INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (IJCRT)
An International Open Access, Peer-reviewed, Refereed Journal

ON INVARIANT TENSORS OF $\boldsymbol{\beta}$-CHANGES OF FINSLER METRIC BY AN \boldsymbol{h}-VECTOR

RAJ KUMAR SRIVASTAVA
DEPARTMENT OF MATHEMATICS
SRI JAI NARAIN P.G. COLLEGE, LUCKNOW

ABSTRACT

Let M^{n} be an n-dimensional differentiable manifold and $F^{n}=\left(M^{n}, L\right)$ be a Finsler space with a metric $\mathrm{L}(x, y)$. We consider a change of this metric by $\bar{L}=f(L, \beta)$, where f is a positively homogeneous function of degree one in L and $\beta, \beta(x, y)=v_{i}(x, y) y^{i}, v_{i}(x, y)$ is an h-vector in F^{n}. The purpose of the present paper is to determine the conditions under which C-reducible, quasi C-reducible, semi C reducible and S 3 like Finsler spaces remains a Finsler space of the same kind under a transformed Finsler metric. We have also determined the relations between the v-curvature tensor, v-Ricci tensor and v-sclar curvature with respect to the Cartan connection of Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$

INTRODUCTION

Let M^{n} be an n-dimensional differentiable manifold and $F^{n}=\left(M^{n}, L\right)$ be a Finsler space equipped with a fundamental function $\mathrm{L}(x, y)\left(y^{i}=\dot{x}^{i}\right)$ on M^{n}. Shibata [20] has considered a change $* \mathrm{~L}(x, y)=f(\mathrm{~L}$, β) which he called a β-change where $\beta(x, y)=v_{i}(x) y^{i}, f$ is a positively homogeneous function of degree one in L and β and established the relation between the properties of Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and $* F^{n}=$ $\left(M^{n}, * \mathrm{~L}\right)$. There are various examples of β-changes, e.g.

$$
\begin{align*}
& \prime L(x, y)=L(x, y)+\beta(x, y) \tag{1.1}\\
& { }^{\prime} L(x, y)=L^{2}(x, y) \mid \beta(x, y) \tag{1.2}
\end{align*}
$$

Matsumoto ([10]), Hashiguchi \& Ichijiyo ([4]) called (1.1) as a Rander's change and established a theorem which shows a relation between Rander's change and a projective change.

The change (1.2) is called a Kropina change. If L is a Riemannian metric $\alpha(x, y)=\left[a_{i j}(x) y^{i} y^{j}\right]^{1 / 2}$, then the metric $* \mathrm{~L}(x, y)=f(L, \beta)$ is called an (α, β)-metric ([2][18]) ' $L=\alpha+\beta$ is called a Rander's metric ([10], [16]) and " $L=\alpha^{2} / \beta$ a Kropina metric ([18]). The properties of Finsler spaces equipped with (α, β) metric have been studied by various authors ([2], [16], [17], [18], [19]) from various standpoints in the Mathematical \& Physical aspects.

During the study of conformal transformation of Finsler spaces, Izumi ([6]) introduced the concept of an h-vector $v_{i}(x, y)$ defined by $\left.v_{i}\right|_{\mathrm{j}}=0$, where $\left.\right|_{\mathrm{j}}$ denotes the v-covariant derivative with respect to the Cartan connection $C \Gamma, L C_{i j}^{h} v_{h}=K h_{i j}, C_{i j}^{h}=g^{h l} C_{i j l}$ is Cartan's C-tensor, $h_{i j}$ is the angular metric tensor, $\mathrm{K}=$ $\mathrm{L} C^{i} v_{i} \mid(n-1)$ and $C^{i}=C_{j k}^{i} g^{j k}$ is the torsion vector. Hence the h-vector $v_{i}(x, y)$ is a function of positional coordinates and directional arguments both satisfying $L \dot{\partial}_{j} v=K h_{i j}, \dot{\partial}_{j}=\partial \mid \partial y^{j}$.

