IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

INERTIA OF DISTANCE MATRIX OF SPIDER GRAPH Distance Matrix

Prof. Vinay V. Dukale

Abstract :-

Let *D* denote the distance matrix of a connected graph *G*. The inertia of *D* is the triple of integers $(n_+(D), n_-(D), n_0(D))$, where $n_+(D), n_-(D), n_0(D)$ denote the number of positive, negative and 0 eigenvalues of **D**, respectively. In this paper, we will find the inertia of distance matrix of spider graph which is a extension of wheel graph. [1]

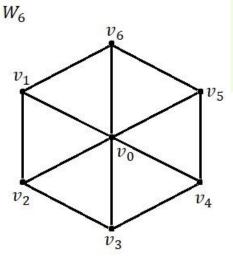
1. Introduction :-

Let *G* be a undirected connected graph with *n* vertices. Let $V(G) = \{v_1, v_2, ..., v_n\}$, then the distance between two vertices v_i and v_j is the length of shortest path between v_i and v_j , denoted by $d_G(v_i, v_j)$. The distance matrix of a graph is defined in a similar way as the adjacency matrix: the entry in the *i*th row, *j*th th column is the distance between the *i*th and *j*th vertex. In this paper we will denote distance matrix of garph *G* by *G* only. The *D* –*eigenvalues* of a graph *G* are the eigenvalues of its distance matrix *G* which form the distance spectrum or *D* – *spectrum* of *G*.

The inertia of a real symmetric matrix *G* is triple (x,y,z) where x,y,z are the number of positive, negative and zero eigenvalues of distance matrix of a graph *G*, respectively. It is denoted by In(G) = (x,y,z).

Definition:- WHEEL GRAPH, *W_n*

The wheel graph on n + 1 vertices W_n is a graph that contains a cycle of length n and vertex v_0 (sometimes called the hub) not in the cycle such that v_0 is connected to every other vertex.



Definition:- SPIIDER GRAPH, *W*_{*n,k*}

The spider graph ($W_{n,k}$) on nk+1 vertices is a graph whose vertices set is $V(W_{n,k}) = \{v_0\} \cup \{v_1^{(j)}, v_2^{(j)}, \dots, v_n^{(j)} | j = 0, 1, \dots, k-1\}$ and edges set is $E(W_{n,k}) = \{v_0v_i^{(0)} | i = 1, 2, \dots, n\} \cup \{v_i^{(j)}v_i^{(j+1)} | i = 1, 2, \dots, n; j = 0, 1, \dots, k-1\} \cup E_r$, where $E_r = \{v_1^{(r)}v_2^{(r)}, v_2^{(r)}v_3^{(r)}, \dots, v_{n-1}^{(r)}v_n^{(r)}, v_n^{(r)}v_1^{(r)}\}$, for $r = 0, 1, \dots, k-1$.

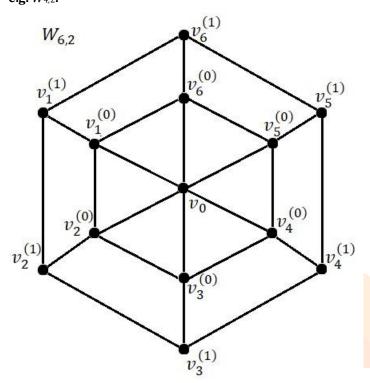
Note:

- **1)** $W_{n,1}$ is wheel on n + 1 vertices.
- 2) *E*_r forms a cycle of length *n*.

2) $|V(W_{n,k})| = nk + 1$ **3)** $|E(W_{n,k})| = 2nk$.

Constuction of Spider Graph:

- 1) Draw a wheel on n + 1 vertices labled by center v_0 and other vertices by $v_1^{(0)}, v_2^{(0)}, \dots, v_n^{(0)}$. 2) Draw a cycle $C_n^{(1)}: v_1^{(1)} v_2^{(1)} \dots v_n^{(1)} v_1^{(1)}$ around wheel.
- 3) Add edges $v_i^{(0)}v_i^{(1)}$, for $i = 1, 2, \dots, n$. 4) Continue above upto k cycles. **e.g.** *W*_{4,2}:



Cauchy's Interlacing Theorem

Hence proved.

