INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

INERTIA OF DISTANCE MATRIX OF SPIDER GRAPH Distance Matrix

Prof. Vinay V. Dukale

Abstract

:- Let D denote the distance matrix of a connected graph G. The inertia of D is the triple of integers $\left(n_{+}(D), n_{-}(D), n_{0}(D)\right)$, where $n_{+}(D), n_{-}(D), n_{0}(D)$ denote the number of positive, negative and 0 eigenvalues of D, respectively. In this paper, we will find the inertia of distance matrix of spider graph which is a extension of wheel graph. [1]

1. Introduction :-

Let G be a undirected connected graph with n vertices. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then the distance between two vertices v_{i} and v_{j} is the length of shortest path between v_{i} and v_{j}, denoted by $d_{G}\left(v_{i}, v_{j}\right)$. The distance matrix of a graph is defined in a similar way as the adjacency matrix: the entry in the $i^{\text {th }}$ row, $j^{\text {th }}$ th column is the distance between the $i^{\text {th }}$ and $j^{\text {th }}$ vertex. In this paper we will denote distance matrix of garph G by G only. The D-eigenvalues of a graph G are the eigenvalues of its distance matrix G which form the distance spectrum or D-spectrum of G.

The inertia of a real symmetric matrix G is triple (x, y, z) where x, y, z are the number of positive, negative and zero eigenvalues of distance matrix of a graph G, respectively. It is denoted by $\operatorname{In}(G)=(x, y, z)$.
Definition:- WHEEL GRAPH, W_{n}
The wheel graph on $n+1$ vertices W_{n} is a graph that contains a cycle of length n and vertex v_{0} (sometimes called the hub) not in the cycle such that v_{0} is connected to every other vertex.

Definition:- SPIIDER GRAPH, $W_{n, k}$

The spider graph $\left(W_{n, k}\right)$ on $n k+1$ vertices is a graph whose vertices set is $V\left(W_{n, k}\right)=\left\{v_{0}\right\} \cup\left\{v_{1}^{(j)}, v_{2}^{(j)}, \cdots, v_{n}^{(j)} \mid j=0,1, \cdots, k-\right.$ $1\}$ and edges set is $E\left(W_{n, k}\right)=\left\{v_{0} v_{i}^{(0)} \mid i=1,2, \cdots, n\right\} \cup\left\{v_{i}^{(j)} v_{i}^{(j+1)} \mid i=1,2, \cdots, n ; j=0,1, \cdots, k-\right.$
1\} $\cup E_{r}$, where $E_{r}=\left\{v_{1}^{(r)} v_{2}^{(r)}, v_{2}^{(r)} v_{3}^{(r)}, \cdots, v_{n-1}^{(r)} v_{n}^{(r)}, v_{n}^{(r)} v_{1}^{(r)}\right\}$, for $r=0,1, \cdots, k-1$.
Note:

1) $W_{n, 1}$ is wheel on $n+1$ vertices.
2) E_{r} forms a cycle of length n.
3) $\left.\left|V\left(W_{n, k}\right)\right|=n k+13\right)\left|E\left(W_{n, k}\right)\right|=2 n k$.

Constuction of Spider Graph:

1) Draw a wheel on $n+1$ vertices lablled by center v_{0} and other vertices by $v_{1}^{(0)}, v_{2}^{(0)}, \cdots, v_{n}^{(0)}$.
2) Draw a cycle $C_{n}^{(1)}: v_{1}^{(1)}-v_{2}^{(1)}-\cdots-v_{n}^{(1)}-v_{1}^{(1)}$ around wheel.
3) Add edges $v_{i}^{(0)} v_{i}^{(1)}$, for $\left.i=1,2, \cdots, n .4\right)$ Continue above upto k cycles.
e.g. $W_{4,2}$:

Cauchy's Interlacing Theorem

Let A be a Hermitian matrix of order n and B be a principal submatrix of A of order $n-1$.
If $\lambda_{n} \leq \lambda_{n-1} \leq$
$\leq \mu_{2}$ lists

Let

$$
T_{n}=\left\lvert\, \begin{gathered}
-2 \\
-1 \\
0 \\
\vdots \\
1)^{n}(n+1)
\end{gathered}\right.
$$

