
www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT23A5271 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org k685

Effective Indexing Of Tor Network Using

Distributed Scraping.

Vedprakash Upadhye1, Abhishek Pawar2, Yash Ingole3, Pritish Marathe4, Prof.H.P.Bhabad5

Loknete Gopinathji Munde Institute of Engineering Education and Research, Nashik

Abstract - Web scraping is the process of extracting

information from websites. It can be used to collect lots of data

from websites that do not provide an API or allow only limited

access to data. It can be used for many purposes, including web

scraping, data mining, market research, and customer service.

There are many ways to do web scraping. One way is to use

online services that provide web download tools.

Another way is to use an API that provides access to data from

the web. Finally, web scraping can be done manually by

collecting the code associated with the website. Web scraping

can be a difficult and time-consuming task. However, there are

many tools and services that can simplify the process. These

tools and services can help speed up the web data extraction

process and also help avoid the limitations of web scraping

from the web. Web scraping is a powerful tool that can be used

to gather information from websites. However, it is important

to use web scraping ethically and responsibly. It is important

not to enter sites that do not allow the site to be downloaded,

and not to enter sites in a way that harms the site or its users.

Keywords: Web Scraping, Data Extraction, Tor, Onion,

distributed scraping, Effective Indexing, Cybersecurity, Threat

Intel, Data Mining.

1. Introduction
Web scraping for onion links using the REST API is a

promising solution to solving the darknet problem that has not

been analyzed much and is inaccessible by traditional research.

This project aims to explore the various applications and

consequences of this approach. By leveraging REST APIs,

researchers, analysts and investigators can gather valuable

information from the dark web to uncover insights, trends and

potential hidden threats. However, it is important to consider

legal, ethical, and legal considerations when web scraping for

onion links.

In the previous base paper, the indexing of the onion

links was not considered. This limitation hinders efficient

search and retrieval of relevant information from the dark web.

To overcome this drawback, this paper seeks to introduce an

indexing mechanism for onion links with an added layer of

enrichment. By implementing indexing, researchers, analysts,

and investigators will be able to organize and categorize the

scraped onion links, allowing for easier navigation and retrieval

of specific information. Furthermore, the enrichment of the

indexed links will enhance the analysis and understanding of

the gathered data. This enrichment process may involve

associating metadata, extracting relevant keywords, or

applying advanced techniques such as natural language

processing or sentiment analysis. These enriched indexes will

provide valuable insights, trends, and potential hidden threats

within the darknet. While exploring the possibilities of web

scraping for onion links, it is crucial to consider the legal and

ethical implications. The darknet operates within a complex

legal landscape, and caution must be exercised to ensure

compliance with applicable laws and regulations. Additionally,

ethical considerations, such as respecting privacy and avoiding

any malicious intent, should guide the implementation and

usage of this approach

2. Architectural Design

2.1 Architecture Design Diagram

1. Web crawling component: This component is

responsible for navigating to the target website and

retrieving its HTML code. The web crawler may

follow links to other pages on the same site, or to

external sites, in order to gather additional data.

2. Data extraction component: This component is

responsible for parsing the HTML code retrieved by

the web crawler and extracting specific data elements,

such as text, images, and links. This component may

use regular expressions, XPath queries, or other

techniques to identify and extract data.

3. Data storage component: This component is

responsible for storing the extracted data in a

structured format, such as a database, spreadsheet, or

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT23A5271 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org k686

CSV file. This component may also perform data

cleaning and transformation tasks to ensure that the

extracted data is accurate and consistent.

4. User interface component: This component provides a

graphical user interface (GUI) for the user to interact

with the web scraper. The user interface may allow the

user to specify the target website, select the data

elements to be extracted, and configure other settings.

5. Scheduler component: This component manages the

scheduling of web scraping tasks, allowing the user to

specify when and how often the web scraper should

run. This component may also provide notification

and alerting features to inform the user of the status of

web scraping tasks.