Let A be a Hermitian matrix of order n and B be a principal submatrix of A of order $n - 1$.				
If $\lambda_n \le \lambda_{n-1} \le -2 - 1 0 \cdots 0 0 = \lambda_{n-2} \le \cdots \le \lambda_2 \le \lambda_1$ lists the eigenvalues of A and $\mu_n \le \mu_{n-1} \le \mu_{n-2} \le \cdots \le \mu_3$				
$\leq \mu_2$ lists $-1 -2 -1 \cdots 0 0$ the eigenvalues of <i>B</i> . Then $\lambda_n \leq \mu_n \leq \lambda_{n-1} \leq \mu_{n-1} \leq \cdots \leq \mu_3 \leq \lambda_2 \leq \mu_2 \leq \lambda_1$.(?,?)				
$\begin{bmatrix} 0 & -1 & -2 & \cdots & 0 & 0 \end{bmatrix}$ Theorem 1.				
$T_n = 1$				
Let				
$\cdots -2 -1 = 0 = 0 = 0$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Then $T_n = (-1)^n (n+1)$				
Proof :- Expanding the determinant by first row, we get				
-2 - 1 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0				
$\begin{bmatrix} -2 & -1 & 0 & 0 & 0 \\ -1 & -2 & -1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 0 & -2 & -1 & 0 & 0 \end{bmatrix}$				
$\begin{bmatrix} -1 & -2 & -1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -2 & -1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \end{bmatrix}$				
$T_{1} = (-2) \begin{bmatrix} 0 & -1 & -2 & \cdots & 0 & 0 \\ 0 & -1 & -2 & \cdots & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -2 & \cdots & 0 & 0 \\ -(-1) \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 & \cdots & 0 & 0 \\ 0 & -1 & -2 & \cdots & 0 & 0 \end{bmatrix}$				
$r_n = (-2)$ $ \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots $				
$\begin{vmatrix} 0 & 0 & 0 & \cdots & -2 & -1 \end{vmatrix}$ $\begin{vmatrix} 0 & 0 & 0 & \cdots & -2 & -1 \end{vmatrix}$				
$T_{n} = (-2) \begin{vmatrix} -2 & -1 & 0 & \cdots & 0 & 0 \\ -1 & -2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & -2 \end{vmatrix}_{(n-1)\times(n-1)} - (-1) \begin{vmatrix} -1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & -2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & -2 \end{vmatrix}_{(n-1)\times(n-1)}$				
$= (-2)T_{n-1} - T_{n-2}$				
\therefore $T_n + 2T_{n-1} + T_{n-2} = 0$ and $T_1 = -2, T_2 = (-2)(-2) - (-1)(-1) = 3$ We will solve the above recurrence relation.				
Axullary equation is $\alpha^2 + 2\alpha + 1 = 0$				
$\therefore (\alpha + 1)^2 = 0 \Longrightarrow \alpha = -1, -1$				
General solution is $T_n = (c_1 + nc_2)(-1)^n$.				
By using given condition. we get,				
$T_1 = (c_1 + (1)c_2)(-1)^1 = \Rightarrow -2 = (c_1 + c_2)(-1) = \Rightarrow 2 = c_1 + c_2$				
$T_2 = (c_1 + (2)c_2)(-1)^2 \Longrightarrow 3 = (c_1 + 2c_2)(-1)^2 \Longrightarrow 3 = c_1 + 2c_2$				
By solving we get $c_1 = c_2 = 1$				
$\therefore T_n = (1+n)(-1)^n$				

Theorem 2:-

Let $W_{n,k}$ be a Spider Graph , for $n \ge 3$ & $k \ge 1$. Let $D(W_{n,k})$ be the distance matrix of $W_{n,k}$ and $D(W_{n,k})$ be the principal submatrix of $D(W_{n,k})$. Then **1)** $n_0(D^{(W_{n,k})}) = (n-1)(k-1)$ **2)** $n_+(D^{(W_{n,k})}) = 0$ 3) $n_{-}(D^{(W_{n,k})}) = n + k - 1$ **Proof**:-We have distance matrix of Spider graph as follow: 20 L 2L $kL^{?}$ B_1 B_2 ? Lt B_k ? B_1 B_2 $2L_t$ B_{k-1} ?? $D(W_{n,k}) = 2$ $B_k = B_{k-1}$? ? ... ? ••• ? ? B^1 ? $(nk+1) \times (nk+1)$ kL^t Where. $L = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}_{1 \times n}$, L^t is a transpose of L. 2 12 20 1 2 … 1 0 1 … 2 22 2 22 1 0 ……… 2 222 ? $B_1 = @...$ 2 2 ...???? $= D(W_n)$ and $B_r = B_1 + (r-1)J_n$ 0 ••• ? 2 2 1 1220 n×n ?? 221 Where $D(W_n)$ is distance matrix of wheel graph on n + 1 vertices.

