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Abstract- Cancer is considered as the most dangerous disease which is the leading cause of death in all over 

the world. Exact knowledge of tumor growth is important in cancer treatment. Effective mathematical 

modelling help researchers to understand the growth pattern of cancer cells and their optimal control 

strategies. 

In this paper, we shall study various Mathematical Models (using ordinary differential equations) to analyze 

cancer-immune interactions, and in particular, immune-induced tumor dormancy. We shall also evaluate 

how the prediction of tumor growth changes when chemotherapy or other treatments are induced. 

 

I.  INTRODUCTION TO CANCER-IMMUNE INTERACTIONS 

 Tumor growth within a host is defined by the interactions the cancer cells have with the local 

environment, including many functionally different immune cells. The intercellular signaling between 

cancer and stromal cells creates an ever - evolving milieu of cytokines that determine whether the immune 

cell function will be tumor-promoting or tumor – inhibiting [1] - [6] – and thus the overall tumor growth 

dynamics. Indeed, growth dynamics vary among lesions within a host [7], across hosts, and following 

treatments [8], depending on inherent variability in factors such as the sensitivity of cancer cells or the 

response of host cells to communication signals [9], [10]. 

 Immune-induced tumor dormancy is a transient state of cancer progression during which the 

abnormal cells and micro environment may evolve over time, but tumor mass remains constant [11]-[13]. 

Dormancy can occur at any stage and may terminate in either tumor elimination or re-growth [14]. In some 

instances, the dormancy may persist throughout the patient’s lifespan, resulting in an asymptomatic cancer 

[15]. Immunotherapy aims to boost the cytotoxic immune response to eliminate the disease, but can result in 

variable and non-intuitive response dynamics, including dormancy or even increased tumor mass prior to 

regression [8]. 

 An analogy to aid understanding of these complex tumor dynamics lies in the motion of a tumor 

mass rolling within an immune “potential well”, where escape to one side represents tumor elimination, 
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escape to the other represents tumor progression, and the “trapped” motion within the well represents tumor 

dormancy [16], see Fig. 1. Understanding the dynamics of tumor growth within a patient is important for 

treatment planning, especially for secondary or tertiary treatments where environmental regulation is 

aberrant [9]. 

 

Figure 1. Visualization of cancer-immune dynamics as motion within a potential well (derived from Fig. 

10.1 in [16]). 

 

II.  RESULTS AND INSIGHTS FROM APPLYING THIS METHOD 

 With this model we demonstrate how tumor dormancy is a transient state that necessarily ends in 

either tumor elimination or escape [9], see Fig. 2. This result agrees with real world observations and 

contrasts the standard (mathematical) view of dormancy as a stable equilibrium [16]-[21] that persists for a 

long time. This model also captures known non-intuitive tumor dynamics such as accelerated repopulation 

[22]-[24] and anomalous periods of growth prior to regression that have been observed post tumor treatment 

[8]. 

The model also demonstrates the effect of cell-level sensitivity to environmental regulation, showing how 

inherent variability of response to signals can explain disparate patient outcomes for similar treatment 

protocols [9], [10]. The method is proposed as a proxy to help analyze patient variability and treatment 

outcomes to improve understanding of why specific treatments work for some patients but not others. 

 

Figure 2. Possible tumor growth profiles including elimination, escape, and transient periods of tumor 

dormancy. 
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Figure 3. Diagram of cancer-immune interactions that modulate growth dynamics for both cell populations. 

 

III.  QUICK GUIDE TO THE METHODS 

 The method of applying ODEs to study cancer-immune dynamics requires, in the most basic form, 

prescribing equations for the rate of change over time of the cancer cell and immune cell populations, thus 

creating a system of two ODEs that are solved simultaneously. Several reviews can be found in the literature 

[16], [25]. 

 In this approach [9] we do not model specific cytokine concentrations, but rather prescribe 

functional forms that encompass the net result of many cytokines on the bulk population. This allows for a 

minimally parameterized model that is easier to validate and more amenable to demonstrating the 

fundamental dynamics governing the cellular interactions. 

