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Abstract 

     This paper describes the Approximate Bayes Estimate of the unknown Scale parameter of Weibull distribution-

based on failure censored data. The scale parameter of the Weibull distribution is considered with a Natural 

Conjugate Gamma Prior in order to obtain the Bayes Estimate. The Weibull parameters are derived on the 

Asymmetric Loss Function known as General Entropy loss Function (GELF) function. Lindley’s approximation 

is used to obtain Approximate Bayes estimators. The result from Bayesian method is used to compare with Bayes 

and Maximum likelihood estimate (MLE) methods. The simulation shows that the results from Bayes is better 

with Approximate Bayesian method than MLE. 

Keywords: General Entropy loss function, Maximum likelihood estimation, Bayesian Estimation, Lindley 

Approach, Weibull distribution. Failure Censoring. 

1. Introduction  

     The Weibull distribution was introduced by the Swedish physicist Weibull [1959], it has been used in many 

different fields like material science, engineering, physics, chemistry, meteorology, medicine, pharmacy, 

economics and business, quality control, biology, geology and geography. The estimation of its parameters has 

been discussed by a number of authors.[Zakerzadeh and Jafari [2014], Doostparast [2006], Modarress, Kaminskiy 

and Krivtsov [2006], Sun and Berger[1998] and Kundu and Joarder [2006] and Kundu [2007]]. In reliability 

analysis, the most useful form is the two-parameter formula for the probability density function, where the time to 

failure is calculated using the two parameters shape and scale. This is a continuous distribution, theoretically with 

time going out to infinity. The shape parameter describes how the failure rate changes over time. The scale 

parameter simply adjusts the distribution to fit over the correct range of time, stretching the distribution wider or 

narrower. Although it was first identified by Fréchet (1927) and first applied by Rosin & Rammler (1933) to 

describe the size distribution of particles in connection with his studies on strength of material. Weibull 

(1939,1951) showed that the distribution is also useful in describing the wear out of fatigue failures. Estimation 

and properties of the Weibull distribution is studied by many author’s like see Kao (1959), Johnson;Kotz; 

Balakrishnan; (1994), Lieblein and Zelen, (1956),Mann(1968). 
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         The probability density function of weibull distribution are given respectively as 

𝑓(𝑥) =
𝑝

𝜃
𝑥(𝑝−1) exp (−

𝑥𝑃

𝜃
)   ;              𝑥, 𝜃, 𝑝 > 0    ,                                                                               (1) 

Where  ′𝜃′  is the scale and ‘p’ is shape parameters. 

      The most widely used loss function in estimation problems is quadratic loss function given as  𝐿(𝜃, 𝜃) = 𝑘(𝜃 −

𝜃)2 , where 𝜃  is the estimate of  𝜃,  the loss function is called quadratic weighed loss function. If   k=1, we have  

𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2   ,                                                                                                                               (2) 

         known as squared error loss function. This loss function is symmetrical because it associates the equal 

importance to the losses due to overestimation and under estimation with equal magnitudes however in some 

estimation problems such an assumption may be inappropriate. Overestimation may be more serious than 

underestimation or Vice-versa. Ferguson (1985), Canfield (1970), Basu and Ebrabimi (1991). Zellner (1986) 

Soliman (2000) derived and discussed the properties of varian’s (1975) asymmetric loss function for a number of 

distributions.  

 In many practical situations, it appears to be more realistic to express the loss in terms of the ratio  
�̂�

𝜃
 . In this 

case Calabria and Pulcini (1994) points out that a useful asymmetric loss function is the Entropy loss   

𝐿(𝛿)𝛼[𝛿𝑃 − 𝑝 𝑙𝑜𝑔𝑒(𝛿) − 1    ; Where  𝛿 =
�̂�

𝜃
 , 

  and whose minimum occurs at (𝜃 = 𝜃) ,where p>0, a positive error (𝜃 > 𝜃) causes more serious consequences 

that a negative error and vice-versa. For small |p| value the function is almost symmetric, when both 𝜃 and 𝜃  are 

measured in a logarithmic scale and is approximately. 

𝐿(𝛿) = 𝑏[𝛿 − 𝑙𝑜𝑔𝑒(𝛿) − 1];      𝑏 > 0;               where  𝛿 =
�̂�

𝜃
 .                                                              (3) 

     In a Bayesian setup, the unknown parameter is viewed as random variable. The uncertainty about the true value 

of parameter is expressed by a prior distribution. The parametric inference is made using the posterior distribution 

which is obtained by incorporating the observed data into the prior distribution using the Bayes theorem, the first 

theorem of inference. Hence we update the prior distribution in the light of observed data. Thus the uncertainty 

about the parameter prior to the experiment is represented by the prior distribution and the same after the 

experiment is represented by the posterior distribution.  

