2 \mathrm{k}-2) \mathrm{r}=\left(\lambda_{1}-(2 \mathrm{k}-2), \lambda_{2}-(2 \mathrm{k}-2), \ldots, \lambda_{\mathrm{r}-1}-(2 \mathrm{k}-2), 2\right)$ and
$\mathrm{n}-(2 \mathrm{k}-2) \mathrm{r}-2=\left(\lambda_{1}-(2 \mathrm{k}-2), \lambda_{2}-(2 \mathrm{k}-2), \ldots, \lambda_{\mathrm{r}-1}-(2 \mathrm{k}-2)\right)$ is $(\mathrm{r}-1)-\mathrm{M} 2$ partition of $\mathrm{n}-$ $(2 \mathrm{k}-2) \mathrm{r}-2$ with unrepeated odd parts hence, $\in(\mathrm{r}-1) \xi_{0}(\mathrm{n})$

In this way we get a $(r-1)-M 2$ partition of $n-(2 k-2) r-2$ froma $(r-1)-M 2$ partition of n.
coversely let $\left(\mu_{1}, \mu_{2}, \ldots \mu_{r-1}\right) \in(r-1) \xi_{0}(\mathrm{n}-2 \mathrm{kr})$

Then, $\left(\mu_{1}+2 \mathrm{k}, \mu_{2}+2 \mathrm{k}, \ldots \mu_{\mathrm{r}-1}+2 \mathrm{k}, 2 \mathrm{k}\right) \in \mathrm{r}-\mathrm{M} 2 \xi(\mathrm{n})$

The correspondence

$$
\mathrm{n}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{r}-1}, \lambda_{2 \mathrm{k}}\right) \Leftarrow\left(\lambda_{1}-2 \mathrm{k}, \ldots, \lambda_{\mathrm{r}-1}-2 \mathrm{k}\right)
$$

is one - one and onto from $\mathrm{r}-\mathrm{M} 2 \xi(\mathrm{n})$ to $(\mathrm{r}-1) \xi_{0}(\mathrm{n}-2 \mathrm{kr})$

Hence $f_{r, 2}(2 k, n)=p_{r-1,0}(n-2 k r)$.

In a similar way we can prove Theorem 2.2.

Theorem 2.2. If $k \in N$ and $1 \leq k \leq\left[\frac{n}{2 r-1}\right]$ then the number $f_{r, 1}(2 k-1, n)$ of n with least part $2 k-1$ is $\mathrm{f}_{\mathrm{r}, 1}(2 \mathrm{k}-1, \mathrm{n})=\mathrm{p}_{\mathrm{r}, \mathrm{e}}(\mathrm{n}-(2 \mathrm{k}-1) \mathrm{r})$.

Proof. The correspondance

$$
\left(\lambda_{1}, \ldots \lambda_{\mathrm{r}-1}, \lambda_{\mathrm{r}}=2 \mathrm{k}-1\right) \Leftarrow\left(\lambda_{1}-(2 \mathrm{k}-1), \ldots \lambda_{\mathrm{r}-1}-(2 \mathrm{k}-1)\right)
$$

can easily be verified as above, to be one-one and onto between $r-M 1 \xi(n)$ and $(r-1)-\xi_{e}(n-(2 k-$ 1)r).

The following theorem is well known. However, we present the proof for completeness.

Theorem 2.3.The generating function for the number of divisors of n is $\sum_{r=1}^{\infty} \frac{q^{r}}{1-q^{r}}$.