To find principal submatrix $D(W_{n,k})$, we subtract 1^{st} row from remaining nk rows 1^{st} column from remaining nk column. Removing 1^{st} row and 1^{st} column we get,

i cinaning m	corumni recino i	ing i ion ana i	column we get,
$\mathbb{P}S_1$	$S_1 \qquad S_1 \qquad \cdots$	S_1	
	SS_2 S_2	S ₂ ?	
21	$S_2 S_3 \cdots$	S ₃ ??	
^ ?? <i>S</i> 1		? ? ?	
$D(W_{n,k}) = 2$	S_2 S_3 S_3		
2		S ^k nk×nk	
?			
?			
	S_1		
	$-2 - 1^{-1} 0$	$\begin{array}{c} \cdots \\ 0 \\ 0 \end{array} - 1^{\boxed{2}}$	
	-2 -1		
	220-1-2	0 0 ?	
	? ? ? 0 0	· 0??	
Where S ₁ =	_ • •	··· -2??	מ
	[?] 0 0		$= D^{(W_n)} = B_1 - 2J_n \text{ and } S_r = S_1 - 2(r-1)J_n = B_1 - 2rJ_n$
	?		= D (Wn) - D1 - 2jn and 5r - 51 - 2(r - 1)jn - D1 - 2ijn
	2 2 0	<n< td=""><td></td></n<>	
Simoo ItI - I	-1		
Since , $L^t L = J_n$			

and $B_r - iL^tL - jL^tL = B_1 + (r-1)J_n - iJ_n - jJ_n = B_1 + (r-i-j-1)J_n$ For $i \le j$, we have r = j - i + 1

 $\therefore B_r - iL^tL - jL^tL = B_1 + (j - i + 1 - i - j - 1)J_n = B_1 - 2iJ_n = S_i$ Similarly, for $i \ge j, B_r - iL^tL - jL^tL = S_i$

To prove : $n_{+}(D^{\wedge}(W_{n,k})) = 0$

It is sufficient to prove that $D^{(W_{n,k})}$ is negative semi-definite.

We will prove it by minor test.

Note: Matrix $A = [a_{ij}]_{n \times n}$ is said to be negative semi-definite if $(-1)^i D_i \ge 0$.

www.ijcrt.org a_{11} $D_i = \begin{vmatrix} a_{21} & a_{22} & \cdots & a_{2i} \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$ $\begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{ii} \end{vmatrix}_{i \times i}$ Where, $det(\widetilde{D(W_{n,k})}) = \begin{vmatrix} S_1 & S_1 & S_1 & \cdots & S_1 \\ S_1 & S_2 & S_2 & \cdots & S_2 \\ S_1 & S_2 & S_3 & \cdots & S_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S_1 & S_2 & S_3 & \cdots & S_k \end{vmatrix}_{nk;}$ Consider By subtracting $k - 1^{th}$ block row from k^{th} block row, $k - 2^{th}$ block row from $k - 1^{th}$ block row, 1st block row from 2nd block row, $det(\widetilde{D(W_{n,k})}) = \begin{vmatrix} S_1 & S_1 & S_1 & \cdots & S_1 \\ 0 & S_2 - S_1 & S_2 - S_1 & \cdots & S_2 - S_1 \\ 0 & 0 & S_3 - S_2 & \cdots & S_3 - S_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & S_k - S_{k-1} \end{vmatrix}_{nk \times nk}$ We get, From the above determinant, we get Minors as follow. $2T_i$ i < n i = n $2222det(S_1)$ i = n + 1i> n + 1 $D_i =$ -2det(S)????0 1) We have $T_i = (-1)^i(i+1)$ & $det(S1) = C_n = 2((-1)^n - 1)$...by Theorem 1 $(-1)^{i}(i+1)$ i < n $2^{??} 2((-1)^n - 1)$ i = n $:: D^{i} = \text{PP} - 0 \ 4((-1)^{n} - 1)ii > n = n + 1 + 1$ (i+1) i < n(-1) $\therefore (-1)^i D_i \ge 0$ $\therefore D(W_{n,k})_{\wedge}$ is negative semi-definite. $\therefore D(W_{n,k})$ has no positive eigen value. $\therefore n_+(D^{\wedge}(W_{n,k})) = 0$ Also we know that "For a symetric matrix, Nullity of matrix = no of zero eigen values." We can see that each row in 2^{nd} block rows is same.

