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Abstract: Numerous human-centric applications, including financial services, accounting, tax computation,
and currency conversion, rely heavily on decimal computation. A large number of scholars are therefore
interested in the development and use of radix-10 arithmetic units. Multiplication isn't only one of the most
common but also one of the most complicated and power-hungry operations in fundamental decimal
arithmetic. Consequently, this study delves into this matter and examines a generic design technique that
minimizes power/energy consumption by localizing switching activity, all while maintaining goal
performance. In the same way that Karatsuba's algorithm decomposes a digit multiplier into smaller ones, this
approach also allows for varying sizes of the multiplicand and multiplier. Using symmetric and asymmetric
divisions of varying sizes, we derive designs with unique properties. The suggested designs surpass prior
options for decimal multiplication and provide intriguing area-delay numbers when tested with operands
which have 16 digits long, in comparison to traditional binary multipliers. Verilog HDL will be used for its
development. To carry out the simulation and synthesis, the Xilinx ISE tool is used.

Index Terms - Karatsuba's algorithm, Decimal computation, digital arithmetic, low power design and parallel
multiplier.

|. INTRODUCTION

Decimal calculation has made a comeback, even though binary arithmetic functions were implemented
quickly and effectively. The advancements in very large scale integration (\VVLSI) technology, the proliferation
of decimal data in human-centric applications (e.g., financial, commercial, scientific, and internet-based), as
well as the inability of software implementations to meet high-performance standards all contributed to this

revival. Lastly, there is no longer an exact binary code for certain decimal fractions (e.g., 0.2). The first one
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enabled the hardware implementation of complicated functions, whereas the other two encouraged designers
to include device-implemented decimal arithmetic units to handle the challenge of processing large amounts
of data with sufficient accuracy and speed. In light of decimal arithmetic's critical role, the most recent update
to the IEEE 754 code for floating point arithmetic includes support for decimal representations and associated
operations. Additionally, decimal arithmetic is advancing because to collaborative efforts in both academia
and business. A number of processors with specialized decimal arithmetic units have been introduced, one of
which being the IBM eServer z900. In contrast, decimal arithmetic methods and hardware units, including
decimal addition, have become the subject of a great deal of academic literature.

Hardware that can do decimal floating-point (DFP) calculations is starting to attract attention. Upcoming
financial, commercial, while user-oriented applications will have significant performance expectations, and
software DFP solutions, although meeting accuracy requirements, are approximately one order of magnitude
slower that hardware equivalents. Efforts to establish a norm for decimal arithmetic have also been made. In
particular, the DFP arithmetic standards included in the 2008 edition of the IEEE 754 Standard on Floating-
Point Arithmetic (IEEE 754-508) may be used in hardware, software, or a hybrid of the two. One example is
the IBM z9 architecture, which uses microcode to achieve DFP and uses specialized hardware for the most
fundamental operations. The IBM z10 mainframe processor as well as the workstation and server-oriented
IBM Power6 microprocessor both come with completely compliant IEEE 754-2008 DFUs. Increasingly
efficient methods of decimal multiplication are being demanded by the next generation of high-performance
DFUs. The present hardware implementations were underperforming, despite the fact that this remains a
crucial and often performed process. For optimal efficiency, the vast majority of binary floating-point units
use parallel binary multipliers. The poor performance of expressing decimal values in systems that utilize
binary signals combined the difficulty of generating multiplicand multiples make decimal multiplication even
harder to accomplish. Because of these problems, producing and reducing incomplete goods is more difficult.
So, although decimal adders are practically as efficient as binary adders due to their parallel construction,
decimal multipliers for commercial implementations remain sequential. Due to their reliance on iterative
algorithms involving multiplication of decimal integers, some implementations exhibit subpar performance.
There are a number of recent proposals for methods that either generate partial products or enhance sequential
decimal multipliers. New methods for multioperand BCD addition employing tree-like (parallel) structures
have been suggested in various other recent research.

Digital Signal Processing (DSP) programs often use complicated mathematical procedures. Improving the
fused Add-Multiply (FAM) operator's design to make it more efficient is the main goal of this effort. We look
at methods to directly encode the Modified Booth (MB) form of the sum of two integers. Through the use of
three distinct methods in FAM designs, they provide a systematic and efficient recoding methodology and
investigate them further. The suggested method significantly reduces the FAM unit's power consumption,
hardware complexity, and critical latency as compared to FAM devices that employ current recoding

algorithms.
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Il. LITERATURE SURVEY:
High speed speculative multipliers based on speculative carry-save tree by A. Cilardo et al.