Then $T_{n}=(-1)^{n}(n+1)$
Proof :- Expanding the determinant by first row, we get
$T_{n}=(-2)\left|\begin{array}{cccccc}-2 & -1 & 0 & \cdots & 0 & 0 \\ -1 & -2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & -2\end{array}\right|_{(n-1) \times(n-1)}-(-1)\left|\begin{array}{cccccc}-1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & -2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & -2\end{array}\right|_{(n-1) \times(n-1)}$
$=(-2) T_{n-1}-T_{n-2}$
$\therefore T_{n}+2 T_{n-1}+T_{n-2}=0$ and $T_{1}=-2, T_{2}=(-2)(-2)-(-1)(-1)=3$ We will solve the above recurrence relation.
Axullary equation is $\alpha^{2}+2 \alpha+1=0$
$\therefore(\alpha+1)^{2}=0 \Rightarrow \alpha=-1,-1$
General solution is $T_{n}=\left(c_{1}+n c_{2}\right)(-1)^{n}$.
By using given condition. we get,
$T_{1}=\left(c_{1}+(1) c_{2}\right)(-1)^{1}=\Rightarrow-2=\left(c_{1}+c_{2}\right)(-1)=\Rightarrow 2=c_{1}+c_{2}$
$T_{2}=\left(c_{1}+(2) c_{2}\right)(-1)^{2}=\Rightarrow 3=\left(c_{1}+2 c_{2}\right)(-1)^{2}=\Rightarrow 3=c_{1}+2 c_{2}$
By solving we get $c_{1}=c_{2}=1$
$\therefore T_{n}=(1+n)(-1)^{n}$
Hence proved.

Theorem 2:-

Let $W_{n, k}$ be a Spider Graph, for $n \geq 3 \& k \geq 1$. Let $D\left(W_{n, k}\right)$ be the distance matrix of $W_{n, k}$ and $D\left(W_{n, k}\right)$ be the principal submatrix of $D\left(W_{n, k}\right)$. Then

1) $n_{0}\left(D^{\wedge}\left(W_{n, k}\right)\right)=(n-1)(k-1)$
2) $n_{+}\left(D^{\wedge}\left(W_{n, k}\right)\right)=0$
3) $n-\left(D^{\wedge}\left(W_{n, k}\right)\right)=n+k-1$ Proof :-

We have distance matrix of Spider graph as follow:

Q 0	L	$2 L$		$k L^{\text {T}}$	
	B_{1}	B_{2}		${ }^{*} B_{k}$ [
$0 L_{t}$	${ }^{2} L_{t} B_{2}$	B_{1}	...		
	[2Lt	...		$B_{k-1}{ }^{\text {[] }}$	
[1...	B_{k}	B_{k-1}		[]	
[0]				...回回	
[B^{1}	$(n k+1) \times(n k+1)$
	$k L^{t}$				

Where, ${ }^{L}=\left[\begin{array}{llllll}1 & 1 & 1 & \cdots & 1 & 1\end{array}\right]_{1 \times n}, L^{t}$ is a transpose of L.

To find principal submatrix $\widetilde{D\left(W_{n, k}\right)}$, we subtract $1^{\text {st }}$ row from remaining $n k$ rows $1^{\text {st }}$ column from remaining $n k$ column. Removing $1^{s t}$ row and $1^{\text {st }}$ column we get,

Since, $L^{t} L=J_{n}$
and $B_{r}-i L^{t} L-j L^{L} L=B_{1}+(r-1) J_{n}-i J_{n}-j J_{n}=B_{1}+(r-i-j-1) J_{n}$ For $i \leq j$, we have $r=j-i+1$
$\therefore B_{r}-i L^{t} L-j L^{t} L=B_{1}+(j-i+1-i-j-1) J_{n}=B_{1}-2 i J_{n}=S_{i}$
Similarlly, for $i \geq j, B_{r}-i L^{t} L-j L^{t} L=S_{j}$
To prove : $n_{+}\left(D^{\wedge}\left(W_{n, k}\right)\right)=0$
It is sufficient to prove that $D^{\wedge}\left(W_{n, k}\right)$ is negative semi-definite.
We will prove it by minor test.
Note: Matrix $A=\left[a_{i j}\right]_{n \times n}$ is said to be negative semi-definite if $(-1)^{i} D_{i} \geq 0$.

Where，

$$
D_{i}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 i} \\
a_{21} & a_{22} & \cdots & a_{2 i} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i i}
\end{array}\right|_{i \times i}
$$

$$
\widetilde{\operatorname{det}\left(D\left(W_{n, k}\right)\right)}=\left|\begin{array}{ccccc}
S_{1} & S_{1} & S_{1} & \cdots & S_{1} \\
S_{1} & S_{2} & S_{2} & \cdots & S_{2} \\
S_{1} & S_{2} & S_{3} & \cdots & S_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
S_{1} & S_{2} & S_{3} & \cdots & S_{k}
\end{array}\right|_{n k \times n k}
$$

Consider
By subtracting $k-1^{\text {th }}$ block row from $k^{\text {th }}$ block row，$k-2^{\text {th }}$ block row from $k-1^{\text {th }}$ block row，
$1^{\text {st }}$ block row from $2^{\text {nd }}$ block row，

From the above determinant，we get Minors as follow．

$$
\text { We have } T_{i}=(-1)^{i}(i+1) \& \operatorname{det}(S 1)=C_{n}=2\left((-1)^{n}-1\right)
$$

$$
\begin{array}{cl}
\square^{\square}(-1)^{i}(i+1) & i<n \\
]^{2}\left((-1)^{n}-1\right) & i=n
\end{array}
$$