        The paper deals with the methods to obtain the approximate Bayes estimators of the weibull distribution by 

using Lindley approximation technique(Lindley(1980)) for type-II censored samples. A bivariate prior density for 

the parameters and Entropy loss function (ELF) are used to obtain the approximate Bayes Estimators. A statistical 

software R is used for numerical calculations for different approximate Bayes estimators and their relative mean 

squared errors by preparing programs to present the statistical properties of the estimators 
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2. The Estimator 

   Let 𝑥1, 𝑥2, … … … 𝑥𝑛 be the life times of ‘n’ items that are put on test for  their lives, follow a weibull distribution 

with density given in equation (1) . The failure times are recorded as they occur until a fixed number ‘r’ of times 

failed. Let = (𝑥(1), 𝑥(2), … … … … … , 𝑥(𝑛)) , where 𝑥(𝑖) is the life time of the ith  item . Since remaining (n-r) items 

yet not failed thus have life times greater than 𝑥(𝑟). 

The likelihood function can be written as 

𝐿(𝑥|𝜃, 𝑝) =
𝑛!

(𝑛−𝑟)!
(

𝑝

𝜃
)

𝑟

∏ 𝑥𝑖
(𝑝−1)

𝑟

𝑖=1
exp (−

𝛿

𝜃
)   ;                                                                                  (4) 

where   𝛿 = ∑ 𝑥𝑖
𝑃𝑟

𝑖=1
+ (𝑛 − 𝑟)𝑥𝑟

𝑃 . 

The logarithm of the likelihood function is  

log 𝐿(𝑥|𝜃, 𝑝)   ∝   𝑟 𝑙𝑜𝑔 𝑝 − 𝑟 log  𝜃 + (𝑝 − 1) ∑ log 𝑥𝑖 −
𝛿

𝜃
 ;     

𝑟

𝑖=1
                                                (5) 

assuming that ‘p’ is known, the maximum likelihood  estimator 𝜃𝑀𝐿of 𝜃  can be obtain by using equation(5) as 

𝜃𝑀𝐿 = 𝑟/𝛿                                                                                                                                               (6) 

If both  the parameters p and 𝜃 are unknown their MLE’s  �̂�𝑀𝐿and 𝜃𝑀𝐿 can be obtained by solving the following 

equation  

𝛿 log 𝐿

𝛿𝜃
 =  

𝑟

𝜃
− 𝛿 = 0 ,                                                                                                                                (7) 

𝛿 log 𝐿

𝛿𝑃
=

𝑟

𝑃
+ ∑ log 𝑥𝑖 − 𝜃𝛿1

𝑟
𝑖=1 = 0,                                                                                                        (8) 

where 

𝛿1 = ∑ 𝑥𝑖
𝑃 log 𝑥𝑖 + (𝑛 − 𝑟)𝑥𝑟

𝑃 log 𝑥𝑟
𝑟

𝑖=1
 , eliminating 𝜃 between the two equations of (7-8) and simplifying we 

get 

𝜃𝑀𝐿 =
𝛿

𝑟
   ,                                                                                                                                                 (9)                                       

equation (7-8) may be solved for Newton-Raphson or any suitable iterative Method and this value is substituted 

in equation (8) by replacing 𝜃 with 𝜃𝑀𝐿 , we get �̂�𝑀𝐿 as 

�̂�𝑀𝐿 =
𝑟𝛿

𝛿∗
                                                                                                                                                  (10) 

where 𝛿∗ = [𝑟𝛿1 − 𝛿 ∑ 𝑙𝑜𝑔𝑥𝑖
𝑟
𝑖=1 ] 

3. Bayes Estimator of 𝜽 when shape Parameter p is known 

If p is known, assume gamma prior 𝛾(𝛼, 𝛽) as natural conjugate prior for 𝜃 as 

𝑔(𝜃|𝑥) =
𝛽𝛼

Γ𝛼
(

1

𝜃
)

(𝛼+1)

exp (−
𝛽

𝜃
) ; (𝛼, 𝛽) > 0, 𝜃 > 0 .                                                                           (11) 