Overall, a web scraper is a software application that can be

used to extract data from websites. It consists of five main

components: a web crawler, a data extraction component, a

data storage component, a user interface component, and a

scheduler component. The web crawler is responsible for

navigating to the target website and retrieving its HTML

code. The data extraction component is responsible for

parsing the HTML code retrieved by the web crawler and

extracting specific data elements, such as text, images, and

links. The data storage component is responsible for storing

the extracted data in a structured format, such as a database,

spreadsheet, or CSV file. The user interface component

provides a graphical user interface (GUI) for the user to

interact with the web scraper. The scheduler component

manages the scheduling of web scraping tasks, allowing the

user to specify when and how often the web scraper should

run. Web scraping can be a powerful tool for gathering data

from websites, but it is important to use it responsibly.

Websites may have terms of service that prohibit scraping,

and scraping too much data from a website can slow it down

or even crash it. It is important to read the terms of service of

any website before scraping it, and to be respectful of the

website's resources.

3. Outcomes

3.1 Output Search Engine

3.2 Output Detail View

3.3 API Output

 4. Future Scope

While the current implementation of the web scraping project

is successful, there are several areas for future improvement

and enhancement. Some potential future scope includes:

1. Enhancing Performance: Optimizing the web scraper

to improve its speed and efficiency, especially when

dealing with large volumes of data or slow websites.

2. Advanced Data Analysis: Incorporating advanced

data analysis techniques to extract insights and

patterns from the scraped data, providing more

valuable information to users.

3. User-Friendly Interface: Enhancing the user interface

to make it more intuitive and user-friendly, allowing

users to easily configure scraping parameters and view

the extracted data.

4. Expanded Platform Support: Extending the

compatibility of the web scraper to support additional

web browsers, operating systems, and platforms,

ensuring a wider user base.

5. Continuous Monitoring and Maintenance:

Implementing a monitoring system to regularly check

the functionality and performance of the web scraper,

and performing maintenance and updates as needed.

6. Integration with Other Systems: Integrating the web

scraper with other systems or APIs to enhance its

functionality and enable seamless data exchange.

7. Scalability: Ensuring the web scraper can handle

increased data volumes and user requests by

implementing scalable architecture and infrastructure.

 5. Methodology

Goals and Objectives:

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT23A5271 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org k687

The project aims to create a system that scrapes onion links

from the TOR browser using REST APIs and indexes them in

a structured database. The system will ensure data privacy and

security, and be efficient and scalable. To achieve this, the

project will develop a mechanism to access the TOR browser

using REST APIs. The system will then parse the retrieved data

to extract onion links. The onion links will then be stored in a

structured database for efficient querying and searching. The

system will also ensure data privacy and security in handling

the onion links. Finally, the system will create an efficient

indexing system for the dark web that can handle large volumes

of data and is scalable for future expansion.

1. Develop a mechanism to access the TOR browser

using REST APIs.

2. Parse the retrieved data to extract onion links.

3. Store the onion links in a structured database for

efficient querying and searching.

4. Ensure data privacy and security in handling the onion

links.

5. Create an efficient indexing system for the dark web

that can handle large volumes of data and is scalable

for future expansion.

6. Working

A web scraper is a software tool that automates the extraction

of data from websites. It mimics the behavior of a human user

by navigating through pages and retrieving specific

information. Web scraping is used in a variety of domains,

including data analysis, market research, and competitive

analysis. It provides a means to gather large amounts of data

from different sources quickly and efficiently.

1. Sending an HTTP request to the target website: The

web scraper sends a request to the website’s server,

usually using the HTTP or HTTPS protocol.

2. Retrieving the HTML content: Upon receiving the

request, the server responds by sending back the

HTML code that makes up the web page.

3. Parsing the HTML: The web scraper parses the

HTML code to understand its structure, including

tags, classes, and IDs.