The article suggests a new way to construct integer multiplication circuits using speculation, a method that is
quicker but sometimes incorrect, and that only uses a multi-cycle error correction circuit when a mistake
occurs relatively seldom. Speculative compression, partial product recoding, and partial product partitioning
are the 3 stages that make up the new speculative carry-save reduction tree that the suggested speculative
multiplier employs. This speculative tree outperforms a traditional tree employing full-adders & half-adders
in terms of speed because to the usage of speculative (m:2) counters, where m > 3. Additionally, the study
presents a method for automatically selecting appropriate speculative counters by considering both the
mistake probability and latency. An error correcting circuit including a fast speculative carry-propagate adder
finish off the speculative tree. Speculative multipliers for different operand lengths have been generated with
the UMC 65 nm library. Whenever a lot of speed is needed, speculation works better than traditional
multipliers. In situations when a high speed operation is necessary, speculative multipliers not only enable
obtaining a greater speed than traditional equivalents, but they are also very effective in terms of power
dissipation.

Multipliers of two's complement have applications in many contexts. Here we provide a method that, without
increasing the latency of the partial product generation step, may decrease the maximum height for the partial
product array formed by a radix-4 Modified Booth Encoded multiplier by one row. Because of this cut, normal
layouts and the partial product array might be able to be compressed more quickly. While this method is useful
in multiplier design generally, it has the utmost importance in high-performance embedded cores' low bit-
width twao's complement multipliers. Any size square or m \times n rectangle multipliers may be handled by
extending the suggested approach, which is also applicable to larger radix encodings. Results from a
preliminary theoretical analysis plus logic synthesis demonstrated the suggested approach's effectiveness in

area and latency, therefore we compared it to other potential alternatives.

Design of fixed-width multipliers with linear compensation function by N. Petra et al

By delving deeply into the impact of quantization of coefficients, this research zeroes down on fixed-width
multipliers using linear compensation functions. By manipulating the quantization technique, one may derive
new fixed-width multiplier topologies that exhibit distinct trade-offs between hardware complexity and
accuracy. The two most successful topologies are singled out. While the initial one relies on uniform
guantization of coefficients, the second one employs a nonuniform quantization approach. Compared to earlier
solutions, the new fixed-width multiplier topologies are more accurate and get closer to the theoretical lower
limit.

Sign-magnitude encoding for efficient VLSI realization of decimal multiplication by S. Gorgin and G.
Jaberipur

It is usual practice to choose intermediate partial products (IPPs) among a list of precomputed radix-10 X
multiples when performing the complicated operation of decimal X x Y multiplication. By converting the

digits of Y into the one-hot representation of the signed digits in the interval [-5,5], some tasks only need [0,
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5] x X. There will be an additional IPP, but the selection rationale will be lessened. IPPs are often represented
using Two's complement signed-digit (TCSD) encoding, which requires dynamic negation to generate the
recoded digits of Y in [-5, -1] via one xor per bit of X multiples. The research presented here shows that for
16-digit operands, circuitry is possible to begin a partial product reduction (PPR) using 16 IPPs which improve
the VLSI regularity, even if 17 IPPs are generated. In addition, by encoding precomputed multiples using
sign-magnitude signed-digit (SMSD) notation, we are able to save 75% of negating xors. We provide an
efficient adder to calculate the first-level PPR that takes two SMSD numbers as input and represents their
total using TCSD encoding. After that, the final binary-coded decimal product is obtained by combining the
results of two TCSD accumulated partial products that are the result of a multilayer TCSD 2:1 reduction.
These products are then subjected to a unique early begun conversion method. For this reason, we synthesize
a very large scale integration (VLSI) version of a 16 x 16-digit parallel decimal multiplier, and our
assessments reveal a slight performance boost compared to earlier equivalent implementations.