Prasad ([15]) has obtained the relation between the Cartan's connection of Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and ${ }^{\prime \prime \prime} F^{n}=\left(M^{n}, ' \prime \prime L\right)$, where ${ }^{\prime \prime \prime} L(x, y)=L(x, y)+v_{i}(x, y) y^{i}$ and $v_{i}(x, y)$ is an h-vector in F^{n}. Singh and Srivastava ([20]) has also studied the properties of Finsler space with this metric. Singh and Srivastava ([21]) and the present author ([22]) has also studied the properties of Finsler space with the metric $\bar{L}=f(L, \beta)$, where $\beta(x, y)=v_{i}(x, y) y^{i}$ is a differentiable one form and $v_{i}(x, y)$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$.

The purpose of the present paper is to determined the conditions under which C -reducible, quasi C reducible, semi C-reducible and S3-like Finsler spaces remains a Finsler space of the same kind under a transformed Finsler metric.

$$
\bar{L}=f(L, \beta)
$$

We have also determined the relations between the v-curvature tensor, v-Ricci tensor and v-sclar curvature with respect to the Cartan connection of Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$

The terminology and notations are referred to well known Matsumoto's book ([14]) unless otherwise stated.

THE FINSLER SPACE $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space with a fundamental function $L(x, y)$. We consider a change of the metric defined by

$$
\begin{equation*}
\bar{L}=f\{L(x, y), \beta(x, y)\} \tag{2.1}
\end{equation*}
$$

and have another Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$, where $\beta(x, y)=v_{i}(x, y) y^{i}, v_{i}$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$ and $f(L, \beta)$ is a positively homogeneous function of degree one in L and β. We shall call the Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ as a generalized Finsler space. Throughout the paper the quantities of the Finsler space \bar{F}^{n} will be denoted by putting bar $(-)$ on the top of the corresponding quantities of the Finsler space F^{n}. We shall use the following notations

$$
f_{1}=\partial f\left|\partial L, \quad f_{2}=\partial f\right| \partial \beta, f_{11}=\partial^{2} f\left|\partial L \partial L, \quad f_{12}=\partial^{2} f\right| \partial L \partial \beta \text { etc. }
$$

Since \bar{L} is a positively homogeneous function of degree one in L and β, hence we have

$$
\begin{equation*}
f=f_{1} L+f_{2} \beta, L f_{12}+\beta f_{22}=0, L f_{11}+\beta f_{12}=0 \tag{2.2}
\end{equation*}
$$

If $l_{i}, h_{i j}, g_{i j}$ denote the element of support, angular metric tensor and metric tensor of F^{n} respectively, then the corresponding tensors of $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ are given by ([21])

$$
\begin{gather*}
\bar{l}_{i}=f_{1} l_{i}+f_{2} v_{i} \tag{2.3}\\
\bar{h}_{i j}=r^{\prime} h_{i j}+s_{0} m_{i} m_{j} \tag{2.4}\\
\bar{g}_{i j}=r^{\prime} g_{i j}+r_{0} v_{i} v_{j}+r_{-1}\left(v_{i} y_{j}+v_{j} y_{i}\right)+r_{-2}^{\prime} y_{i} y_{j} \tag{2.5}
\end{gather*}
$$

Where we put

$$
\begin{align*}
& r=f f_{1} / L, s=f f_{2}, \quad s_{0}=f f_{22}, r^{\prime}=f\left(f_{1}+K f_{2}\right) / L \\
& m_{i}=v_{i}-\beta y_{i} / L^{2}, r_{0}=s_{0}+f_{2}^{2}, s_{-1}=f f_{12} / L, r_{-1}=s_{-1}+r f_{2} / f \\
& s_{-2}=f\left(f_{11}-f_{1} / L\right) / L^{2}, r_{-2}=s_{-2}+r^{2} / f^{2}, r_{-2}^{\prime}=r_{-2}-K s / L^{3} \tag{2.6}
\end{align*}
$$

The reciprocal tensor $\bar{g}^{i j}$ of $\bar{g}_{i j}$ can be written as ([21])

$$
\begin{equation*}
\bar{g}^{i j}=\left(1 / r^{\prime}\right) g^{i j}-u_{0}^{\prime} v^{i} v^{j}-u_{-1}^{\prime}\left(v^{i} y^{j}+v^{j} y^{i}\right)-u_{-2}^{\prime} y^{i} y^{j} \tag{2.7}
\end{equation*}
$$

