10'

ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

The Number Of Ith Smallest Parts Of R-Mi_i Partitions Of N

K. Janakamma

PG Department of Mathematics

S.K. Arts & H. S. K. Science Institute, Hubli-580031

Karnataka, India

Abstract:

In this paper, we derive the generating functions for the number of **i**th smallest parts of **r**-**MI** partitions of n. We obtained results for even and odd partitions.

Mathematics Subject Classification 2020: 11P81.

Keywords: M1 partition; M2 partition; r-partition; over partitions; generating function.

1. Introduction

Ahlgren, Bnringmann and love joy [1] defined M2spt(n) to be the number of smallest parts in the partitions of n without repeating the odd numbers and smallest part even. Hanumareddy defined [3] ith smallest part and derived the relation between ithsmallest parts and ith greatest parts of partitions and over partitions of n in general form. In this paper derivation of generating functions for the number of i^{th} smallest parts of r-MI_i partitons of n. For more details on partitions see [2,4,5,6,7].

We first obtain a formula for the generating function of r-partitions of n whose ith smallest part is the first part.

Definition and notations:

- A $r j^{th}$ partition over of n whose th ith smallest parts are of the form a^{k-1} is denoted by $r j^{th}$ partition.
 - A M1 partition of n is a partition with unrepeated even number and smallest part odd number.
 - A M2 partition of n is a partition with unrepeated odd number and with even smallest parts.
 - A $M1_i$ partition of n is a partition with unrepeated odd numbers and ith smallest part even.
 - A M2_i partition of n is one with unrepeated odd numbers and ith smallest part even. As usual M2_iξ(n) stands for the set of such partitions and M2_ip(n), for the cardinality of this set.
 - A $M1_i\xi(n)$ stand for the set of $M1_i$ partitions and $M1_ip(n)$ for the cardinality of this set.

For r-partitions, the corresponding $MJ_i\xi_r(n)$, $MJ_ip_r(n)$ can be defined similarly for J = 1 and J = 2.

If $J \in \{1,2\}$, $MJ_i spt_j(n)$ denotes the number of jth smallest parts including repetitions in all MJ_i partitions of n and sum $MJ_i spt_j(n)$ denotes the sum of the jth smallest parts.

If $1 \le r \le n$ and $I \in \{1,2\}$ write $f_{r,s}(I,N)$ for the number of r - MI partitions of n with least part s.

Let us write $r - \xi_e(n)$ for the set of all r-partitions of n with unrepeated even numbers as parts and $p_{r,e}(n)$ for the cardinality of this set. Similarly let $r - \xi_0(n)$ stand for the set of all r-partitions of n with unrepeated odd numbers as parts and $p_{r,o}(n)$ for the cardinality of this set. Also, write $r - spt\xi_e(n)$ for the set of all r-partitions of n with smallest part even and $r - spt\xi_0(n)$ for that of all r-partitions of n with smallest part odd. Then

$$r - M2\xi(n) = r - M2\xi_0(n) \cap r - spt\xi_0(n)$$

and $r - M1\xi(n) = r - M2\xi_0(n) \cap r - spt\xi_0(n)$

Examples

(i) (7,5,4,4,3,2,2) is 7-M2 partition of 27

this is $7 - M2_3$, partition but not $7 - M2_4$ partition nor $7 - M2_5$ partition.

(ii) (6,5,5,4,3,3) is 6-M1 partition, which is also $6 - M1_i$, partition for i = 1 and 3 but not for i = 2 and 4.

The sets $r - MI\xi(n)$, I=1,2:

JCR

2. Main Results

Theorem 2.1 If $k \in N$ and $1 \le k \le \left[\frac{n}{2r}\right]$ then the number $f_{r,2}(2k,n)$ of r - M2 partitions of n with least part 2k is

$$f_{r,2}(2k, n) = p_{r-1,0}(n - 2kr).$$

Proof. let $n = (\lambda_1, \lambda_2, ..., \lambda_r)$ be a r - M2 partition of n with least part 2k i.e, $n = (\lambda_1, \lambda_2, ..., \lambda_{r-1}, \lambda_{2k})$