A high-frequency decimal Multiplier by R. D. Kenney, M. J. Schulte, and M. A. Erle

The increasing significance of commercial, financial, other Internet-based applications that handle decimal
data has led to decimal arithmetic regaining favor among the computer world. An iterative decimal multiplier
that scales well for large operand sizes and functions at high clock frequencies is shown in this study. This
two-stage iterative multiplier architecture is very quick because the multiplier employs a new decimal
representation with intermediate results. The clock frequencies used by decimal multipliers, typically are
created from a library of 0.11 micron CMOQOS regular cells, are close to 2 GHz. A new multiplication may start
every (n+1) cycles depending on the suggested architecture, which has a latency of (n+8) cycles when
multiplying two n-digit BCD operands.

111. KARATSUBA'S ALGORITHM

When used to the Karatsuba algorithm, this "Divide and conquer™ strategy yields an impressive asymptotic
speedup above a long-lost approach. To multiply two numbers with n digits, the conventional classroom
approach calls for ®@(n2) digit operations. We will demonstrate that the issue can be solved in O(nlog 3) digit
operations using a straightforward recursive approach. (Note: log 3 = 1.58.). When looking towards the
asymptotic growth rate number the total amount of digit-operations that indicates a significant reduction. In
pseudo code, we detail the process. To avoid worrying about rounding, we shall presume that the total number
for digits corresponds to a power of 2. The use of starting zeros to pad the amount supports this assumption;
doing so will raise the value of n much just over a factor of 2, which is insignificant for our predictions.
Procedure Karatsuba(X, Y')

Input: X, Y : n-digit integers. Output: the product P := XY . Comment: We assume n is a power of 2.

1. if n = 1 then use multiplication table to find P := XY

2. else split X, Y in half:

3. X =1 10"2X; + X»

4.Y =:10"2Y1 + Y

5. Comment: X1, Xz, Y1, Y2 each have n/2 digits
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6. U := Karatsuba(X1, Y1)

7.V = Karatsuba(Xz, Y2)

8. W := Karatsuba(X1 — X2, Y1 — Y2)

9.Z2=U+V-W

10. P :=10"U + 10"°Z + V

11. Comment: So U = X1Y1, V = X2Y2, W = (X1 — X2)(Y1 — Y2), and therefore Z = X1Y2 + X2Y1. Finally we
conclude that P = 10"X;Y1 + 10"2(X1Y2 + X2Y1) + X2Y2 = XY .

12. return P

Analysis. In order to complete its work, this algorithm repeatedly calls itself, resulting in a recursive algorithm.
The total number of digit-multiplications needed using the Karatsuba method to produce two n-digit integers
(n = 2K) is denoted by M (n) (line 1).

Since the process itself is called three times on numbers with n/2 digits in lines 6, 7, and 8, the result is M
(n) =3M (n/2). (1)
The following is a straightforward solution to this problem as it is a simple recurrence. Since M (n/2) = 3M

(n/4), we may deduce that M (n) = 9M (n/4), by plugging M (n/2) into equation (1). It can be deduced from
induction on i that for any i (i < k), M (n) = 3iM (n/2i), and continuing along the same way, we get that M (n)
=27M (n/8).

With i= k, we get 3kM(n/2k), which is equal to 3kM(1), which is equal to 3k. Keep in mind that k = log n
(remember that log here means base-2 logarithm), consequently M (n) = 2log So, M(n) equals 2k. The value
of log 3 is equal to 2-k.nlog 3 is equal to log 3. It seems that either increased the number of additions (lines 9,
10), decreased the number for digit-multiplications (to nlog 3), or anything along those lines. Despite first
impressions, the approach saves just as much work when it comes to the overall amount of digit-operations
(additions and multiplications combined). Let T (n) be the entire number of digit-operations needed by the
Karatsuba algorithm, which includes additions, multiplications, and bookkeeping operations such as copying
digits and maintaining connections. This will allow you to observe this. After that

T (n) =3T (n/2) + O(n) (2)

Like in the previous case, the term 3T (n/2) is derived from lines 6, 7, and 8. The extra O(n) term represents
the number many digit-additions needed to execute the operations in lines 9 and 10. Includes accounting
expenses in the O(n) period as well.

The analysis of recurrences with the type (2) will be covered later on in the course. The rate of increase is
unaffected by the additive O(n) term, and the outcome will remain the same.

T (n) = O(nlog 3). (3)

I1l. THE PROPOSED METHOD

One famous divide-and-conguer method for speeding up multiplication of big numbers utilizes the Karatsuba
algorithm. Many suggested high-speed multipliers are based on this method. This work, on the other hand, is
concerned with partitioning-based power reduction for decimal multiplication, such as the Karatsuba method.