Where $v^{i}=g^{i j} v_{j}, v^{2}=g^{i j} v_{i} v_{j}, v=v^{2}-\beta^{2} / L^{2}, u_{0}^{\prime}=f^{2} s_{0} / L^{2} \tau^{\prime} r^{\prime}$,

$$
\begin{align*}
& u_{-1}^{\prime}=\left(f^{2} / r^{\prime} \tau^{\prime} L^{2}\right)\left(r_{-1}+K f_{2}^{2} / L\right), \tau^{\prime}=\left(f^{2} / L^{2}\right)\left(r^{\prime}+v s_{0}\right), \\
& u_{-2}^{\prime}=r_{-2}^{\prime} / r r^{\prime}-\left(u_{-1}^{\prime} / r\right)\left(v r_{-1}-K s \beta / L^{3}\right) \tag{2.8}
\end{align*}
$$

From the homogeneity, it follows that .

$$
\begin{align*}
& s_{0} \beta+s_{-1} L^{2}=0, \quad s_{-1} \beta+s_{-2} L^{2}=-r, \quad r_{0} \beta+r_{-1} L^{2}=s, \\
& s \beta+r L^{2}=f^{2}, \quad r_{-1} \beta+r_{-2} L^{2}=0 \tag{2.9}
\end{align*}
$$

From the definition of m_{i}, it is evident that
(a) $m_{i} l^{i}=0$
(b) $m_{i} v^{i}=m_{i} m^{i}=v^{2}-\beta^{2} \mid L^{2}=v$ where $m^{i}=g^{i j} m_{j}$,
(c) $h_{i j} m^{i}=h_{i j} v^{i}=m_{j}$
(d) $C_{i j}^{h} m_{h}=\frac{K}{L} h_{i j}$

Differentiating (2.5) with respect to y^{k}, the torsion tensor $\bar{C}_{i j k}$ of \bar{F}^{n} is given by

$$
\begin{equation*}
\bar{C}_{i j k}=r^{\prime} C_{i j k}+\frac{1}{2} r_{-1}^{\prime}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\frac{r_{02}}{2} m_{i} m_{j} m_{k} \tag{2.11}
\end{equation*}
$$

where $\quad r_{-1}^{\prime}=r_{-1}+(K / L) r_{0}, \quad r_{02}=\frac{\partial r_{0}}{\partial \beta}$
or $\quad \bar{C}_{i j k}=r^{\prime} C_{i j k}+V_{i j k}$,
where $V_{i j k}=\frac{r_{-1}^{\prime}}{2}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\frac{r_{02}}{2} m_{i} m_{j} m_{k}$
Contracting (2.13) by $\bar{g}^{k l}$ and using (2.10), we have

$$
\begin{equation*}
\bar{C}_{i j}^{l}=C_{i j}^{l}+V_{i j}^{l}, \tag{2.15}
\end{equation*}
$$

where
$\overline{V_{i j}^{l}=-Q^{l}\left(r^{\prime} C_{i m j} v^{m}+r_{-1}^{\prime} m_{i} m_{j}\right)+\left(r_{-1}^{\prime} / 2 r^{\prime}\right)\left(h_{i}^{l} m_{j}+h_{j}^{l} m_{i}\right)+\left(m^{l} / r^{\prime}-v Q^{l}\right)\left(r_{02} m_{i} m_{j}+r_{-1}^{\prime} h_{i j}\right) / 2}$

$$
\begin{equation*}
Q^{l}=u_{0}^{\prime} v^{l}+u_{-1}^{\prime} y^{l}, \quad h_{i}^{l}=g^{l k} h_{i k}, \quad m^{l}=g^{k l} m_{k} \tag{2.16}
\end{equation*}
$$