By reducing each part by 2k - 2 we get

 $n - (2k - 2)r = (\lambda_1 - (2k - 2), \lambda_2 - (2k - 2), ..., \lambda_{r-1} - (2k - 2), 2) \text{ and}$ $n - (2k - 2)r - 2 = (\lambda_1 - (2k - 2), \lambda_2 - (2k - 2), ..., \lambda_{r-1} - (2k - 2)) \text{ is } (r - 1) - M2 \text{ partition of } n - (2k - 2)r - 2 \text{ with unrepeated odd parts hence, } \in (r - 1)\xi_0(n)$

In this way we get a $(r-1) - M^2$ partition of n - (2k - 2)r - 2 from a $(r - 1) - M^2$ partition of n.

coversely let $(\mu_1, \mu_2, ..., \mu_{r-1}) \in (r-1)\xi_0(n-2kr)$

Then, $(\mu_1 + 2k, \mu_2 + 2k, \dots, \mu_{r-1} + 2k, 2k) \in r - M2\xi(n)$

The correspondence

$$\mathbf{n} = (\lambda_1, \lambda_2, \dots, \lambda_{r-1}, \lambda_{2k}) \leftarrow (\lambda_1 - 2k, \dots, \lambda_{r-1} - 2k)$$

is one - one and onto from $r - M2\xi(n)$ to $(r - 1)\xi_0(n - 2kr)$

Hence $f_{r,2}(2k, n) = p_{r-1,0}(n - 2kr)$.

In a similar way we can prove Theorem 2.2.

Theorem 2.2. If $k \in N$ and $1 \le k \le \left[\frac{n}{2r-1}\right]$ then the number $f_{r,1}(2k-1,n)$ of n with least part 2k - 1 is $f_{r,1}(2k-1,n) = p_{r,e}(n-(2k-1)r)$.

Proof. The correspondance

$$(\lambda_1, ... \lambda_{r-1}, \lambda_r = 2k-1) \Leftarrow (\lambda_1 - (2k-1), ... \lambda_{r-1} - (2k-1))$$

can easily be verified as above, to be one-one and onto between $r - M1\xi(n)$ and $(r - 1) - \xi_e(n - (2k - 1)r)$.

The following theorem is well known. However, we present the proof for completeness.

Theorem 2.3. The generating function for the number of divisors of n is $\sum_{r=1}^{\infty} \frac{q^r}{1-q^r}$.

Proof. Since $\frac{n}{r} = t \leftarrow n = tr$, d(n) = the number of partition of n with equal parts, so the generating function is (ref: mathword.wolfform.com)

$$= \sum_{r=1}^{\infty} \sum_{t=1}^{\infty} q^{tr}$$

$$= \sum_{r=1}^{\infty} [q^r + q^{2r} + q^{3r} + \cdots]$$

$$= \sum_{r=1}^{\infty} [q^r(1 + q^r + q^{2r} + q^{3r} + \cdots)]$$

$$= \sum_{r=1}^{\infty} \left[\frac{q^r}{1 - q^r}\right]$$
Corollary 2.4. If $k \in N, 1 \le k \le n$ and $\frac{n-a}{r} = 1$, then $\sum q^n = \sum q^{a+tr}$
Proof. Since $\frac{n-a}{r} = n - a = tr = a + tr$
Therefore $\sum q^n = \sum q^{a+tr}$.

Proposition 2.5. There is a one one correspondence between r-partition of n and r-partition of n+r with smallest part ≥ 2 . Under this correspondence r - M2, partition of n correspond to r - M1, partition of n+r.

Proof. Associate with each r-partition $(\lambda_1, ..., \lambda_r)$ of n the r-partition $(\mu_1, ..., \mu_r)$ where $\mu_i = \lambda_i + 1 \forall i$. This correspondence is one one and onto between the sets mentioned. Since λ_i is even(odd) iff $\lambda_i + 1$ is odd(even) this stands r - M2 partitions onto r - M1 partitions and $r - M2_i$ partitions onto $r - M_i$ partitions and vice-versa.

JCR

Theorem:2.6: Given n, $r \le n$ and $\alpha_1, \alpha_2, \dots, \alpha_l$ there is a one-one correspondence between decreasing 1-tuples (μ_1, \dots, μ_l) such that $\alpha_1, \mu_1 + \dots + \alpha_l, \mu_l = n$ and l - tuples

 $(a_1,...,a_l)$ such that $\mu_{j-1} = \mu_j + a_{l-j}$ and $(\mu_1^{\alpha_1}, \mu_2^{\alpha_2}...,\mu_l^{\alpha_l})$ can be reduced to $(a_1^{\alpha_1})$ by successive subtraction

method.

