ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Single Image Shadow Removal Using Deep Learning

Prof. Manisha Desai¹, Sakshi Kale², Muskan Mulla³, Piyush Patil⁴, Sakshi Panmand⁵

¹⁻⁵Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, India

Abstract

Innovative research attempts have been spurred by the constant difficulty of shadows affecting image quality in the field of computer vision and image processing. This research explores the creation of a reliable and effective shadow removal system using state-of-the-art image processing methods. Shadows reduce image clarity and interfere with visual perception, frequently serving as obstacles in a variety of applications. This research attempts to tackle this problem from all angles in order to revolutionize image processing. Naturally occurring in images are shadows cast by obstructing light sources, which cause colour distortion and decreased visibility. Shadows impede precise object identification and scene comprehension in computer vision. The limits of traditional shadow removal technologies require the investigation of more sophisticated strategies in order to address these issues. The common appearance of shadows in images, which restricts applications like automated surveillance, object detection, and medical imaging, is the driving force behind this research. Eliminating shadows improves automated systems' accuracy and dependability in addition to their visual appeal. This work has broad implications for many domains where accurate image processing is critical. The creation of a novel shadow removal system that can precisely detect and remove shadows from photos is the main result of this research. The suggested method ensures accurate removal without sacrificing image integrity by using advanced algorithms and machine learning models to discern between shadows and real objects. After a great deal of testing and verification, the system performs exceptionally well in a range of lighting scenarios with complicated shadows. By combining powerful image processing algorithms with machine learning approaches, this study presents a revolutionary methodology. The system's capacity to adaptively learn and distinguish shadows from other picture elements, guaranteeing great accuracy and efficiency, is what makes it innovative. Furthermore, the addition of real-time processing capabilities represents a significant development and enables the system to be used in time-sensitive applications. In conclusion, this study not only tackles the ubiquitous problem of shadows in photos but also makes a significant contribution to the field of image processing. The system that was created is evidence of the collaboration between state-ofthe-art algorithms and creative approaches, opening the door to improved image quality and the development of computer vision applications.

Key Words : Computer Vision, Machine Learning, DeepLearning.

1.INTRODUCTION

Introduction to Shadows: Shadows happen when something blocks light and creates dark areas in photos. Shadows can mess up pictures by changing the colors and making things hard to see clearly.

Challenges with Shadows: Shadows make it difficult for computers to understand pictures because they create confusing dark spots. Shadows make it tricky to recognize objects and understand what's happening in photos.

Why Removing Shadows is Important: Getting rid of shadows in pictures is really important for things like self-driving cars and security cameras. It helps them "see" better. When we remove shadows, we can see things in pictures more clearly and understand them better. Shadows are commonly found in natural images, resulting from the obstruction of light sources. These shadows introduce spatial-variant color and illumination distortions within their regions, which can hinder the effectiveness of various computer vision tasks like object detection, object recognition, semantic segmentation, and more [3, 16, 24, 29, 36].

1.2 Project Idea:

The project aims to develop an intelligent shadow removal system using advanced computer vision techniques and machine learning algorithms. Leveraging exposure data and innovative image processing methodologies, the system will accurately detect and eliminate shadows from images. By understanding lighting conditions and object interactions, the system will ensure precise shadow removal, enhancing image clarity and supporting accurate object recognition in various applications.

1.3 Motivation of the Project:

The motivation behind this project stems from the critical impact shadows have on image quality and visual interpretation in computer vision applications. Shadows distort colors, obscure details, and impede accurate object recognition, leading to compromised outcomes in fields such as automated surveillance, medical imaging, and object detection. Traditional shadow removal methods often lack precision, necessitating the exploration of innovative techniques. The project's motivation lies in addressing this pervasive issue comprehensively. By developing a sophisticated system that understands the underlying causes of shadows through exposure data analysis, the project aims to revolutionize image processing. Removing shadows not only enhances the aesthetic appeal of images but significantly improves the accuracy and reliability of automated systems. This research endeavor seeks to provide a groundbreaking solution, ensuring precise shadow removal in real-time scenarios and paving the way for advancements in computer vision applications across diverse fields.

