IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Vigilance Notification System using Transfer Learning

Pranav Sugre¹, Prof. Shrutika Nalawade², Siddhartha Suryawanshi³, Keyur Shelke⁴, Pratham Shelke⁵

¹⁻⁵Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, India

Abstract: The project eliminates security threats faced by ATMs by implementing effective auditing procedures. The system combines vibration, heat, smoke, sound sensors and surveillance cameras and is designed to detect and respond to a variety of activities. Vibration sensors detect physical tampering, while thermal sensors instantly detect suspicious activity using the device. Smoke sensors help prevent premature fires and vandalism, and detection equipment detects illegal activity. Carefully placed in plain view provides good visibility and serves as an alert for further investigation. Using advanced signal processing and machine learning for real-time data analysis, the intelligent decision module can reduce false alarms and provide accurate responses. Multi-sensor integration not only increases detection accuracy but also helps improve ATM security in the banking industry by providing better security.

Keywords - IOT, Transfer learning, security.

I. Introduction

As security threats become more prevalent in the banking industry, the need for advanced surveillance systems to secure automated teller machines (ATMs) increases. This project proposed a way to improve ATM security by integrating multiple sensors, including vibration sensors, heat sensors, smoke sensors, motion detectors, and needle probes.

The main purpose of this project is to create a safe and reliable ATM solution. Intelligent systems detect and respond to suspicious activity in and around ATMs. Integration of multiple sensors provides a better understanding of the ATM environment, enabling the system to respond to a variety of threats.

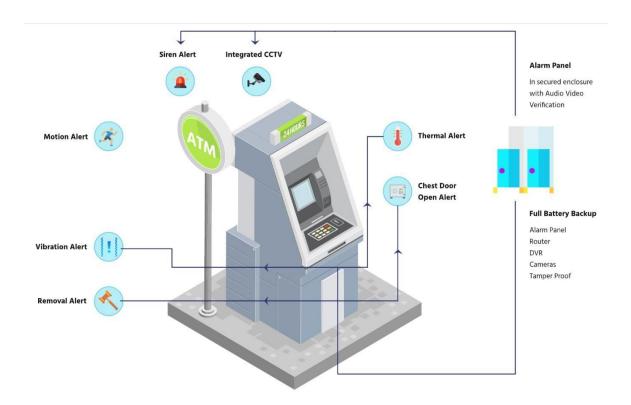
Vibration sensors are used to detect physical anomalies such as tampering or forced entry. Thermal sensors are used to detect abnormal temperatures that may indicate the use of electrical equipment or equipment during an attack. Smoke helps in early detection of fire or try to extinguish it using smoke method. Electronic sensors are used to detect unauthorized access near ATMs. Additionally, the project is equipped with monitors to clearly see and record events. This camera is well positioned to capture the entire ATM area, and alerts are displayed for further investigation when suspicious activity is detected.

The multi-sensor integration concept not only improves the accuracy of sensing activities but also provides security measures for ATMs. The project aims to contribute to the development of the best security systems for the banking sector in order to ensure the stability of financial transactions and protect assets in the ATM environment.

The aim of this project is we design and implement an IoT and Transfer Learning-Based Security System for Automated Teller Machine (ATM) to improve overall Security, monitoring, and response capability. The System has various sensors Actuators, and communication technology to create a robust and intelligent security infrastructure for ATMs.

It has various key features such as Real time monitoring, Intrusions Detection, Remote access control Tamper Detection and Response.