Proof. Since $\frac{\mathrm{n}}{\mathrm{r}}=\mathrm{t} \Leftarrow \mathrm{n}=\mathrm{tr}, \mathrm{d}(\mathrm{n})=$ the number of partition of n with equal parts, so the generating function is (ref: mathword.wolfform.com)

$$
\begin{aligned}
& =\sum_{r=1}^{\infty} \sum_{t=1}^{\infty} q^{t r} \\
& =\sum_{r=1}^{\infty}\left[q^{r}+q^{2 r}+q^{3 r}+\cdots\right] \\
& =\sum_{r=1}^{\infty}\left[q^{r}\left(1+q^{r}+q^{2 r}+q^{3 r}+\cdots\right)\right] \\
& =\sum_{r=1}^{\infty}\left[\frac{q^{r}}{1-q^{r}}\right]
\end{aligned}
$$

Corollary 2.4. If $\mathrm{k} \in \mathrm{N}, 1 \leq \mathrm{k} \leq \mathrm{n}$ and $\frac{\mathrm{n}-\mathrm{a}}{\mathrm{r}}=1$, then $\sum \mathrm{q}^{\mathrm{n}}=\sum \mathrm{q}^{\mathrm{a}+\mathrm{tr}}$
Proof. Since $\frac{\mathrm{n}-\mathrm{a}}{\mathrm{r}}=\mathrm{n}-\mathrm{a}=\operatorname{tr}=\mathrm{a}+\operatorname{tr}$
Therefore $\sum \mathrm{q}^{\mathrm{n}}=\sum \mathrm{q}^{\mathrm{a}+\mathrm{tr}}$.

Proposition 2.5.There is a one one correspondence between r-partition of n and r-partition of $n+r$ with smallest part ≥ 2. Under this correspondence $r-M 2$, partition of n correspond to $r-M 1$, partition of $n+r$.

Proof. Associate with each r-partition $\left(\lambda_{1}, \ldots \lambda_{r}\right)$ of n the r-partition ($\mu_{1}, \ldots \mu_{r}$) where $\mu_{i}=\lambda_{i}+1 \forall i$. This correspondence is one one and onto between the sets mentioned. Since λ_{i} is even(odd) iff $\lambda_{i}+1$ is odd(even) this stands $r-M 2$ partions onto $r-M 1$ partitions and $r-M 2_{i}$ partitions onto $r-M_{i}$ partitions and vice-versa.

Theorem:2.6:Given $\mathrm{n}, r \leq n$ and $\alpha_{1}, \alpha_{2}, \ldots . \alpha_{l}$ there is a one-one correspondence between decreasing 1-tuples $\left(\mu_{1}, \ldots . \mu_{l}\right)$ such that $\alpha_{1} \mu_{1}+, \ldots . .+\alpha_{l} \mu_{l}=n$ and $l-$ tuples
$\left(a_{1}, \ldots . \mathrm{a}_{l}\right)$ such that $\mu_{j-1}=\mu_{j}+a_{t-j}$ and $\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}} \ldots \mu_{l}^{\alpha_{1}}\right)$ can be reduced to ($\left.a_{1}^{\alpha_{1}}\right)$ by successive subtraction method.