Putting $l=j$ in (2.16) and using (2.10) we have,

$$
\begin{gathered}
V_{i j}^{j}=-\left(u_{0}^{\prime} v^{j}+u_{-1}^{\prime} y^{j}\right)\left(r^{\prime} C_{i m j} v^{m}+r_{-1}^{\prime} m_{i} m_{j}\right)+\left(r_{-1}^{\prime} / 2 r^{\prime}\right)\left(h_{i}^{j} m_{j}+h_{j}^{j} m_{i}\right)+ \\
\left\{\frac{m^{j}}{r^{\prime}}-v\left(u_{0}^{\prime} v^{j}+u_{-1}^{\prime} y^{j}\right)\right\}\left\{r_{02} m_{i} m_{j}+r_{-1}^{\prime} h_{i j}\right\} / 2
\end{gathered}
$$

or $V_{i j}^{j}=\frac{1}{2} \frac{r_{02}}{r^{\prime}} m_{i} v-\frac{v^{2}}{2} u_{0}^{\prime} r_{02} m_{i}+\frac{r_{-1}^{\prime}}{2 r^{\prime}}\left[m_{i}+(n-1) m_{i}\right]-\frac{v}{2} u_{0}^{\prime} r_{-1}^{\prime} m_{i}-r^{\prime} u_{0}^{\prime} C_{i \beta \beta}-u_{0}^{\prime} r_{-1}^{\prime} v m_{i}$
or $V_{i j}^{j}=\left[\frac{(n+1) r_{-1}^{\prime}}{2 r^{\prime}}-\frac{3}{2} u_{0}^{\prime} r_{-1}^{\prime} v+\frac{r_{02} v}{2\left(r^{\prime}+v s_{0}\right)}\right] m_{i}-r^{\prime} u_{0}^{\prime} C_{i \beta \beta}$
Here and in the following the subscript β denotes contraction with respect to an h-vector v^{i}.
From equations (2.15) and (2.17), we have
$\therefore \bar{C}_{i}=C_{i}-r^{\prime} u_{0}^{\prime} C_{i \beta \beta}+\sigma m_{i}$
where $\sigma=\frac{(n+1) r_{-1}^{\prime}}{2 r^{\prime}}-\frac{3}{2} u_{0}^{\prime} r_{-1}^{\prime} v+\frac{r_{02} v}{2\left(r^{\prime}+v s_{0}\right)}$
From equations (2.7) and (2.18), we have
$\bar{C}^{i}=g^{-i j} \bar{C}_{j}=\frac{1}{r^{\prime}} C^{i}+\frac{\sigma}{r^{\prime}} m^{i}-u_{0}^{\prime} C_{\beta \beta}^{i}-\left(u_{0}^{\prime} v^{i}+u_{-1}^{\prime} y^{i}\right)\left(C_{\beta}-r^{\prime} u_{0}^{\prime} C_{\beta \beta \beta}+\sigma v\right)$
or $\bar{C}^{i}=\frac{1}{r^{\prime}} C^{i}+N^{i}$
where $N^{i}=\frac{\sigma}{r^{\prime}} m^{i}-u_{0}^{\prime} C_{\beta \beta}^{i}-\left(u_{0}^{\prime} v^{i}+u_{-1}^{\prime} y^{i}\right)\left(C_{\beta}-r^{\prime} u_{0}^{\prime} C_{\beta \beta \beta}+\sigma v\right)$

$$
\begin{equation*}
\bar{C}^{2}=\bar{C}^{i} \bar{C}_{i}=\frac{1}{r^{\prime}} C^{2}+\phi \tag{2.21}
\end{equation*}
$$

where $\phi=\sigma^{2} v\left(\frac{1}{r^{\prime}}-u_{0}^{\prime} v\right)+C_{\beta}\left\{\frac{2 \sigma}{r^{\prime}}-u_{0}^{\prime}(1+2 \sigma v)\right\}+u_{0}^{\prime} C_{i \beta \beta}\left(r^{\prime} u_{0}^{\prime 2} C_{\beta \beta \beta} v^{\prime}-2 \sigma u_{0}^{\prime} v r^{\prime} v^{i}-2 C^{i}\right)$ $+u_{0}^{\prime} C_{\beta \beta \beta}\left(r^{\prime} u_{0}^{\prime} C_{\beta}-2 \sigma\right)$
From equations (2.11), (2.15) and (2.16), the v-curvature tensor of \bar{F}^{n} with respect to Cartan connection is written as
or