: it contributes n-1 to the nulluty of $D(W_{n,k})$. Similarly, 3^{rd} block row, ..., k^{th} block row contributes n-1 to the nulluty of $\widetilde{D(W_{n,k})}$. Remaining all rows are linearly independent. \therefore Nullity $(D^{(W_{n,k})}) = (n-1)(k-1)$

www.ijcrt.org

JCR

 $(hn_0(D^{(W_{n,k})}) = (n-1)(k-1))$ $\therefore n_{-}(D^{\wedge}(W_{n,k})) = nk - n_{0}(D^{\wedge}(W_{n,k})) - n_{+}(D^{\wedge}(W_{n,k})) = nk - (n-1)(k-1) - 0 = n + k - 1$ Theorem 3:-**For a Spider Graph** $W_{n,k}$, $n \ge 3$ **&** $k \ge 1$ **1)** $n_0(D(W_{n,k})) = (n-1)(k-1)$ **2)** $n_+(D(W_{n,k})) = 1$ **3)** $n_{-}(D(W_{n,k})) = n + k - 1$

Proof :-

Let $D^{(W_{n,k})}$ be the principal submatrix of $D(W_{n,k})$.

We have $D^{(W_{n,k})}$ is negative semidefinite.

 \therefore eigenvalues of $D(W_{n,k})$ are either zero or negative.

We have $n_0(D(W_{n,k})) = (n-1)(k-1)$ and $n_-(D(W_{n,k})) = n+k-1$

Let $\mu_1 = \mu_2 = \dots = \mu_{(n-1)(k-1)} = 0$ and $\mu_{(n-1)(k-1)+1}, \dots, \mu_{nk} < 0$ be the eigenvalues of $D(W_{n,k})$. Let $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{nk+1}$ be the eigenvalues of $D(W_{n,k})$.

 \therefore by Cauchy's interlacing theorem, $\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \dots \ge \lambda_{(n-1)(k-1)} \ge \mu_{(n-1)(k-1)+1} \ge \lambda_{(n-1)(k-1)+1} \ge \dots \ge \mu_{nk} \ge \lambda_{nk+1}$

 $\therefore \lambda_1 \ge 0 \ge \lambda_2 \ge 0 \ge \cdots \ge \lambda_{(n-1)(k-1)} \ge 0 \ge \lambda_{(n-1)(k-1)+1} \ge \mu_{(n-1)(k-1)+1} \ge \cdots \ge \mu_{nk} \ge \lambda_{nk+1}$

Since λ_1 be the only non negative eigenvalue of $D(W_{n,k})$ and $trace\{D(W_{n,k})\} = 0$, therefore $\lambda_1 > 0$ $\therefore n_+(D(W_{n,k})) = 1 \text{ also } n_-(D(W_{n,k})) = n + \frac{k-1}{k-1}$

> $\therefore n_0(D(W_{n,k})) = (nk+1) - (n+k-1) - 1 = (n-1)(k-1)$... TT

References

X. Zhang, C. Song, The distance matrices of some graphs related to wheel graphs, J.Appl. Math. 2013 (2013) [1] 707954, 5 pp.

[2] X. Zhang, C. Godsil, The inertia of distance matrices of some graphs, Discrete Math. 313 (2013) 1655-1664.

D. M. Cvetkovi'c, M. Doob, and H. Sachs, Spectra of Graphs, vol. 87, Academic Press, New York, NY, USA, 1980, [3] Theory and application.