Given $\mu_1 > \mu_2 > ... > \mu_l$ write $\mu_j = \mu_{j+1} + a_{j+1}$ for j < l and $a_l = \mu_l$

apply successive subtraction method to $(\mu_1^{\alpha_1}, \mu_2^{\alpha_2}, ..., \mu_l^{\alpha_l})$. Subtract μ_l from each part. Since zerocannot be a part we get r_1 partition $(\mu_1^{(1)\alpha_1}, ..., \mu_{l-1}^{(1)\alpha_{l-1}})$ of n_1 where

 $r_1 = r - \alpha_1, n_1 = n - \alpha_l \mu_l$ and $\mu_j^{(1)} = \mu_j - \mu_l$. Subtract $\mu_{l-1}^{(1)}$ from each part of this partition and get r_2 partition $n_1 - (\mu_{l-1}^{(2)\alpha_1} - \mu_{l-1}^{(2)\alpha_{l-2}})$ where

$$\mu_{2}^{2} = (\mu_{1}^{(1)} - \mu_{l+1}^{(1)} = \mu_{j} - \mu_{j+1} \quad \forall j,$$

$$r_{2} = r_{1} - \alpha_{2} = r - (\alpha_{1} + \alpha_{2}) \text{ and } n_{2} = n_{1} - \alpha_{l-1} \mu_{l-1}^{(1)} = n_{1} - \alpha_{l-1} (\mu_{l-1} - \mu_{l}).$$

Repeating this process we get a finite sequence of (l-k) partitions

$$(\mu_{l-1}^{(k)\alpha_{l}}, \dots, \mu_{l-2}^{(k)\alpha_{l-2}})$$
 where

$$r_{k} = r_{k-1} - \alpha_{k} = r - (\alpha_{1} + \dots + \alpha_{k})$$
 and $n_{k} = n_{k-1} - \alpha_{l-k+1} \mu_{l-k+1}^{(k-1)}$ and $\mu_{j}^{(k)} = \mu_{j}^{(k-1)} - \mu_{l-k+1}^{(k-1)}$
when $k = l - 1$ we get $r_{l-1} = (\alpha_{1})$ partition of n . $n_{l-1} = (\mu_{l}^{(L_{-1})\alpha_{1}})$ where
 $n_{l-1} = n_{l-2} - \alpha_{2} \mu_{2}^{(l-2)} = \mu_{1} - \mu_{2}.$

Thus the given r-partition of n reduces to the partition

 (a^{α_1}) . write $a_1 = \mu_1 - \mu_2$, $a_2 = \mu_2 - \mu_3$ $a_{l-1} = \mu_{l-1} - \mu_l$ and $a_1 = \mu_l$ $a_1 + a_2 + \dots + a_l = \mu_l$.

$$(a_1, a_2, \dots, a_l) \in N^l$$
 and $\sum \alpha_i (a_l + a_{l-1} + \dots, a_{l-i}) = n$

Conversely assume that $\mu_l = a_l$ and $\mu_{l-j} = \mu_{l-j+1} + a_{l-j} = a_{l-j} + a_{l-(j-1)} + \dots a_l$ write $r_0 = r = \sum \alpha_i$ $n_0 = n, \mu_j^0 = \mu_i, \mu_k^j = \mu_j^{(k-1)} - \mu_{l-k+1}^{(n-1)}$ $1 \le j \le k - 1, \ n_j = n_{j-1} - \alpha_{l-j+1} \mu_{l-j+1}^{(j-1)}$

We apply the successive subtraction method for $(\mu_1^{\alpha_1}, \mu_2^{\alpha_2}..., \mu_l^{\alpha_l})$ using the above notation and finally get the α_1 partition $((\mu_1 - \mu_2)^{\alpha_1}) = (a_1^{\alpha_1})$.