$$
\begin{array}{r}
\bar{S}_{i j k l}=\bar{C}_{i l p} \bar{C}_{j k}^{p}-\bar{C}_{i k p} \bar{C}_{j l}^{p} \\
\bar{S}_{i j k l}=r^{\prime} S_{i j k l}+A_{(k l)}\left\{h_{i l} K_{j k}+h_{j k} K_{i l}\right\} \tag{2.24}
\end{array}
$$

where $K_{j k}=\lambda_{1} m_{j} m_{k}+\lambda_{2} h_{j k}$
and $A_{k l}(\ldots$.$) denotes the interchange of indices \mathrm{k}, l$ and subtraction.

$$
\begin{align*}
& \lambda_{1}=\frac{r_{-1}^{2}}{4 r^{\prime}}\left(1-2 u_{0}^{\prime} v r^{\prime}\right)+\frac{v r_{02} r_{-1}^{\prime}}{4\left(r^{\prime}+v s_{0}\right)}+\frac{K}{L}\left\{\frac{r^{\prime} r_{02}}{2\left(r^{\prime}+v s_{0}\right)}-r^{\prime} r_{-1}^{\prime} u_{0}^{\prime}\right\} \tag{2.26}\\
& \lambda_{2}=\frac{r_{-1}^{\prime} v}{8\left(r^{\prime}+v s_{0}\right)}+\frac{K r_{-1}^{\prime}}{2 L}\left\{\left(1-u_{0}^{\prime} r^{\prime} v\right)\right\}-\frac{K^{2}}{2 L^{2}} r^{\prime 2} u_{0}^{\prime} \tag{2.27}
\end{align*}
$$

The tensor $K_{j k}$ defined above is symmetric and indicatory.
From equations (2.7), (2.24), (2.25), (2.26) and (2.27), we have
$\overline{\bar{S}_{j l}=\bar{g}^{i k} \bar{S}_{i j k l}=S_{j l}-r^{\prime} u_{0}^{\prime} S_{i j k l} v^{i} v^{k}+K_{1} h_{j l}+K_{2} m_{j} m_{l}, ~}$
where $K_{1}=(3-n) \lambda_{1} \mid r^{\prime}-u_{0}^{\prime}\left(2 \lambda_{2}+\lambda_{1} v\right)$,
$K_{2}=\left\{(4-2 n) \lambda_{2}-\lambda_{1} v\right\} \mid r^{\prime}+u_{0}^{\prime} v\left(2 \lambda_{2}+\lambda_{1} v\right)$
$S_{j l}=g^{i k} S_{i j k l}$
From equations (2.7) and (2.8), we have
$\left.\bar{S}=\bar{g}^{j l} \bar{S}_{j l}=\frac{1}{r^{\prime}} S-2 u_{0}^{\prime} S_{j l} v^{j} v^{l}+r^{\prime 2} u_{0}^{\prime 2} S_{i j k l} v^{i} v^{j} v^{k} v^{l}+\left\{(n-1) K_{1}+K_{2} v\right\} \right\rvert\, r^{\prime}-u_{0}^{\prime} v\left(K_{1}+K_{2} v\right)$
$S=g^{j l} S_{j l}$

Definition (2.1):- A non Riemannian Finsler space $F^{n}=\left(M^{n}, L\right)$ with dimension $n \geq 3$ is said to be a quasi-C-reducible if the (h) $h v$-torsion tensor $C_{i j k}$ is written as ([14])

