INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
 An International Dpen Access, Peer-reviewed, Refereed Journal

Volume Between Regular Polyhedron And Inscribed

Sphere

Neelu Chaudhary ${ }^{1}$ \& Megha Rani ${ }^{2}$
${ }^{1}$ Department of Mathematics, SRM University, Delhi NCR, Sonipat

(Haryana)-131029
${ }^{2}$ Department of Mathematics, RKGIT, Ghaziabad (U.P.)-201003

In this paper, the volume between a regular polyhedron and inscribed sphere has been obtained for all the five platonic solids.

Key words: Volume, regular polyhedral, platonic solids and sphere.

Introduction:

A polyhedron with faces of identical regular polygon is called a regular polyhedron. A regular polyhedron has all side lengths equal as well as all angles equal. There are five regular polyhedra, namely; tetrahedron, cube, octahedron, dodecahedron and icosahedrons. The regular polyhedra are also called platonic solids.

A tetrahedron has four faces (equilateral triangles), four vertices and six edges. The four vertices of a tetrahedron are at equal distance from each other. A cube has six faces (identical squares), eight vertices and 12 edges. An octahedron has eight faces (identical triangles), six vertices and 12 edges. A dodecahedron has twelve faces (identical pentagons), twenty vertices
and thirty edges. An icosahedron has twenty faces (equilateral triangles), twelve vertices and thirty edges.

In this paper, the volume between a regular polyhedron and inscribed sphere has been obtained for all the five platonic solids.

Analysis:

The volume between inscribed regular polyhedron and inscribed sphere has been discussed for all the five platonic solids as follows:

Case 1: Volume between a regular tetrahedron and inscribed sphere: This is shown in figure 1 given below:

Let the radius of the sphere be r units and length of circumscribed regular tetrahedron be x units. Then

$$
\begin{equation*}
x=\frac{12}{\sqrt{6}} r . \tag{1}
\end{equation*}
$$

Now volume of sphere is given by

$$
A_{1}=\frac{4}{3} \pi r^{3} \text { units, }
$$

and volume of circumscribed regular tetrahedron is given by

$$
A_{2}=\frac{x^{3}}{6 \sqrt{2}}=\frac{24}{\sqrt{3}} r^{3} \text { units. }
$$

Therefore required volume is given by

$$
\begin{aligned}
A & =A_{2}-A_{1}=\frac{24}{\sqrt{3}} r^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3}(6 \sqrt{3}-\pi) r^{3} \text { units. }
\end{aligned}
$$

Case 2: Volume between a cube and inscribed sphere: This is shown in figure 2 given below:

Figure 2
Let the radius of the sphere be r units and length of circumscribed cube be x units. Then

$$
x=2 r .
$$

Now volume of sphere is given by

$$
A_{1}=\frac{4}{3} \pi r^{3} \text { units, }
$$

and volume of circumscribed cube is given by

$$
A_{2}=x^{3}=8 r^{3} \text { units. }
$$

Therefore required volume is given by

$$
\begin{aligned}
A & =A_{2}-A_{1}=8 r^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3}(24-\pi) r^{3} \text { units. }
\end{aligned}
$$

Case 3: Volume between a regular octahedron and inscribed sphere: This is shown in figure 3 given below:

Figure 3
Let the radius of the sphere be r units and length of circumscribed regular octahedron be x units. Then

$$
\begin{equation*}
x=\sqrt{6} r . \tag{3}
\end{equation*}
$$

Now volume of sphere is given by

$$
A_{1}=\frac{4}{3} \pi r^{3} \text { units. }
$$

and volume of circumscribed octahedron is given by

$$
A_{2}=\frac{\sqrt{2}}{3} x^{3}=4 \sqrt{3} r^{3} \text { units. }
$$

Therefore required volume is given by

$$
\begin{aligned}
A & =A_{2}-A_{1}=4 \sqrt{3} r^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3}(3 \sqrt{3}-\pi) r^{3} \text { units. }
\end{aligned}
$$

Case 4: Volume between a regular dodecahedron and inscribed sphere: This is shown in figure 4 given below:

Figure 4
Let the radius of the sphere be r units and length of circumscribed regular dodecahedron be x units. Then obviously

$$
\begin{equation*}
x=\frac{4 r}{\sqrt{10+\frac{22}{\sqrt{5}}}} \tag{4}
\end{equation*}
$$

Now volume of sphere is given by

$$
A_{1}=\frac{4}{3} \pi r^{3} \text { units, }
$$

and volume of circumscribed dodecahedron is given by

$$
A_{2}=\frac{(15+7 \sqrt{5})}{4} x^{3}=\frac{16(15+7 \sqrt{5})}{\left(10+\frac{22}{\sqrt{5}}\right) \sqrt{10+\frac{22}{\sqrt{5}}}} r^{3} \text { units. }
$$

Therefore the required volume is given by

$$
\begin{aligned}
& A=A_{2}-A_{1}=\frac{16(15+7 \sqrt{5})}{\left(10+\frac{22}{\sqrt{5}}\right) \sqrt{10+\frac{22}{\sqrt{5}}}} r^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3}\left(\frac{12(15+7 \sqrt{5})}{\left(10+\frac{22}{\sqrt{5}}\right) \sqrt{10+\frac{22}{\sqrt{5}}}}-\pi\right) r^{3} \text { units. }
\end{aligned}
$$

Case 5: Volume between a regular icosahedron and inscribed sphere: This is shown in figure 5 given below:

Figure 5
Let the radius of the sphere be r units and length of circumscribed regular icosahedron be x units. Then obviously

$$
\begin{equation*}
x=\sqrt{3}(3-\sqrt{5}) r . \tag{5}
\end{equation*}
$$

Now volume of sphere is given by

$$
A_{1}=\frac{4}{3} \pi r^{3} \text { units, }
$$

and volume of circumscribed icosahedron is given by

$$
A_{2}=\frac{5(3+\sqrt{5})}{12} x^{3}=10 \sqrt{3}(7-3 \sqrt{5}) r^{3} \text { units. }
$$

Therefore required volume is given by

$$
\begin{aligned}
A & =A_{2}-A_{1}=10 \sqrt{3}(7-3 \sqrt{5}) r^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{2}{3}(15 \sqrt{3}(7-3 \sqrt{5})-2 \pi) r^{3} \text { units. }
\end{aligned}
$$

Concluding remarks:

Here the volume between sphere and circumscribed all the five platonic solids have been obtained.

References:

D Noviyanti \& H P Lestari (2020): The study of circumsphere and insphere of a regular polyhedron. Journal of Physics, 1-9.

Mathematical properties of Platonic solids. Polyhedr.com

Sonam Sharma (2020): Area between a circle and inscribed n-star. Sodha Pravaha, Vol. 10(II), 502-506.