It offers sufficient granularity when localizing switching activity and employs smaller multipliers, often
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known as multiplier cells. However, it is important to thoroughly investigate some matters, such as the
fundamental multiplication method and the amount of space of the various multiplier cells that are used.
DECIMAL MULTIPLICATION VIA PARTITIONING
To speed up the multiplication of big numbers, the Karatsuba algorithm uses divide and conquer, as shown
above. Its first use came in binary multiplication. In order to calculate P = X x Y using this decimal
multiplication procedure, we may recursively split the operands into XH and XL, and YH and YL,
correspondingly. Regarding this, those that are most important components are shown by XH and YH, while
the least significant parts are shown by XL and YL. The two operands may be represented in below Equation
(2) simply presuming k = 2n and equal partitioning.

X=10"Y" _D' Xian 101 + Z:D] X100 = Xp 10" + X,

=
n—

1 . -1 .
V= 10"yl 0043 il = Y107+ Y,

------------ Equation (2)
The below Equation is employed to generate the P D X x Y product following partitioning, using the
Karatsuba multiplication technique.

P= (XH]O” -I-X;_) (YHIU'H + YL)

= 10"Xy Yy + 10" XY, + X, V) + V1Y
alg + 1 Agfp+ A ty) o0l Equation (3)

Four multiplications of decimals with nXn digits and two additions with 2n and 3n digits are required to
implement the above Equation (3). It will be possible to iteratively run this method until it reaches the 1X1

digit multiplication.

3.1 SYMMETRIC APPROACH

We take into account three distinct operand partitioning sizes—two, four, and eight—for symmetric
architectures. Equation (3) states that a 16 X 16 digit multiplier may be constructed from four 8 X 8 digit
multipliers using the initial layout, which involves dividing the multiplier each multiplicand equal two equal
portions.

Before moving through the latter stages of reduction and conversion, it is necessary to align the results of
the multiplier cells. Figure 1 shows this alignment, which results in the smallest significant component and
the final result being the eight bits from the least significant part, requiring any further calculation.
Nevertheless, a multi-operand addition is required for positions 8-23. Each of the eight bits and the most
important element also need an increment operation (increment with carry out of multi-operand addition). It

is important to note how the multiplier cell method is crucial since it affects the primary multiplier's low-
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level design and detail design. So, we've covered the algorithm's multiplier cells and their associated

L Xy ] p ]
L Yy | Y, |
| X, <Y, |
| X, <Y, |
| X, <, |
| N <Yy |
| X, <Y, |
| X, %Y, | X, <Y, |

X, <Y, |

important features. |
FIGURE 3.1. The arrangement of the 16 X 16-digit multiplier by four 8 X 8 multipliers (mult.16-8).

Recursively replacing every multiplier cell with an even smaller one is possible using computing divide-and-
conquer principle. As earlier stated, four 2n X 2n-digit multipliers are required for a 4n X 4n-digit multiplier.
Additional partitioning allows for the implementation of four n X n-digit multipliers for every 2n X 2n-digit
multiplier. As seen in Figure 2, these considerations lead us to believe that 16 4 X 4-digit multipliers may be
used to build a 16 X 16-digit multiplier.

|XHH |XHL |XLH ‘XLL|

|}Imr |Ym, |Yu.r ‘Yu, |

|X mw X Y |Xu. XYu |

| X XV | X oy x Y, |X

HH HH LH

|me X ¥ |XLH XYy |Xm, x Yy, |f‘f w XYy |

|X % Y

X,y XY,

HEL HH L L | X LL

| X 0 XY, X %Y, |

FIGURE 3.2. The arrangement of the 16 X 16-digit multiplier by sixteen 4 X 4-digit multipliers (mult16-
4).
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IV. Its partial outcomes provide digit-by-digit multipliers near the extreme of partitioning, that in turn offers
a parallel multiplier. That 2X2-digit multiplier is defined as the most tiny multiplier cell while all the state-
of-the-art multipliers employ pre-computed multiplies depending on background data. We may build a
16X16-digit multiplier out of sixty-four 2_2-digit multipliers, as seen in Figure 3, by dividing the operands

into eight equal pieces and applying this idea.