$$
C_{i j k}=B_{i j} C_{k}+B_{j k} C_{i}+B_{k i} C_{j}
$$

where $B_{i j}$ is a symmetric and indicatory tensor and C_{i} is the torsion vector.
From equations (2.11), (2.18) and (2.19), we have
$\bar{C}_{i j k}=r^{\prime} C_{i j k}+\frac{1}{6 \sigma} A_{(i j k)}\left[\left\{3 r_{-1}^{\prime} h_{i j}+r_{02} m_{i} m_{j}\right\} \bar{C}_{k}\right]+\frac{1}{6 \sigma} A_{(i j k)}\left\{\left(3 r_{-1}^{\prime} h_{i j}+r_{02} m_{i} m_{j}\right)\left(r^{\prime} u_{0}^{\prime} C_{k \beta \beta}-C_{k}\right)\right\}$,
where $A_{(i j k)}(\ldots)$ denotes the cyclic interchange of indices i, j, k and summation.
Hence, we have
LEMMA (2.1) :- The Cartan tensor $\bar{C}_{i j k}$ of the generalized Finsler space \bar{F}^{n} can be written in the form.

$$
\begin{equation*}
\bar{C}_{i j k}=A_{(i j k)}\left(\bar{B}_{i j} \bar{C}_{k}\right)+Q_{i j k} \tag{2.34}
\end{equation*}
$$

where $\bar{B}_{i j}=\frac{1}{6 \sigma}\left(3 r_{-1}^{\prime} h_{i j}+r_{02} m_{i} m_{j}\right)$

$$
\begin{equation*}
Q_{i j k}=\frac{1}{6 \sigma} A_{(i j k)}\left\{2 \sigma r^{\prime} C_{i j k}+\left(3 r_{-1}^{\prime} h_{i j}+r_{02} m_{i} m_{j}\right)\left(r^{\prime} u_{0}^{\prime} C_{k \beta \beta}-C_{k}\right)\right\} \tag{2.35}
\end{equation*}
$$

Since the tensor $\bar{B}_{i j}$ is symmetric and indicatory, using the above lemma, we have the following.

THEOREM (2.1) :- Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is quasi C-reducible if $Q_{i j k}=0$
COROLLARY (2.1) :- If $F^{n}=\left(M^{n}, L\right)$ is a Riemannian space, then $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is transformed to a quasi C-reducible Finsler space.

Definition (2.2):- A Finsler space $F^{n}=\left(M^{n}, L\right)$ of dimension $(n \geq 3)$ with $C^{2} \neq 0$ called semi C-reducible if the (h) $h v$ - torsion tensor $C_{i j k}$ is written as ([13])

$$
C_{i j k}=\frac{p}{n+1}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)+\frac{t}{C^{2}} C_{i} C_{j} C_{k},
$$

where p and t are scalar function such that $p+t=1$

THEOREM (2.2) :- If $F^{n}=\left(M^{n}, L\right)$ is a Riemannian space, then $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is transformed to a semi Creducible Finsler space.

Proof :- If F^{n} is a Riemannian space then from equation (2.4), (2.11), (2.18), (2.19) and (2.22), we have

$$
\begin{align*}
& \bar{C}_{i j k}=\frac{r_{-1}^{\prime}}{2 r^{\prime} \sigma}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{j k} \bar{C}_{i}+\bar{h}_{k i} \bar{C}_{j}\right)+v \frac{\left(r^{\prime} r_{02}-3 r_{-1}^{\prime} s_{0}\right)}{2 r^{\prime} \sigma\left(r^{\prime}+v s_{0}\right) \bar{C}^{2}} \bar{C}_{i} \bar{C}_{j} \bar{C}_{k} \tag{2.37}\\
& =\frac{p}{n+1}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{j k} \bar{C}_{i}+\bar{h}_{k i} \bar{C}_{j}\right)+\frac{t}{\bar{C}^{2}} \bar{C}_{i} \bar{C}_{j} \bar{C}_{k}
\end{align*}
$$

where $p=\frac{r_{-1}^{\prime}(n+1)}{2 r^{\prime} \sigma}, \quad t=\frac{v\left(r^{\prime} r_{02}-3 r_{-1}^{\prime} s_{0}\right)}{2 r^{\prime} \sigma\left(r^{\prime}+\nu s_{0}\right)}$
Here $p+t=1$
Hence \bar{F}^{n} is a semi-C-reducible Finsler space