 Fig. 3 depicts the main mechanisms by which the cancer and immune cells interact. Each population 

has a net growth rate that is defined as the birth rate less the death rate for that population. Immune cells can 

promote cancer growth through inflammatory processes that increase blood flow and stimulate 

angiogenesis, bringing growth factors and nutrients to the tumor site [3]. They can also induce apoptosis 

through cytotoxic action [4], [26]. Cancer cells, on the other hand, can inactivate immune cells and develop 

mechanisms to evade immune detection [12], [27], [28]. They also recruit immune cells to the tumor by 

disrupting tissue architecture and producing chemokines and cytokines [3]. 

 In what follows, we prescribe equations to describe the growth of two cell populations over time, 

cancer cells C(t) and immune cells I(t). The main assumption of this model is that the cell populations are 

homogenous, allowing any spatial dependence to be neglected. Each population is assumed to grow in a 

self-limited logistic manner with carrying capacities (or maximum possible population sizes) KC for cancer 

and KI for immune. 

 

A.  The Governing Equations 

 A simple translation of cancer-immune interactions into mathematical form could be along the lines 

of: the rate of change of the cancer population consists of a net growth term, less an immune-induced 

predation term, plus an immune-induced stimulation term. Such an additive formulation, however, does not 

account for the manner in which predation and stimulation occur – which can be tied directly to the ability 

of cells to sense signals from their environment and proliferate, quiesce, or die accordingly. We thus 

propose an integrated approach that allows immune actions to modify the net growth term through the 

following form: 

    1 1
C

dC C
I ,C C

dt K

  
     
    

      (1) 

 Here μ and  are parameters that describe the growth and sensitivity of cancer cells to environmental 

regulatory signals, and Ψ is a function that can describe both immune inhibition and stimulation of cancer 

growth. An example of a predatory / inhibitory functional form is 
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   10 1
I

I ,C log I
C I



 

 
      

  
     (2) 

where θ, β, ϕ and ε are immune predation parameters. 

 The immune population is also described by a modified logistic growth formulation, 

     1
t

dI I
I rC

dt K

 
   

 
       (3) 

where λ is the growth rate and r is a recruitment parameter. 

An extension of this model allows the cancer to modify its own carrying capacity via [9], [29] 

        
2

3C
C

dK
pC t qK t C t

dt
        (3) 

where p and q are growth stimulation and inhibition constants, respectively. We may further extend this 

model to allow carrying capacities to depend on both populations [10], (capturing, for example, immune 

stimulation through inflammation and angiogenesis) and generally describe them by  CdK
f I ,C

dt
  and 

 IdK
g I ,C

dt
 .  

 Parameter values should be determined by fitting the model to experimental or clinical data. 

Sensitivity analyses can then be used to identify significant determinants of the dynamics in question and 

‘prune’ the formalism of less informative parameters. 

 

B.  When this method is useful 

 We have described how ODEs can be used to track the evolution over time of two populations of 

cells as they grow within a host. These methods can be used to describe any time evolution, ranging from 

cellular mass to protein concentration and beyond. Using ODEs to model a biological question requires that 

there is only one independent variable (such as time) and that all others (such as space) can be neglected. In 

this case, the structure can simplify over the alternative partial differential equation framework that would 

be needed if space and time were important, and provide rapid and efficient insights into how the complex 

immune-cancer dynamic might respond in the clinical context. 

Preliminaries: growth laws and tumor growth 

In the literature, various growth functions were developed which are used to study widely on the 

platform of ecology and epidemiology. The growth of a tumor can be modeled through first-order 

ordinary differential equations by examining the change of tumor volume over time with an initial 

assumption. The initial condition has been used in most tumor models. Primarily, the tumor growth 

is designed by considering either the exponential or the logistic growth laws (Wang. 2018; Murray, 

2007; Tsoularis and Wallace, 2002). The commonly used exponential growth differential equations 

are- 

 Malthusian model:  0
dV

rV, r .
dt

   

 Power law model: 0 0bdV
rV , r , b .

dt
    

 Migration model: 0 0
dV

rV K, r , K .
dt

     
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 Gompertz model: 0 0tdV
ae V,a , .

dt

     

Discussion of these models and their graphical solutions are discussed in Appendix A. 