2.7. Corollary: The number of r - M2 partitions of n with i^{th} smallest part coinciding with the first is equal to the number of $\alpha - partitions$ of m with equal parts α being the frequency of the smallest part of the r-partition of n.

www.ijcrt.org

2.8. Example:

List of $6I_3$: partitions of 20:(34)

 $(\alpha_1+\alpha_2+\alpha_3=6)$

$\mu_1^{\alpha_1}$	$\mu_2^{\alpha_2}$	$\mu_3^{\alpha_3}$												
14	2	1^4	11 ¹	5 ¹	1^4	7^{2}	3 ¹	1^{3}	8 ¹	4^1	2^4	9 ¹	3 ¹	2^4
6 ²	4	1^4	9 ¹	7^1	1^4	9 ¹	3 ³	1^{2}	8 ¹	3 ²	2^{3}	7 ¹	5^1	2^4
10	6	1^4	13 ¹	2^2	1 ³	5 ²	4^{2}	1^{2}	6 ¹	4^{2}	2^{3}	5 ²	4^1	2^3
6 ²	3 ²	1^{2}	11 ¹	3 ²	1 ³	5 ³	3 ¹	1^{2}	4 ³	3 ²	2^1	7 ¹	3 ³	2^2
10 ¹	2^{3}	1^{2}	9 ¹	4^2	1 ³	11	2^4	1^1	5 ²	3 ³	1^1	5 ²	3 ²	2^2
4^4	3 ¹	1^1	7 ¹	5 ²	1 ³	7	3 ⁴	1^1	13	3 ¹	1^4	7^2	4^1	2^1
5 ³	4 ¹	1^1	7^2	2^{2}	1^2	5 ³	2^2	1^1	6	4 ³	1^{2}			

List of $6 - M1_3$ partitions: (12)

odd	even	even	odd	odd	odd	odd	even	odd	odd	odd	even	
7^2	4 ¹	2^{1}	13 ¹	3 ¹	1^{4}	5 ³	4 ¹	1^1		nil		
			11 ¹	5^1	14							
			9 ¹	7^1	1^4							
			11 ¹	3 ²	1^{3}						1	
			7^1	5^2	1^{3}	-						
			7 ²	3 ¹	1^{3}							
			9 ¹	3 ³	1^{2}							
			5 ³	3 ¹	1^{2}							1
			7 ¹	3 ⁴	1^1							C, Y
			5 ²	3 ³	1^1							

List of $6 - M2_3$ partitions: (3)

even	even	even	even	odd	odd	even	even	odd	even	odd	even
6 ¹	4^{2}	2^{3}	14	2 ¹	1 ¹		nil			nil	
8 ¹	4^1	2^4	4	3	1		nıl			nıl	

number of 6 partitions that are not $6 - MI_3$ partitions; 34 - 15 = 19

The remaining 19 partitions are listed below:

$\mu_1^{\alpha_1}$	$\mu_2^{\alpha_2}$	$\mu_3^{\alpha_3}$												
14	2	1^4										9 ¹	3 ¹	2^4
6 ²	4	1^4							8 ¹	3 ²	2^{3}	71	5 ¹	2^4
10	6	1^4	13 ¹	2^2	1^{3}	5 ²	4^2	1^{2}				5 ²	4^1	2 ³
6 ²	3 ²	1^2							4 ³	3 ²	2^1	71	3 ³	2^2
10 ¹	2^{3}	1^{2}	9 ¹	4^{2}	1^{3}	11	2^4	1^1				5^2	3 ²	2^{2}
			7^{2}	2^2	1^{2}	5 ³	2^{2}	1^{1}	6	4 ³	1 ²			

List of remaining $6I_3$: partitions of 20:

References

- [1] Ahlgren S, Bringmann K and Lovejoy J, l-adic properties of smallest parts functions, Adv. Math., 228(1) (2011), 629-645.
- [2] Andrews G. E, The theory of partitions, Vol 2, encycl. Of Math. And Appl. Addison –Wesley, Reading. (Reprinted: Cambridge University Press, 1998).
- [3] Hanuma reddy K. A study of r-partitions, thesis submitted to Acharya Nagarjuna University for award of Ph. D in Mathematics.
- [4] Hanuma reddy K, Manjushree A, The number of smallest parts of over partition of n, Internation research Journal of Mathematics, Engineering and IT, 2(3) (2015), 23-31.
- [5] Ramanujan S, Some properties of p(n); the number of partitions of n, Proc. Cambridge Philos. Soc., 19 (1919), 207-2010.
- [6] RamaBhadra Sarma I, Hanuma Reddy K and S, Rao Gunakala, relation between smallest and greatest parts of over partitions of n, International Journal of Mathematical research, 3(3) (2010), 195-205.
- [7] Sylvester J. J, On the partition of numbers, quaterly Joournal of Mathematics 1 (1857), 141-152.