Definition (2.3):- A Finsler space $F^{n}=\left(M^{n}, L\right)$ of dimension $(n \geq 3)$ with $C^{2} \neq 0$ is called C-reducible if the (h) $h v$ - torsion tensor $C_{i j k}$ is of the form ([9])

$$
\begin{equation*}
C_{i j k}=\frac{1}{n+1}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right) \tag{2.39}
\end{equation*}
$$

Let $W_{i j k}=C_{i j k}-\frac{1}{(n+1)}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)$
Here $W_{i j k}$ is symmetric and indicatory tensor If F^{n} is a C-reducible Finsler space then $W_{i j k}=0$
From equations (2.4), (2.11), (2.18) and (2.19), we have

$$
\begin{align*}
& \quad \bar{C}_{i j k}-\frac{1}{n+1}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{j k} \bar{C}_{i}+\bar{h}_{k i} \bar{C}_{j}\right) \\
& =r^{\prime}\left[C_{i j k}-\frac{1}{n+1}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)\right]+a_{i j k} \\
& \text { or } \bar{W}_{i j k}=r^{\prime} W_{i j k}+a_{i j k} \tag{2.40}
\end{align*}
$$

where $a_{i j k}=\frac{1}{(n+1)} A_{(i j k)}\left\{\left(\beta_{1} h_{i j}+\beta_{2} m_{i} m_{j}\right) m_{k}-s_{0} m_{i} m_{j} c_{k}+\left(u_{0}^{\prime} r^{\prime} s_{0} m_{i} m_{j}+r^{\prime 2} u_{0}^{\prime} h_{i j}\right) C_{k \beta \beta}\right\}$
$\beta_{1}=\frac{r_{-1}^{\prime}}{2}-\frac{r^{\prime} \sigma}{n+1^{2}} \quad \beta_{2}=\frac{r_{02}}{6}-\frac{s_{0} \sigma}{n+1}$

THEOREM (2.3) :- The following statements are equivalent
(a) F^{n} is a C-reducible Finsler space
(b) \bar{F}^{n} is a C-reducible Finsler space
iff the tensor $a_{i j k}$ vanishes.

Definition (2.4):- A non Riemannian Finsler space $F^{n}=\left(M^{n}, L\right)$ with dimension $n>3$ is said to be S3-like ([8]) if the v-curvature tensor $S_{i j k l}$ satisfies.

$$
S_{i j k l}=\frac{\mathrm{s}}{(n-1)(n-2)}\left\{h_{i k} h_{j l}-h_{i l} h_{j k}\right\}
$$

Where S is the vertical scalar curvature
We define the tensor
$E_{i j k l}=S_{i j k l}-\frac{\mathrm{s}}{(n-1)(n-2)}\left\{h_{i k} h_{j l}-h_{i l} h_{j k}\right\}$
$E_{i j k l}$ vanishes iff the space F^{n} is S3-like.
From equations (2.4), (2.24), (2.32) and (2.43) we have
$\bar{E}_{i j k l}=\bar{S}_{i j k l}-\frac{\bar{S}}{(n-1)(n-2)}\left\{\bar{h}_{i k} \bar{h}_{j l}-\bar{h}_{i l} \bar{h}_{j k}\right\}$
or $\bar{E}_{i j k l}=r^{\prime} E_{i j k l}+\tau_{i j k l}$
where $\tau_{i j k l}=A_{(k l)}\left[h_{i l} K_{j k}+h_{j k} K_{i l}-\frac{r^{\prime 2} \Omega}{(n-1)(n-2)} h_{j k} h_{j l}-\frac{s_{0}}{(n-1)(n-2)}\left(S+r^{\prime} \Omega\right)\left(h_{j l} m_{i} m_{k}+h_{i k} m_{l} m_{j}\right)\right]$
$\Omega=r^{\prime} u_{0}^{\prime 2} S_{i j k l} v^{i} v^{j} v^{k} v^{l}+\left\{(n-1) K_{1}+K_{2} v\right\} / r^{\prime}-u_{0}^{\prime} v\left(K_{1}+K_{2} v\right)-2 S_{j l} u_{0}^{\prime} v^{j} v^{l}$
We have the following theorem

THEOREM (2.4) :- The following statements
(a) $F^{n}=\left(M^{n}, L\right)$ is an S3-like Finsler space.
(b) $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is an S3-like Finsler space.
are equivalent iff the tensor $\tau_{i j k l}$ vanishes.