The exponential models describe the tumor growth satisfactorily for a certain amount of time. But 

the volume tends to infinity if growth rate is positive over time which is not realistic. The volume 

can only increase to a certain level since there are limited resources that are necessary for cell 

growth and then its gets stable which can be fairly described by the logistic models. The Von 

Bertalanffy logistic model and the generalized case are discussed in the following subsection while 

the logistic and Richards’ growth functions are presented in Appendix A. 

Von Bertalanffy model 

Assume that growth is proportional to surface area, since nutrient enters through the surface, and 

that death is proportional to the tumor size. The model is also known as the surface rule model. It 

has been successfully applied to describe human tumor growth (Tsoularis and Wallace, 2002). 

  
2

3
dV

aV bV
dt

            (1)  

Where a is the growth parameter and b is the growth deceleration parameter. The solution of (1) is 

given by:  

     
 0

3
1 1

3 3
0

t ta a
V t V e .

b b

   
    
   

 

We can show the behavior of the Von Bertalanffy model in the following figure 1. 

 

Figure 1: Graph of Von Bertalanffy model (1) with t0 = 0 days, a = 1.6 × 10-7 m3day-1, b = 0.2 × 10-7 

m3day-1 and K= a/b. 

It may be observed in Figure 1 that by taking the initial cell volume between 0 and  the cell volume 

increases over time the gets stable at 
3

a
V

b

 
  
 

. Hence, 
3

a
V

b

 
  
 

 is the saturation level of the model. 

If we take initial volume 
3

0

a
V

b

 
  
 

 the volume reduces exponentially over time and is stable at 

3
a

V
b

 
  
 

. Also if we take 
3

0

a
V

b

 
  
 

 the volume remains constant. 
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Optimal control 

In this section, a model is developed and analyzed with an aim to discuss different strategies to cure 

cancer. Here we study the optimal control for chemotherapy. This optimal control helps reduce the 

tumor volume and the side effects of the drugs over a given period of time. Fister and Panetta 

(Panetta and Fister, 2000) used an optimal technique. There are several models describing 

chemotherapeutic killing of cancer cells. The analysis presented there is based on the skipper’s log-

kill hypothesis, which states that killing of cancer cells by injecting chemotherapeutic drugs is 

proportional to the tumor at time t. the results for this hypothesis using the Gompertzian growth 

model (Lenhart and Workman, 2007) have already be presented in the earlier section. If V(t) is the 

tumor volume at time t, the model can be described by: 

           1
dV

rV t V t u t V t
dt

         (12) 

Where r is the natural growth rate of the tumor cell, δ is the magnitude of the dose and u(t) is the 

effect and strength of the drug. If u(t) = 0, there is no drug effect and if u(t) > 0, the strength of the 

drug effect is considerable. 

 

Figure 8: Dynamics of tumor and NK cells with different values of A2. 

 

Figure 9: Dynamics of dendritic and CD8+ T cells with different values of A2. 
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The objective function can be used minimize the cost of the control, the possible side-effects and 

the tumor volume V over a time interval. Finally, we require u(t)  0 for all t. considering a 

quadratic objective function, the minimization problem can be defined as follows:   

     
2 2

0

T

u
min aV t u t dt  

Subject to                 01 0V ' t rV t V t u t t ,V V      

    0u t   

Where a is a positive weight parameter. If we solve this problem we can generated different graphs 

using different values of the parameters. The effects of drugs over time are illustrated in figure. 