X s [ i

Yo (Vi |}-;1.'..-.J |}-u.'..l. |Y L ‘Y;.m. |}f|_ ..... |Y.lu.

X rer * Yo

|‘xu.'.r; e ym‘u|,\(”.. * Y,,...,|X|, 57880 I.‘|
|Xm fad LHH|XHLH XY,_M|XUM 2 U£H| N XYLH_hI

X i % Yoy i) X sswe > Y| X Vorior | K s * Yoraws| Xypy % ¥y

I'\/m!.' %Yo l‘(m % Yo |X.rrm( %Yo |Xm.n *Yirs | Xy YJ.U.!.' X Y.f..f.:!'

[X e * Yoma] X % Yo X o < Y gna] Xoasie * Yesae| X e % Yoz | X g % ¥ord X o % Viwws]
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HLL

A A I P e Y|
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FIGURE 3.3. The arrangement of the 16 X 16-digit multiplier by sixty-four 2 _ 2-digit multipliers.

Two major considerations should be made while examining the aforementioned designs. The depth within the
multi-operand adder and the format that the multiplier cells' output are the two variables in question. A multi-
operand adder with depths of 3, 7, and 15 is shown in Figures 3, 4, and 5, correspondingly. Clearly, finer
granularity is achieved by employing smaller multiplier cells. Having said that, it does raise the usage of area.
As aresult, reducing the size overall multiplier cells and their area usage requires a thorough examination that
includes monitoring of power dissipation. Regarding the second point, as shown in Figure 2, the BCD format
is utilized for the final result for multiplier cells. This format is supplied when a conversion from redundant
to non-redundant data. Because a multioperand adder takes its input from multiplier cells, this wasteful carry
propagation is superfluous. This adder must, of course, take in duplicate data. This problem is associated with
the multiplier cell method.

3.2 ASYMMETRIC APPROACH

V. Multiplier cells may be of varying sizes, as previously stated. Because of imbalanced delay routes, the
overall delay associated with the main multiplier can be increased by a larger multiplier cell, even if it has
greater delay. Section 5 provides the experimental findings, however it's worth noting that an asymmetric
technique may demonstrate significant advantage for a given input pattern having unique statistical features.

Given the vast number of alternative partitioning schemes for asymmetric designs, our suggested technique
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highlights the benefits of this sort of design by analyzing a simple partitioning to demonstrate a particular

pattern of energy usage.

}' i Y Lff Y LL

XHX}EL
=7 X,
XLH)(};! ‘XI'.LX}EH
Xuxxf

FIGURE 3.4. The arrangement of the 16 X 16-digit multiplier with asymmetric partitioning (mult16-
8-4).
Fig. 4 shows the asymmetrical partitioning within the 16 _16-digit multiplier. Four 4 X 4-digit multipliers,
two 4 X 8-digit multipliers, two 8 X 4-digit multipliers, along with a 8 X 8-digit multiplier make up this

multiplier.

IV SIMULATION RESULTS & SYNTHESIS REPORT

4.1 Simulation Result of Multiplier:

Fig 4.1 Simulation Result of Multiplier

Here we can give the inputs as A=6, B=3, then the final output is 18.
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4.2 Block Diagram of Multiplier:
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Fig 4.2 Block diagram

4.3 RTL SCHEMATIC:
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Fig 4.3 Internal diagram of RTL schematlc
4.4 Estimation of power:
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Fig 4.4 Estimation of power
Fig 4.4 Estimates power using approximate multiplier and it is 0.226W power.
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4.5 Estimation of Delay:
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Fig 4.5 Estimates delay of approximate multiplier and it is 30.11ns delay.
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Fig 4.6 Estimation of Area

4.7 COMPRESSION TABLE

extension | 8*4and |8%8  |4bit | 2bit
1*8
delay (30117 (33170 |49.938 (42224 |36.170
area | 592 50 639 |64 |541
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V.CONCLUSION & FUTURE SCOPE

In this paper, we investigate a design technique for decreasing the power used by decimal multipliers, since
decimal calculation is important. The proposed approach utilizes partitioning, which combines the smaller
ones to form a larger multiplier. Xilinx ise was used for synthesis, and structural verilog was utilized to
implement the suggested designs and the first multiplier, resulting in multiplier cells. Experiments show that

when every one of the input signals were active, delays are reduced.
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