REFERENCES

(1) E liopoulas, M.A : A generalized metric space for electromagnetic theory Acad. Roy. Belg. Bull Cl Sci. (5) 50 (1965), 986-995.
(2) Hashiguchi, M., Hojo, S. and Matsumoto, M. : On Landsberg spaces of two dimensions with (α, β) - metric. J Korean Math. Soc. 10(1973), 17-26.
(3) Hashiguchi, M. : On conformal transformation of Finsler metric. J. Math. Kyoto University 16 (1976) pp 25-50.
(4) Hashiguchi, M. and Ichijiyo : Rander's spaces with rectilinear geodesics. Rep Fac. Sci. Kagoshima University (Phy. Che.) 13(1980), 33-40.
(5) Ingarden, R.S. : On the geometrically absolute representation in the electron microseope. Trav. Soc. Sci. Lett.

Wroclaw, B 45 (1957), 60 pp.
(6) Izumi, H. Conformal transformation of Finsler spaces I \& II, Tensor, N.S. 31 and 33 (1977 and 1980) pp 33-41 and 337-359.
(7) Knebelman. M.S. : Conformal geometry of generalized metric spaces. Proc. nat. Acad, Sci. USA. 15 (1929) pp and 376-379.
(8) Matsumoto, M : On Finsler spaces with curvature tensors of some special forms. Tensor, N.S. 22 (1971), 201-204.
(9) Matsumoto, M : On C-reducible Finsler spaces, Tensor N.S. 24 (1972) pp 29-37.
(10) Masumoto, M : On Finsler spaces with Rander's metric and special forms of important tensors, J Math, Kyoto. University 14(1974) pp 477-498.
(11) Mastumoto M. and Shimada, $\mathrm{H}:$ On Finsler spaces with the curvature tensors $P_{h j i k}$ and $S_{h j i k}$ satisfying special conditions, Rep. on Math, Physics 12 (1977) pp 77-87.
(12) Matsumoto, M. and Shibata, C : On semi C-reducibility, T-tensor $=0$ and S4-likeness of Finsler spaces, J. Math. Kyoto University 19(1979) pp 301-314.
(13) Matsumoto, M. and Numata, S : On semi C-reducible Finsler spaces with constant coefficients and C2-like Finsler spaces, Tensor, N.S. 34(1980), 218-222.
(14) Matsumoto, M. : Foundations of Finsler Geometry and special Finsler spaces. Kaiseisha Press, Otsee, Japan, 1986.
(15) Prasad, B.N. On the torsion tensors $R_{h j k}$ and $P_{h j k}$ of Finsler space with a metric ds $=\left\{g_{i j}(d x) d x^{i} d x^{j}\right\}^{1 / 2}+$ $b_{i}(x, y) d x^{i}$. Indian J. pure appl. Math 21 (1990) pp 27-39.
(16) Rander's, G. : On the asymmetrical metric in the four-space of general relativity, Physics. Rev. 2 (1941) 59 pp 195199.
(17) Shibata, C., Shimada, H., azuma, M. and Yasuda, H. : On Finsler spaces with Rander's metric Tensor, N.S.

31(1977), pp 219-226.
(18) Shimada, C. : On Finisher spaces with Kropina metric. Rep. on Math, Phys. 13(1978) pp 117-128.
(19) Shimada, C. : On Finisher spaces with an (α, β) - metric. Journal of Hokkaido University of Education Vol 35(1984) pp 1-16.
(20) Singh, U.P. and Srivastava, R.K.: On h-transformation of some special Finsler spaces Indian J. Pure appl. Math 23(1992) pp 555-559.
(21) Singh, U.P. and Srivastava, R.K. : On a-transformation associated with sets of n-fundamental forms of Finsler hypersurfaces Indian J. Pure appl. Math 23(5)(1992) pp 325-332.
(22) Srivastava, R.K. : Projective changes of Finsler metrics by an h-vector. International Journal of Creative Research Thoughts Vol 11, Issue 3, March 2023.