Using the values of the parameters as r = 0.3, δ = 0.45, V0 = 0.975 and T = 20, we have compared 

them by changing the value of a in the same optimization problem. It is observed that volume of the 

tumor reduces with increase in a. 

Also we can observe that results by changing values of the initial density and time periods. We 

compare the graphs forV0 = 0.975 and V0 = 0.6, also taking a longer period of time, T = 40.  

One can see that after a short period of time, the result do not change significantly. The reduction 

rate of the tumor volume is faster for first few days, then it slows down and after sometimes, it 

becomes uniform. We can also see from the above figure that long time treatment results are similar 

to those for short time. 

If we change the dosage δ of the drug by taking the parameters, r = 0.3, a = 3, V0 = 0.8, T = 20 and 

δ = 0.3 and 0.5, we notice that for higher dosage of drugs, reduction of tumor volume is faster. For 

= 0.5 we notice much more reduction in tumor volume than for = 0.3. 

The observations for the study reveal that the time period of the treatment does not effect the 

reduction process and also the initial volume of tumor. The reduction process is very slow during 

the first few days. 

 

Figure 10: Dynamics of tumor cells with different values of VL and KT, KN, KD and KL. 
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Figure 11: Dynamics of tumor cells and CD8+ T cells with different values of v3. 

 

But the dosage of medicine plays a vital role in the reduction process. The higher the dose the faster 

and better is the result. In this case, tumor size is considerably reduced in the first few days and then 

the process slows down. Therefore we can say that the optimal control is a high drug dosage 

strategy to reduce cancer, which is common in cancer treatment these days. 

 

A Appendix 

Exponential and logistic models 

The growth of tumor can be modeled through first-order ordinary differential equations by 

examining the change of tumor volume V over time t with an initial volume V(0) = V0. This initial 

condition has been used in most tumor models. Some exponential models that can be conveniently 

used to describe tumor growth are discussed below. Later in this section, we have presented the 

discussion of logistic models and their biological feasibility. 

Malthusian model 

This is the simplest model to describe tumor growth. The growth is proportional to the population 

of tumor cells. This model is often used to describe a single species population’s growth rate. The 

model has the following form Murray (2007): 

    
dV

rV
dt

        (A.1) 

 Where V is the volume of the tumor, r is the growth parameter and t represents time. The 

solution of equation (A.1) is given by: 

     
0

rte
V t V   
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The behavior of Malthusian model (A.1) can be seen from the following figure A.1: 

 

Figure A.1: Graph of Malthusian model (A.1) with initial volume 4 3

0 5 10V m  . 

It is observed in Figure A.1 that the volume of the tumor over time grows exponentially if the 

growth parameter r is positive. If r is negative, it decreases exponentially and if r is zero, the cell 

volume remains constant. 

Power law model 

 The generalization of Malthusian model can be described by the power law model. It was 

first introduced by Mendelsohn in 1963. This model has the following form Wang (2018): 

     bdV
rV

dt
       (A.2) 

 Where r is the intrinsic growth rate. If b = 1, we get Malthusian model which we have 

already discussed. This equation has the solution of the following form: 

    
1

1 1

0 01b bV t V r b t t        

Now we can draw the graph from this solution using different value of b. For b = 1, we get the 

Malthusian model. We consider here two cases for b > 1 and b < 1 and analyze the effect of the 

exponent in the model. 

 

Figure A.2: Power law model (A.2) with initial volume V0 = 5 × 10-4 m3 and the exponent, b = 1.05 

(left) and b = 0.9 (right). 
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 In Figure A.2, we can see that the graphs are different for b = 1.05 and b = 0.9, therefore the 

model behaves differently. For b = 1.05 we can observe that the volume increases faster for r > 0, 

and it decays at faster rate for r < 0. For b = 0.9, we see that the growth rate of tumor volume is 

slower than the case of the other graph. For r > 0 the volume still increases exponentially but at a 

slower rate and for r < 0 the volume reduces slowly. So, we can conclude that the growth rate gets 

faster with increase in the value b. 