The posterior distribution of  𝜃 using equation (1) and (11) we get  
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ℎ(𝜃|𝑥) =
(𝛿+𝛽)𝑟+𝛼

Γ(𝑟+𝛼)
(

1

𝜃
)

(𝑟+𝛼+1)

exp (−
(𝛿+𝛽)

𝜃
)  .                                                                                     (12) 

Under General Entropy Loss Function, the Bayes estimator 𝜃𝐵𝐸  of 𝜃 using equations (3) and (12) given by 

𝜃𝐵𝐸 =
(𝛿+𝛽)

(𝛼+𝑟)
 ,                                                                                                                                           (13)                                       

4.  The Bayes estimators with 𝜽  and p unknown 

The joint prior density of 𝜃  and p is given by 

𝐺(𝜃|𝑝) = 𝑔1(𝜃|𝑝). 𝑔2(𝑝) 

𝐺(𝜃|𝑝) =
1

𝜂Γ𝜈
𝑝−𝑣 (

1

𝜃
)

(𝑣+1)

. exp [{−
1

𝜃𝑝
+

𝑝

𝜂
}]  ; (𝜃, 𝑝, 𝜂, 𝑣) > 0,                                                          (14) 

where 𝑔1(𝜃|𝑝) =
1

Γ𝜈
𝑝−𝑣 (

1

𝜃
)

(𝑣+1)

. exp [−
1

𝜃𝑝
]    ,                                                                                   (15) 

And 𝑔2(𝑝) =
1

𝜂
exp (−

𝑝

𝜂
)      ,                                                                                                                     (16) 

The joint posterior density of 𝜃  and p is  

ℎ∗(𝜃, 𝑝|𝑥) =

1

𝜂Γ𝜈
𝑝−𝑣(

1

𝜃
)

(𝑣+1)
exp[−{

1

𝜃𝑝
+

𝑝

𝜂
}](

𝑝

𝜃
)

𝑟
∏ 𝑥𝑖

(𝑝−1)
𝑒−𝑝/𝜃

𝑟

𝑖=1

∬
1

𝜂Γ𝜈
𝑝(𝑟−𝑣)(

1

𝜃
)

(𝑟+𝑣+1)
∏ 𝑥

𝑖
(𝑝−1)

𝑟

𝑖=1
.exp[−{

1

𝜃𝑝
+

𝑝

𝜂
+

𝑝

𝜃
}]𝑑𝜃𝑑𝑝 

,                                                         (17)                                                    

Approximate Bayes Estimators  

The Bayes estimators  of a function 𝜇 = 𝜇(𝜃, 𝑝) of the unknown parameter 𝜃 and p under squared error loss is 

the posterior mean 

�̂�𝐵𝑆 = 𝐸(𝜇|𝑥) =
∬ 𝜇(𝜃,𝑝)𝐺(𝜃,𝑝|𝑥)𝑑𝜃𝑑𝑝

∬ 𝐺(𝜃, 𝑝|𝑥).𝑑𝜃.𝑑𝑝
,                                                                                                 (18) 

To evaluate (18), consider the method of Lindley approximation  

𝐸(𝜇(𝜃, 𝑝)|𝑥) =
∫ 𝜇(𝜃).𝑒(𝑙(𝜃)+𝜌(𝜃))𝑑𝜃     

∫ 𝑒(𝑙(𝜃)+𝜌(𝜃)).𝑑𝜃
 ,                                                                                               (19) 

where (𝜃) = log 𝑔(𝜃) , and 𝑔(𝜃) is an arbitrary function of 𝜃  and 𝑙(𝜃) is the logarithm likelihood function. 

The Lindley approximation for two parameters is given by 

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇(𝜃, 𝑝) +
𝐴

2
+ 𝜌1𝐴12  + 𝜌2𝐴21 +

1

2
[𝑙30𝐵12 + 𝑙21𝐶12 + 𝑙12𝐶21 + 𝑙03𝐵21 ]                                                                                                                                                   

(20) 

where  

𝐴 = ∑ ∑ 𝜇𝑖𝑗𝜎𝑖𝑗

2

1

2

1

;     𝑙𝜂𝜖 = (𝛿(𝜂+𝜖)𝑙|𝛿𝜃1
𝜂

𝛿𝜃2
𝜖);  
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  where(𝜂 + 𝜖) = 3    for    i,j= 1,2 ;       𝜌1 = (𝛿𝜌|𝛿𝜃𝑖);  