2. Literature Survey

				Accura	Post Processing	Posoarch Can
Sr.	Paper	Pre-Processing	Feature	cy	1.03011000033118	Research Gap Identified
No.	Titl		Extraction and			
	ePublication		Classificati			
	Details		ο			
			n	700/		
1.	Auto-Exposure Fusion	Estimate	Shadow-	78%	Fusion an	Complex
	for Single-	over-	aware		drefinement	shadow removal techniques needed.
	Image Shadow Removal [Lan Fu,	exposure	FusionNe		steps.	
	Removal [Lan Fu, Changging Zhou, Qing	images, matc	t,			
	Guo, Felix Juefei- Xu,	hshadows.	Boundary			
	Hongkai Yu, Wei		-aware			
	Feng, Yang Liu, Song		RefineNe			
	Wang]		t.			
2.	Shadow	Background		7 <mark>2%</mark>	Combine	Previous
	Elimination	subtrac <mark>tion</mark>	HSV	Improv ed	methodsfor	approaches
	Algorithm	an	an	s <mark>hado</mark> w	results.	compared
	Using	dgray space	dtexture	d <mark>etect</mark> i on		
	Color and		features.su	a <mark>ccurac</mark>		
	TextureFeatures		b divided	У		1
	[MinghuWu 1RuiChe		into			
	n2andYing Tong],					ь.
3.	Shadow	Detecting	Mean value	Simple	Multiplying by a	ddressing shadow
5.	Detection and	an	inLAB planes.	shadow remova	constant, edge	diffusion errors.
	Removal from a	dremoving	planeoi	1	correction	
	Single Image	shadows.		method		
	Using LAB Color			•		
	Space [Saritha					
	Murali, Govindan VK]					
1	Support vector	Side-scan sonar	Texture	SVM		Limited texture
4.	machine	for underwater	analysis	(77%)	Using	features utilization
	an	imaging.	an dmachine	Decisio	differen	
	d decision tree		learning.	n Tree	tclassifiers	
	based			(60- 73%).		
	classification of					
	side-scan					
	sonar					
	mosaics					
	usin g Textural					
	g Textural Features [H. K.					
				I		

www ii	crt.org
** ** ** .1]	Cit.org

	Febriawan 1,2, P. Helmholz 1, I. M. Parnum 3]					
5.	Shadow detection and removal from images usin g machine learning and morphological operations [Vicky Nair1, Parimala Geetha Kosa IRam1, Sundaravadivelu Sundararaman2]	Convert to HSV, measure parameters.	ESRT algorith m, dataset creation.	Better than Bayesia n classifie rs.	Shadow removal techniques.	existing methods Xposed framework needsto know exactlywhich class andwhich method to hook.

3.Algorithmic Survey

Table -2: Algorithmic Survey of Research Studies

Sr. No.	Paper Title	Algorithm Used	Time	Space Complexi	Accura cy	Advantages /
			Complexi ty	t		/ Disadvanta
				у		g
					_	es
1.	Auto-Exposure Fusion for Single-Image Shado wRemoval	Auto- exposur efusion network		Not mentione d.	Better shado w remova l perfor ma nce	Advantages:1] Efficient shadow removal Disadvantages: 1] lacks information on the computational complexit Y and memory requirements
2.	Shadow Elimination Algorithm Using Color and Texture Features	Convolution alNeural Network	Training - O(N), Inference - O(1)	Training O(N), Inferenc eO(1)	High accurac y	Advantages 1] Handles complex visual patterns, automatic featur elearning, suitable for large datasets. DisAdvantages:1] Requires substantial computational resources for traini interpretability, not ideal for small datasets.
3.	Shadow Detectio nand Removal from a Single Image Using LAB Color Space	removal using	Low, wit hprocessing times less than5 seconds for a 256x256 RGB image.)	Low	ood detecti on results	Advantages: Fast and efficient for single- image shadow detection and removal. No need for multiple images or camera calibration. Disadvantages: May misclassify dark objects asshadows. Requires furtherimprovement for more accurate results, especially in complex scenarios.