II.LITRETURE SURVEY


Table 1: literature survey

Ref.no	Paper Title and Paper publication	Year	Methodology Used	Accuracy	Research gap Identified / Future Scope
[1] M.J.A.Sabani and U.M.Rishan	Title: Effectiveness of ATM Security Mechanisms Journal: ResearchGate	2019	This study was carried out from the facts on different articles related to the security aspects of banks and ATM services. The common security risks were identified and compared different security measures published in studies		Real time applications and performance must be increased.
[2] Deepa.R, Kalaiselvan.M, Mr. R. Rajagopal	Title: Advanced ATM Security System Journal: IJERA	2020	It provides activity recognition byusing different types of sensors	89%	Real time applications and performance must be increased.
[3] S.Ramyasri, and M.Mahalakshm i	Title: IOT Based Progressive Anti Theft ATM Security System Journal: IOP PUBLISHING	2020	A Raspberry Pi 3 Display B operated with the Broadcom BCM2837 System-On Chip (SoC), which has four excellent 1.2 GHz ARM Cortex- A53 process cores with 32 Kb Level one or 512 Kb Level A reserve memory, a quad - Core example device, which is mounted to the back of the board with a 1 GB LPDDR2 usb drive	85%	expand the database so that more users are stored and can access the ATM facilities safely. We may also give a caught image of crime to a local police station so that the matter can be fixed quickly

[4]	Title: A Review	2018	This paper proposed a	85%	Performance Should
Gitanjali Mehta		2016	content secret word	0370	be increased
Gitanjan Wenta	1				be increased
l	Security		section involvement		
			called as versatile		
	Journal: JETRI		confirmation. With		
			their strategy, each		
			selectable content is		
			orchestrated in a		
			square, with every		
			content comprisingits		
			own shading		
			experience		
[5]	Title: Atm threat	2022	The STT-433 is ideal	90%	We can increases th
S. Lakshmi	detection with		for remote control		database so that mor
Manasa,Y.	hidden alarm		applications where low		users are stored and
Kavya Sri			Cost and longer range		can access the ATM
Ramya, A.	Journal: JES		is required. The		facilities safely
Yashwanth, K.	ournan on		transmitter operates		rueinties surery
Roopanth, R. Varun			from a 1.5-12V		
v arun			supply, making it ideal		
			for battery-powered		
			applications. The		
			transmitter employs a		
			SAW-stabilized		,
			oscil <mark>lator</mark> , ensuring		
			Accurate frequency		
			control for best range		
2/2/2			p <mark>erformance</mark>	/_	
[6]	Title: Design And	2018	This Paper proposed	89%	In future, we can als
D Rambabu,	Implementation Of			MU.	record these live
Durga Prasad, A.Rajesh	Anti-Theft Atm			3	streaming data by
NaiduR.L.R.Lo					connecting external
kesh Babu	Journal: IJCRT				memory storage as
					the storage space is
					less. The smart
					surveillance system
					has been designed
					aiming to fulfil the
					needs of the user for
					particular surveilland
					area. It has countles
					applications and car
					be used in different
					environments
					environments

w.ijcrt.org	© 2	UZ3 IJCK	I Volume 11, Issue 12 De	ecember 202	23 133N: 232U-2002
[7]	Title: Design and	2017	This Paper proposed	92%	This is the embedded
Prof.Kanchan	Implementation of		various sensors such		plus DIP based so we
P.Borade,	security based atm		as vibration sensor		can make our own
Rutuja Bagul,	theft monitoring		also used the web		algorithm in micro
Vidya Salunkhe	system		camera, and SIMCOM		controller for more
	Journal: JETRI		900 GSM(Global		security concern.
			System For Mobile		We can use the
			Communications),DC		powerful antennas for
			MOTOR.		longer
			WOTOR.		communication.
[8]	Title: Ensuring	2018	This paper proposed	90%	It can be increased the
D. P. Patil,	Atm Security &	2010	ATM security using	7070	
Vaishali Ingole,	•		•		Sensor Accuracy.
Shilpa Datir,	fault Monitoring		IR SENSOR, Smoke		
Monica	Journal: JETRI		Sensor, Temperature		
Shejwal,			Sensor, Arduino AT		
Priyanka Ahire			mega328.		
[9]	Title: D <mark>esign and</mark>	2015	RFID reader is placed	95%%	In future, we can
Raj M, Anitha	Implementation of		on the outside of the		increases the M2M
Julian	Anti-th <mark>eft AT</mark> M		shutter and is separate		technology accuracy.
	Machi <mark>ne usin</mark> g		from the main		
	Embedde <mark>d Systems</mark>		controller unit. The		
	Journal: ICCPCT		controller receives		
			seria <mark>l data</mark> from the		
200			Reader and controls		
F (20)			the <mark>shutter lock or</mark>		
			unlock. When the card		
Charles !			is brought near to the		
	- \		RFID module it reads	3	
			the data in the card(as		
			shown in Fig 4) and		
			displays on the LCD.		
			The data in the card is		
			compared with the		
			data in the program		
			memory and displays		
			authorized or		
			unauthorized message.		
			The door opens for a		
			licensed person, closes		
			for associate		
			unauthorized person		
			anaumorized person		