𝜇𝑖 =
𝛿𝜇

𝛿𝜃𝑖
 ;    𝜇𝑖𝑗 =

𝛿2𝜇

𝛿𝜃𝑖𝛿𝜃𝑗
  ; ∀𝑖 ≠ 𝑗 ;  

𝐴𝑖𝑗 = 𝑈𝑖𝜎𝑖𝑗   ;    𝐵𝑖𝑗 = (𝑈𝑖𝜎𝑖𝑗 + 𝑈𝑗𝜎𝑖𝑗)𝜎𝑖𝑖 ;    

𝐶𝑖𝑗 = 3𝑈𝑖𝜎𝑖𝑖𝜎𝑖𝑗 + 𝑈𝑗(𝜎𝑖𝑖𝜎𝑗𝑗 + 2𝜎𝑖𝑗
2 );  

Where 𝜎𝑖𝑗 is the (i,j)th element of the inverse of matrix {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2 s.t. 𝑙𝑖𝑗 =
𝛿2𝑙

𝛿𝜃𝑖𝛿𝜃𝑗
. All the function in 

above equations are evaluated at MLE of  (𝜃1, 𝜃2).In our case (𝜃1𝜃2) = (𝜃, 𝑝); 𝑆𝑜 𝜇(𝜃) = 𝜇(𝜃, 𝑝) 

To apply Lindley approximation (19), we first obtain 𝜎𝑖𝑗 , elements of the inverse of {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2, which can 

be shown to be  

𝜎11 =
𝑌

𝐷
,𝜎12 = 𝜎21 =

𝑄

𝐷
,𝜎22 =  

𝑍

𝐷
;                                                                                                          (21) 

where 𝑌 = (
𝑟

𝑝2 +
𝛿11

𝜃
); 𝑄 = −

  𝛿11

𝜃2 ; 𝑍 =
1

𝜃2 (−𝑟 +
2𝛿

𝜃
);     

𝛿11 = ∑ 𝑥𝑖
𝑝r

i=1
(𝑙𝑜𝑔𝑥𝑖)

2 + (𝑛 − 𝑟)𝑥𝑟
𝑝. (𝑙𝑜𝑔𝑥𝑟)2;  

and 𝐷 = [
1

𝜃2 (−𝑟 +
2𝛿

𝜃
) (

𝑟

𝑝2 +
𝛿11

𝜃
) −

𝛿11
2

𝜃4 ];          

To evaluate 𝜌𝑖 , we take the partial derivatives of the logarithm of joint prior 𝐺(𝜃|𝑝) as, 

𝐺(𝜃|𝑝) =
1

𝜂Γ𝜈
𝑝−𝑣 (

1

𝜃
)

(𝑣+1)

. exp [{−
1

𝜃𝑝
+

𝑝

𝜂
}]  ; (𝜃, 𝑝, 𝜂, 𝑣) > 0,                                     

⇒ log[𝐺(𝜃|𝑝)] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑣𝑙𝑜𝑔𝑝 − (𝑣 + 1)𝑙𝑜𝑔𝜃 −
1

𝜃𝑝
−

𝑝

𝜂
 

Therefore 

𝜌1 =
𝜕𝜌

𝜕𝜃
=

1−(𝑣+1)𝜃𝑝

𝜃2𝑝
   ;                                                                                                                           (22) 

and 

𝜌2 =
1−𝜈𝜃𝑝

𝑝2𝜃
−

1

𝜂
   ;                                                                                                                                  (22a) 

Further more  

𝐿21 = −
2

𝑄3
𝛿11 ; 𝐿12 =

𝛿12

𝜃2
 ; 𝐿03 = − (

2𝑟

𝑝3
+

𝛿13

𝑄
);                                                                                (22b) 

𝑎𝑛𝑑  𝐿30 =
2

𝑄3
(

3𝛿

𝑄
− 𝑟) ;                                                                                                                       (22c) 

where     𝜇 = 𝜇(𝜃, 𝑝) ; (𝑖 ≠ 𝑗) = 1,2 

𝐴12 = 𝜇1𝜎11 + 𝜇2𝜎21;    𝐴21 = 𝜇2𝜎22 + 𝜇1𝜎12;                                                                                  (22d) 
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𝐵12 = (𝜇1𝜎11 + 𝜇2𝜎12)𝜎11 ;   𝐵21 = (𝜇2σ22 + 𝜇1𝜎21)𝜎22 ;                                                                (22e) 