$\therefore D^{i}=$ 包回 $-04\left((-1)^{n}-1\right) i i>n=n+1+1$

$$
\square_{(i+1)} \quad i<n
$$

（－1）
$\therefore D^{i}=$ 团回回国 $2\left(14\left(10 \quad--((--1) 1)^{n_{n}}\right)\right) \quad i i i>n=n n+1+1$
$\therefore(-1)^{i} D_{i} \geq 0$
$\therefore D\left(W_{n, k}\right)_{\wedge}$ is negative semi－definite．
$\therefore D\left(W_{n, k}\right)$ has no positive eigen value．
$\therefore n_{+}\left(D^{\wedge}\left(W_{n, k}\right)\right)=0$
Also we know that＂For a symetric matrix，Nullity of matrix＝no of zero eigen values．＂We can see that each row in $2^{\text {nd }}$ block rows is same．
\therefore it contributes $n-1$ to the nulluty of $\widetilde{D\left(W_{n, k}\right)}$ ．Similarlly， $3^{\text {rd }}$ block row，$\cdots, k^{\text {th }}$ block row contributes $n-1$ to the nulluty of $\widetilde{D\left(W_{n, k}\right)}$ ．Remaining all rows are linearly independent．$\therefore \operatorname{Nullity}\left(D^{\wedge}\left(W_{n, k}\right)\right)=(n-1)(k-1)$

$$
\begin{aligned}
& 0 T_{i} \\
& D_{i}=\begin{array}{cc}
\text { 回团团 } \operatorname{det}\left(S_{1}\right) & i=n+1 i \\
-2 \operatorname{det}(S & >n+1 \\
\text { ? } 3 \text { ? } 0 & 1)
\end{array}
\end{aligned}
$$

$\therefore n_{0}\left(D^{\wedge}\left(W_{n, k}\right)\right)=(n-1)(k-1)$
$\therefore n_{-}\left(D^{\wedge}\left(W_{n, k}\right)\right)=n k-n_{0}\left(D^{\wedge}\left(W_{n, k}\right)\right)-n_{+}\left(D^{\wedge}\left(W_{n, k}\right)\right)=n k-(n-1)(k-1)-0=n+k-1$
Theorem 3:-
For a Spider Graph $W_{n, k} n \geq 3 \boldsymbol{\&} k \geq 1$

1) $n_{0}\left(D\left(W_{n, k}\right)\right)=(n-1)(k-1)$
2) $n_{+}\left(D\left(W_{n, k}\right)\right)=1$
3) $n-\left(D\left(W_{n, k}\right)\right)=n+k-1$

Proof:-
Let $D^{\wedge}\left(W_{n, k}\right)$ be the principal submatrix of $D\left(W_{n, k}\right)$.
We have $D^{\wedge}\left(W_{n, k}\right)$ is negative semidefinite.
\therefore eigenvalues of $\quad D\left(W_{n, k}\right) \wedge$ are either zero or negative.
We have $n_{0}\left(D\left(W_{n, k}\right)\right)=(n-1)(k-1)$ and $n_{-}\left(\widetilde{D\left(W_{n, k}\right)}\right)=n+k-1$
 of $D\left(W_{n, k}\right)$.
\therefore by Cauchy's interlacing theorem, $\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \lambda_{(n-1)(k-1)} \geq \mu_{(n-1)(k-1)} \geq \lambda_{(n-1)(k-1)+1} \geq \mu_{(n-1)(k-1)+1} \geq \cdots \geq \mu_{n k} \geq \lambda_{n k+1}$
$\therefore \lambda_{1} \geq 0 \geq \lambda_{2} \geq 0 \geq \cdots \geq \lambda_{(n-1)(k-1)} \geq 0 \geq \lambda_{(n-1)(k-1)+1} \geq \mu_{(n-1)(k-1)+1} \geq \cdots \geq \mu_{n k} \geq \lambda_{n k+1}$
Since λ_{1} be the only non negative eigenvalue of $D\left(W_{n, k}\right)$ and $\operatorname{trace}\left\{D\left(W_{n, k}\right)\right\}=0$, therefore $\lambda_{1}>0$
$\therefore n_{+}\left(D\left(W_{n, k}\right)\right)=1$ also $n_{-}\left(D\left(W_{n, k}\right)\right)=n+k-1$

References

[1] X. Zhang, C. Song, The distance matrices of some graphs related to wheel graphs, J.Appl. Math. 2013 (2013) 707954, 5 pp.
[2] X. Zhang, C. Godsil, The inertia of distance matrices of some graphs, Discrete Math. 313 (2013) 1655-1664.
[3] D. M. Cvetkovi'c, M. Doob, and H. Sachs, Spectra of Graphs, vol. 87, Academic Press, New York, NY, USA, 1980, Theory and application.