4. Extracting the desired data: Based on predefined rules

or patterns, the web scraper identifies and extracts the

required data from the parsed HTML

5. Storing or processing the extracted data: The scraped

data can be stored in a database, exported to a file, or

processed further for analysis or integration with other

systems.

6. Web scrapers can be implemented using various

programming languages such as Python, JavaScript,

or Ruby, and they utilize libraries or frameworks like

Beautiful Soup, Scrapy, or Selenium to handle the

web scraping tasks.

 7. CONCLUSION

In conclusion, the web scraping project on onion links using a

REST API has been successfully implemented. The project

achieved its objective of

extracting data from onion links and storing it in a structured

database. The software was developed following the Waterfall

model, ensuring a systematic and phased approach to

development. Through verification and validation processes,

the acceptance and reliability of the web scraper were ensured.

Functional requirements were verified, data accuracy was

validated, error handling and robustness were tested, and

security measures were implemented. The software met the

specified requirements and performed well under different

scenarios.

 8. REFERENCES

1. Zhang, X., Zhang, Y., Yao, L. (2019). Web Data

Extraction Based on User Interaction Recognition

and Deep Learning. IEEE Access, 7,132147-132157.

2. Hsieh, M. F., Chang, C. Y., Wang, M. J. J. (2018).

An Efficient Web Data Extraction Framework for

Online Price Comparison. IEEE Transactions on

Knowledge and Data Engineering, 30(3), 465-477.

3. Han, B., Song, L., Yu, Y. (2020). Web Data

Extraction by Leveraging Human Interaction Signals.

IEEE Transactions on Knowledge and Data

Engineering, 32(4), 742-756.

4. Chen, J., Chen, L., Liu, J. (2020). Web Data

Extraction Based on Web Page Segmentation and

Template Tree Matching. IEEE Access, 8, 78315-

78326.

5. Wei, X., Zhang, Z., Jiang, H. (2019). A Web Data

Extraction Approach Based on Deep Learning and

Conditional Random Fields. IEEE Access, 7, 52749-

52758.

6. Feng, Z., Xia, F., Liu, Y. (2021). Web Data

Extraction by Learning Based Hybrid Approach.

IEEE Transactions on Cybernetics, 51(1),320-333.

7. Lien, J. J., Hsieh, M. F. (2019). An Improved Web

Data Extraction Framework for Product Comparison.

IEEE Transactions on Knowledge and Data

Engineering, 31(4), 710-723.

8. Chen, H., Liu, G., Zeng, D. (2019). An Effective

Web Data Extraction Approach Based on Block

Structure and Dependency Analysis. IEEE Access, 7,

27358-27369.

9. Ding, H., Liu, Y., Li, G. (2020). Web Data

Extraction Based on Convolutional Neural Networks

and Visual Features. IEEE Access, 8,223797-

223808.

10. Zhang, J., Zhang, J., Qian, Y. (2019). Web Data

Extraction Based on Template Learning and

Semantic Annotation. IEEE Access, 7, 137350

137360.

11. Xu, D., Chen, H., Liu, Y. (2019). Web Data

Extraction Based on Hierarchical Template

Matching. IEEE Access, 7, 90324-90334.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT23A5271 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org k688

12. Luo, Y., Wang, Z., Li, Y. (2021). Web Data

Extraction Based on Visual Features and Sequence-

to-Sequence Model. IEEE Access, 9,27208-27220.

13. Zhu, W., Hu, Q., Zhang, L. (2018). Web Data

Extraction Based on Hybrid Information Extraction

and Hierarchical Wrapper Generation. IEEE Access,

6, 29552-29562.

14. Yin, S., Zhu, X., Li, H. (2019). Web Data Extraction

Based on Ontology Learning and Rule Reasoning.

IEEE Access, 7, 150717-150729.

15. Li, Y., Tang, Z., Wu, Y. (2020). Web Data

Extraction Based on Deep Learning and Multi-

Instance Learning. IEEE Access, 8, 196308- 196319

http://www.ijcrt.org/