III.PROPOSED WORK:

MQ2 SENSOR:

The MQ-2 sensor is a popular gas sensor module used in electronic projects and various applications to detect the concentration of different gases in the air. It is part of a series of gas sensors manufactured by Winsen. The MQ-2 sensor is particularly known for its ability to detect multiple gases, including methane (CH4), propane (C3H8), carbon monoxide (CO), smoke, and other combustible gases.



VIBRATION SENSOR:

A vibration sensor is a device that measures the amount and frequency of vibration in a given system, machine, or piece of equipment. Vibration sensors can be used to give maintenance teams insight into conditions within key assets that might lead to equipment failure, allowing them to predict the maintenance of the machinery, to reduce overall costs and increase the performance of the machinery. Their construction consists of a crystal of piezoelectric material to which is attached a seismic mass. When the crystal is stressed in tension or compression, it generates an electrical charge which is proportional to the acceleration level it is experiencing. Internal circuitry converts this signal into a voltage or current (4-20mA) output for data collectors or process control loops.

LM35 SENSOR:

The LM35 series are precision integrated-circuittemperature devices with an output voltage linearly proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of $\pm 1/4$ °C at room temperature and $\pm 3/4$ °C over a full -55°C to 150°C temperature range. Lowercost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy.

PIR SENSOR:

PIR sensors allow you to sense motion, almost always used to detect whether a human has moved in or out of the sensors range. They are small, inexpensive, low-power, easy to use and don't wear out. For that reason they are commonly found in appliances and gadgets used in homes or businesses. They are often referred to as PIR, "Passive Infrared", "Pyroelectric", or "IR motion" sensors. Output: Digital pulse high (3V) when triggered (motion detected) digital low when idle (no motion detected). Pulse lengths are determined by resistors and capacitors on the PCB and differ from sensor to sensor. Sensitivity range: up to 20 feet (6 meters) 110° x 70° detection rangePower supply: 5V-12V input voltage for most modules (they have a 3.3V regulator), but 5V is ideal in case the regulator has different specs

IV.CONCLUSION

Now days, most of the ATM has been attacked by the robberies. Also gradual increases the theft of ATM after the year by year. Therefore this study demonstrates how an automatic "ATM theft prevention" system can be design and also monitors faulty conditions in ATM machine using IOT technology.

V.REFERENCES

- [1] M.J.A.Sabani and U.M.Rishan, "Effectiveness of ATM Security Mechanisms: A Review Analysis"
- [2] Deepa.R, Kalaiselvan.M, Mr. R. Rajagopal "Advanced ATM Security System".
- [3] S. Ramyasri, and M. Mahalakshmi "IOT Based Progressive Anti Theft ATM Security System".
- [4] Gitanjali Mehta." A Review Paper on ATM Security".
- [5] S. Lakshmi Manasa, Y. Kavya Sri Ramya, A. Yashwanth, K. Roopanth, R. Varun"Atm threat detection with hidden alarm".
- [6] D Rambabu, R.Durga Prasad, A.Rajesh Naidu, R.L.R.Lokesh Babu, "Design And Implementation Of Anti-Theft Atm".
- [7] Prof.Kanchan P.Borade, Rutuja Bagul, Vidya Salunkhe, "Design and Implementation of security based atm theft monitoring system".
- [8] D. P. Patil, Vaishali Ingole, Shilpa Datir, Monica Shejwal, Priyanka Ahire." Ensuring Atm Security & IJCRT2312722 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g417

fault Monitoring".

[9] Raj M, Anitha Julian, "Design and Implementation of Anti-theft ATM Machine using Embedded Systems".