 

Migration model 

Migration model can be described by a population that obeys an exponential law of growth with 

migration. Migration can affect the cell volume in two different ways. It can increase the volume by 

adding newly affected cells or it can reduce the cell volume, which can happen when the tumor cells 

die. This can be described by following equation Murray (2007) : 

     
dV

rV K
dt

        (A.3) 

where r is the growth rate and the migration rate is K. When K is positive, more and more normal 

cells transform into tumor cells and when K is negative the tumor cells die. Now to solve the 

equation (A.3), let V = u – K/r where r  0. Then we have the solution: 

 
 0

0

K
r t t

r
K

V t V e
r

  
  
 

 

Plots of the solution for different migration rates are shown below: 

 

Figure A.3: Graph of migration model (A.3) with various migration rates. 

 By taking the growth rate r = 10-7 m3 day-1 and initial population V0 = 5 × 10-4 m3 we can 

generate the graphs in Figure A.3 over time t = 0 to t = 10 days. Here we can see that if the 

migration rate is positive, the volume increases at a faster rate than in the case when the migration 

rate is negative.  
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For different migration rates, we can explain the behavior of the model (A.3). 

 

Figure A.4: Graph of migration model (A.3) with K = 3 × 10-5 m3 day-1 and r = - 5 × 10-7, r = 2.5 × 

10-6 m3 day-1. 

 

 From the above graphs A.4 we observe that for growth rate r < 0 the cell volume V is 

decreasing over time and  
K

V t
r

  as t  . Also we see that, if we take the initial volume 0

K
V

r
 

, the system gets stuck. Although the point, 
K

V
r

   is unstable, since the system moves away when 

we take initial volume near this point. Again for r > 0 we observe that, the cell volume explodes and 

tends to ∞. 

 

GOMPERTZ MODEL 

 The Gompertz model exhibits an exponential decay of the growth rate. It has been 

successfully used to model breast and lung cancer growth. It is a sigmoid function (function that has 

S shaped curve) which describes growth as being slowest at start and end. It has been modified 

suitably for use in biology, with regard to detailing populations. The model can be described by the 

following form Wang (2018); Tsoularis and Wallace (2000): 

     tdV
ae V

dt

       (A.4) 

where a is the intrinsic growth parameter and  is the parameter of growth deceleration. 

Integrating both sides by taking limits from V0 to V and t0 to t, we get: 

 
 0

0

t te e

V t V e V

 


  
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For t0 = 0 the graph of this model (A.4) is shown below: 

 

Figure A.5: Graph of Gompertz model (A.4) with  = 1 × 10-7 m3day-1 and V0 = 10-4 m3. 

 

 The volume of tumor increases exponentially over time when the growth rate a > 0 as seen in 

Figure A.5. Also we can see that the volume decreases exponentially over time if a < 0 and volume 

is constant if the growth rate is 0. 

 

LOGISTIC MODEL FOR POPULATION GROWTH 

 The model assumes a linear decrease of the relative growth rate with population size. The 

maximum size is limited by a carrying capacity K. The model is described by  Murray (2007): 

     1
dV V

aV
dt K

 
  

 
     (A.5) 

Where a is the coefficient of cell proliferation. We used the carrying capacity, K = a/b where, b is 

the population deceleration rate. The solution of equation (A.5) is: 

 

0

1 1 at

K
V t .

K
e

V




 

  
 

 

The equation is called the logistic law of growth. We can analyze the behavior of the model (A.5) 

and from the solution is presented in figure A.6. 
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Figure A.6: Graph of logistic model (A.5) with a = 5 × 10-7 m3day-1 and K = 5 × 10-4 . 

 If we take the initial volume between 0 and K/2, we can see that the volume increases 

exponentially over time and it gets stable at K. But if we consider the initial volume between K/2 

and K the population attains stability faster. If the initial volume is greater than the carrying 

capacity, then cell volume decreases due to lack of nutrition and therefore the stable position K is 

attained quickly. 
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