Given $\mu_{1}>\mu_{2}>\ldots>\mu_{l}$ write $\mu_{j}=\mu_{j+1}+a_{j+1}$ for $j<l$ and $a_{l}=\mu_{l}$
apply successive subtraction method to $\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}} \ldots \mu_{l}^{\alpha_{l}}\right)$. Subtract μ_{l} from each part. Since zerocannot be a part we get r_{1} partition $\left(\mu_{1}^{(1) \alpha_{1}}, \ldots . \mu_{l-1}{ }^{(1) \alpha_{l-1}}\right)$ of n_{1} where
$r_{1}=r-\alpha_{1}, n_{1}=n-\alpha_{l} \mu_{l}$ and $\mu_{j}^{(1)}=\mu_{j}-\mu_{l}$. Subtract $\mu_{l-1}^{(1)}$ from each part of this partition and get r_{2} partition
$n_{2}=\left(\mu_{1}^{(2) \alpha_{1}}, \ldots \ldots . \mu_{l-2}^{(2) \alpha_{l-2}}\right)$ where
$\mu_{j}^{2}=\mu_{j}^{(1)}-\mu_{j+1}^{(1)}=\mu_{j}-\mu_{j+1} \forall j$,
$r_{2}=r_{1}-\alpha_{2}=r-\left(\alpha_{1}+\alpha_{2}\right)$ and $n_{2}=n_{1}-\alpha_{l-1} \mu_{l-1}^{(1)}=n_{1}-\alpha_{l-1}\left(\mu_{l-1}-\mu_{l}\right)$.
Repeating this process we get a finite sequence of $(l-k)$ partitions
$\left(\mu_{1}^{(\mathrm{k}) \alpha_{1}}, \ldots \ldots . \mu_{l}^{(\mathrm{k}) \alpha_{l-2}} l\right.$. $)$ where
$r_{k}=r_{k-1}-\alpha_{k}=r-\left(\alpha_{1}+\ldots .+\alpha_{k}\right)$ and $n_{k}=n_{k-1}-\alpha_{l-k+1} \mu_{l-k+1}^{(\mathrm{k}-1)}$ and $\mu_{j}^{(k)}=\mu_{j}^{(k-1)}-\mu_{l-k+1}^{(k-1)}$
when $k=l-1$ we get $r_{l-1}=\left(\alpha_{1}\right)$ partition of n. $n_{l-1}=\left(\mu_{l}^{(L-I) \alpha_{1}}\right)$ where
$n_{l-1}=n_{l-2}-\alpha_{2} \mu_{2}^{(l-2)}=\mu_{1}-\mu_{2}$.
Thus the given r -partition of n reduces to the partition
$\left(a^{\alpha_{1}}\right)$. write $a_{1}=\mu_{1}-\mu_{2}, a_{2}=\mu_{2}-\mu_{3} \ldots \ldots . . a_{l-1}=\mu_{l-1}-\mu_{l}$ and $a_{1}=\mu_{l}$
$a_{1}+a_{2}+\ldots \ldots+a_{l}=\mu_{l}$.

$$
\left(a_{1}, a_{2}, \ldots \ldots . a_{l}\right) \in N^{l} \text { and } \sum \alpha_{i}\left(a_{l}+a_{l-1}+\ldots \ldots a_{l-i}\right)=n
$$

Conversely assume that $\mu_{l}=a_{l}$ and $\mu_{l-j}=\mu_{l-j+1}+a_{l-j}=a_{l-j}+a_{l-(j-1)}+\ldots \ldots a_{l}$ write $r_{0}=r=\sum \alpha_{i}$

$$
n_{0}=n, \mu_{j}^{0}=\mu_{i}, \mu_{k}^{j}=\mu_{j}^{(k-1)}-\mu_{l-k+1}^{(n-1)} 1 \leq j \leq k-1, n_{j}=n_{j-1}-\alpha_{l-j+1} \mu_{l-j+1}^{(j-1)}
$$

We apply the successive subtraction method for $\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}} \ldots \mu_{l}^{\alpha_{1}}\right)$ using the above notation and finally get the α_{1} partition $\left(\left(\mu_{1}-\mu_{2}\right)^{\alpha_{1}}\right)=\left(a_{1}^{\alpha_{1}}\right)$.
2.7. Corollary: The number of $r-M 2$ partitions of n with $i^{\text {th }}$ smallest part coincidingwith the first is equal to the number of α-partitions of m with equal parts α being the frequency of the smallest part of the r-partition of n .