𝐶12 = 3𝜇2𝜎11𝜎12 + 𝜇2(𝜎11𝜎22 + 2𝜎12
2 );                                                                                              (22f) 

𝐶21 = 3𝜇2𝜎22𝜎21 + 𝜇1(𝜎11𝜎22 + 2𝜎21
2 );                                                                                             (22g) 

Substituting the above values in equation (20),we get 

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇(𝜃, 𝑝) +
1

2
[𝜇11𝜎11 + 𝜇21𝜎21 + 𝜇12𝜎12 + 𝜇22𝜎22] + 𝜌1(𝜇1𝜎11 + 𝜇2𝜎21) + 𝜌2(𝜇2𝜎22 +

𝜇1𝜎12) +
1

2
[𝑙30 (𝜇1𝜎11 + 𝜇2𝜎13)𝜎11 + 𝑙21(3𝜇1𝜎11𝜎12) + 𝜇2𝜎11𝜎22 + 2𝜇2𝜎12

2 ) + 𝜇12(3𝜇2𝜎22𝜎21 + 𝜇1𝜎11𝜎22 +

2𝜇1𝜎21
2 + 𝑙03(𝜇2𝜎22

2
 
𝜇1𝜎21𝜎22)] ,                                                          (23) 

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇(𝜃, 𝑝) +
1

2
[𝜇11

𝑌

𝐷
+ 𝜇21

𝑄

𝐷
+ 𝜇12

𝑄

𝐷
] + 𝜇22

𝑍

𝐷
+

1−𝜃𝑝(𝑣+1)

𝜃2𝑝
(𝜇1

𝑌

𝐷
+ 𝜇2

𝑄

𝐷
) + 𝜌2𝜇2𝜎22 + 𝜌2𝜇1𝜎12 +

1

2
𝑙30𝜇1𝜎11

2 +
1

2
𝑙30𝜇2𝜎11𝜎12 +

3

2
𝜇1𝑙21𝜎11𝜎12 +

1

2
𝑙21𝜇2𝜎11𝜎12 +

1

2
𝑙212𝜇2𝜎12

2 +
1

2
𝑙123𝜇2𝜎22𝜎21 +

1

2
𝑙03𝜇1𝜎21𝜎22                                                                                                              

(24) 

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇1[
𝑌

𝐷
{

1−𝜃𝑝(𝑣+1)

𝜃2𝑝
} + 𝜌2𝜎12 +

𝑙30

2
𝜎11

2 +
3

2
𝑙21𝜎11𝜎12 +

𝑙12

2
𝜎11𝜎22 +

𝑙03

2
𝜎21𝜎22]  +

𝜇2[
𝜃

𝐷
.

(1−𝜃𝑝(𝑣+1))

𝜃2𝑝
+ 𝜌2𝜎22 +

𝑙30

2
𝜎11𝜎12 +

1

2
𝑙21𝜎11𝜎22 + 𝑙21𝜎12

2 +
3

2
𝑙12𝜎22𝜎21 +

𝑙03

2
𝜎22

2 ] + 𝜇(𝜃, 𝑝) + 𝐴,                                                                                 

(26)                                                                  

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇(𝜃, 𝑝) + 𝐴 + 𝜇1𝜙1 + 𝜇2𝜙2  ,                                                                                      (25) 

where 

𝜙1 =
1

𝜃2𝐷2 [ 
𝑌𝐷

𝑝
(1 − 𝜃𝑝(𝑣 + 1)) − 𝛿11𝐷 {

1−𝑣𝜃𝑝

𝜃2𝑝
−

1

𝜂
}+

𝑌2

𝜃
(

3𝛿

𝜃
− 𝑟) + +

3

𝜃3 𝜎11
2 𝑌 +

1

2
𝛿12𝑌𝑍 

+
𝛿11

2 𝛿12

𝜃4 +
1

2
(

2𝑟

𝑝3 +
𝛿13

𝜃
) 𝛿11 𝑍]      ;                                                                                                           (26)                                                     

𝜙2 =
1

𝜃4𝐷2 [
({𝜂(1−𝑣𝑝)−𝜃2𝑝)}𝑧𝐷𝜃2

𝑝𝜂
−

𝛿11𝐷(1−𝜃𝑝(𝑣+1))

𝑝
−

3

2
(

3𝛿

𝜃
− 𝑟 )

𝑟𝛿11

𝜃
− 𝛿11𝜃𝑌𝑍 −

2𝛿11
3

𝜃
−

3

2
𝛿11𝛿12𝑍 −

𝑍2𝜃3

2
(

2𝑟𝜃+𝛿13𝑝3

𝑝3
),                                                                                                                                      (27) 

All the function of right hand side are to be evaluated for 𝜃𝑀𝐿 and �̂�𝑀𝐿 . 