2.8. Example:

List of $6 I_{3}:$ partitions of $20:(34)$

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}=6\right)
$$

$\mu_{1}^{\alpha_{1}}$	$\mu_{2}^{\alpha_{2}}$	$\mu_{3}^{\alpha_{3}}$												
14	2	1^{4}	11^{1}	5^{1}	1^{4}	7^{2}	3^{1}	1^{3}	8^{1}	4^{1}	2^{4}	9^{1}	3^{1}	2^{4}
6^{2}	4	1^{4}	9^{1}	7^{1}	1^{4}	9^{1}	3^{3}	1^{2}	8^{1}	3^{2}	2^{3}	7^{1}	5^{1}	2^{4}
10	6	1^{4}	13^{1}	2^{2}	1^{3}	5^{2}	4^{2}	1^{2}	6^{1}	4^{2}	2^{3}	5^{2}	4^{1}	2^{3}
6^{2}	3^{2}	1^{2}	11^{1}	3^{2}	1^{3}	5^{3}	3^{1}	1^{2}	4^{3}	3^{2}	2^{1}	7^{1}	3^{3}	2^{2}
10^{1}	2^{3}	1^{2}	9^{1}	4^{2}	1^{3}	11	2^{4}	1^{1}	5^{2}	3^{3}	1^{1}	5^{2}	3^{2}	2^{2}
4^{4}	3^{1}	1^{1}	7^{1}	5^{2}	1^{3}	7	3^{4}	1^{1}	13	3^{1}	1^{4}	7^{2}	4^{1}	2^{1}
5^{3}	4^{1}	1^{1}	7^{2}	2^{2}	1^{2}	5^{3}	2^{2}	1^{1}	6	4^{3}	1^{2}			

List of $6-M 1_{3}$ partitions: (12)

List of $6-M 2_{3}$ partitions:(3)

even	even	even	even	odd	odd	even	even	odd	even odd even
6^{1}	4^{2}	2^{3}	4^{4}	3^{1}	1^{1}		nil	nil	
8^{1}	4^{1}	2^{4}							

number of 6 partitions that are not $6-M I_{3}$ partitions; $34-15=19$

The remaining 19 partitions are listed below:
List of remaining $6 I_{3}:$ partitions of 20 :

$\mu_{1}^{\alpha_{1}}$	$\mu_{2}^{\alpha_{2}}$	$\mu_{3}^{\alpha_{3}}$												
14	2	1^{4}										9^{1}	3^{1}	2^{4}
6^{2}	4	1^{4}							8^{1}	3^{2}	2^{3}	7^{1}	5^{1}	2^{4}
10	6	1^{4}	13^{1}	2^{2}	1^{3}	5^{2}	4^{2}	1^{2}				5^{2}	4^{1}	2^{3}
6^{2}	3^{2}	1^{2}							4^{3}	3^{2}	2^{1}	7^{1}	3^{3}	2^{2}
10^{1}	2^{3}	1^{2}	9^{1}	4^{2}	1^{3}	11	2^{4}	1^{1}				5^{2}	3^{2}	2^{2}
			7^{2}	2^{2}	1^{2}	5^{3}	2^{2}	1^{1}	6	4^{3}	1^{2}			

References

[1] Ahlgren S, Bringmann K and Lovejoy J, 1-adic properties of smallest parts functions, Adv. Math., 228(1) (2011), 629-645.
[2] Andrews G. E, The theory of partitions, Vol 2, encycl. Of Math. And Appl. Addison -Wesley, Reading. (Reprinted: Cambridge University Press, 1998).
[3] Hanuma reddy K. A study of r-partitions, thesis submitted to Acharya Nagarjuna University for award of Ph. D in Mathematics.
[4] Hanuma reddy K, Manjushree A, The number of smallest parts of over partition of n, Internation research Journal of Mathematics, Engineering and IT, 2(3) (2015), 23-31.
[5] Ramanujan S, Some properties of $\mathrm{p}(\mathrm{n})$; the number of partitions of n, Proc. Cambridge Philos. Soc., 19 (1919), 207-2010.
[6] RamaBhadra Sarma I, Hanuma Reddy K and S, Rao Gunakala, relation between smallest and greatest parts of over partitions of n, International Journal of Mathematical research, 3(3) (2010), 195-205.
[7] Sylvester J. J, On the partition of numbers, quaterly Joournal of Mathematics 1 (1857), 141-152.