Approximate Bayes Estimators Under Entropy loss function  

With equations(3),(23)-(27), the Approximate Bayes estimators under Entropy Loss Function, using Lindley's 

approximation are given as 

Special Cases  

(i)  substituting   𝜇(𝜃, 𝑝) =
1

𝜃
  in equation(20) then; 

The approx. Bayes Estimator of  𝜃, under Entropy loss function is 

𝜃𝐴𝐵𝐸 = [𝐸ℎ (
1

𝜃
)]

−1

 

http://www.ijcrt.org/


www.ijcrt.org                                                   © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882 

IJCRT2312703 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g277 
 

which gives 

𝜃𝐴𝐵𝐸 = 𝜃 [1 +
𝑦

𝜃2𝐷
−

𝜙1

𝜃
]

−1

;                                                                                                                   (28) 

(ii) substituting   𝜇(𝜃, 𝑝) =
1

𝑝
  in equation(22) then  ; 

The approximate Bayes estimator of p under Entropy loss function is 

 �̂�𝐴𝐵𝐸 = [𝐸ℎ (
1

𝑝
)]

−1

, 

which gives 

�̂�𝐴𝐵𝐸 = 𝑝 [1 +
𝑍

𝑝2𝐷
−

𝜙2

𝑝
]

−1

;                                                                                                                   (29)                                                                                       

5.  Simulations and Numerical Comparison 

 

   The simulations and numerical calculations are done by using R-Language programming and results are presented 

below. 

 

1. We have taken the different sizes of samples n=25, 35, 45, 55 and 80 with failure censoring. The Approximate 

Bayes estimators under General Entropy loss function(GELF), the MLE's of 𝜃 , the Bayes estimators under GELF 

and their respective MSE's  are obtained  by repeating the steps 2000 times, parameters of prior distribution 𝛼 =2 

, 𝛽 =3 and hyper parameters of joint prior distribution 𝑣= 10 and    𝜂 = 35 with Weibull parameters 𝜃 = 2  and 

p=1.5. The estimated values and their MSE’s (in square parenthesis) are presented in the tables (1). 

                                                       Table(1) 

Mean and MSE's of 𝜽and p 

(𝜃 = 2, 𝑝 = 1.5, 𝑣 = 10 , 𝜂 = 35) 

n r 𝜃𝑀𝐿 𝜃𝐵𝐸 𝜃𝐴𝐵𝐸 

25 20 1.150681 1.188578 1.878511 

  [0.000360671] [0.0003292025] [7.37974e-06] 

35 30 1.804628 1.751401 2.616886 

  [1.90850e-05] [1.104086e-05] [0.0001902745] 

45 40 1.669568 1.879024 2.661863 

  [5.45926e-05] [5.151276e-05] [0.000290217] 

55 45 2.023018 1.999028 2.728531 

  [2.64916e-07] [4.726138e-10] [0.000197525] 

80 60 3.953938 0.7554244 2.796781 

  [0.001908936] [0.000774484] [0.000317430] 

 

Conclusions 

1. Table (1) presents the MLE of parameter 𝜃, Bayes estimates of 𝜃 under GELF (for known p) , Approximate 

Bayes estimate GELF (for 𝜃 and p both unknown) and their respective MSE's. It also presents the mean and MSE’s 

of p and Approximate Bayes estimates of p (for 𝜃 and p both unknown) under GELF. The estimates of 𝜃 have 

minimum MSE's for sample size n=25, as the sample sizes increase it started decreasing. At sample size n≥ 80 ,it 

shows the tendency of increasing MSE’s .We observe here that the effective range of sample size ‘n’ for better 
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estimate of parameters are as (i) For  𝜃𝑀𝐿 and 𝜃𝐴𝐵𝐸,the effective range of n is  25-80, (ii)For the other esti-

mates  𝜃𝐵𝐸   ,the MSE's continue to be increasing, so their effective sample size range is much larger than 𝜃𝑀𝐿 and 

𝜃𝐴𝐵𝐸. Among all the estimators 𝜃𝐴𝐵𝐸  under GELF has the lowest MSE.  
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