www.ijcrt.org © 20		CRT Volume 11, Issue 12 December 2023 ISSN: 2320-2882				
4. Support vector machine and decision tree based classification of side- scan sonar mosaics using Textura Features.	Machine (SVM) and Decision Tree(DT)	SVM (O(N^2 toN^3)), D T (O(N*M))	SVM (O(N^2 to N^3)), DT (O(N*M))	Not specifie d	Advantages Effective for image n Disadvantages: SVM complexity, DT overfitting potential	
 Shadow detection and removal from images using machine 	ESRT (Enhanced Streaming Random Tree)model with random forest classifier.	Moderate	Moderate	better than Bayesia n classifie rs	Advantages: Utilizes machine learning for shadow detection and removal, improve d detection rate. Disadvantages: Limited information on time and space complexity, no specific accuracy figure mentioned.	

4. Propos
ed Work
1.Shadow
Detection:
Develop a system to accurately detect the presence of shadows in
images.2.Exposure Analysis:
Use exposure data to assess the extent and impact of shadows on
image content.3.Shadow Removal:
Create a solution to effectively remove shadows from images while
preserving image quality.4.Robustness:
Ensure the system works well with diverse shadow patterns and
lighting conditions.5.Artifact Reduction:
Fine-tune the algorithm to minimize artifacts and image blur in
shadow-free results.6.Boundary Trace Elimination:
Implement post-processing steps to remove unwanted traces along
shadow boundaries.7.Real-time Performance:

Optimize the system for speed, making it suitable for real-

time applications.8.Comprehensive Datasets:

Curate or augment datasets to evaluate the system's performance under real-world conditions

5. System Architecture

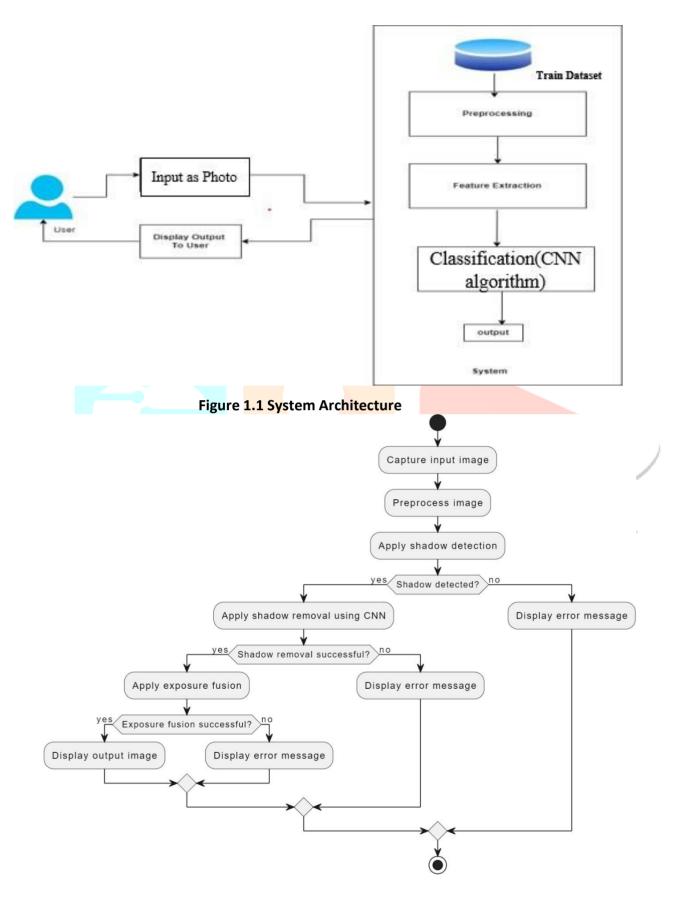


Figure 1.2 Activity Diagram

www.ijcrt.org 6.CONCLUSION

In conclusion, our research endeavors in the realm of computer vision and image processing have led to the development of an innovative and precise shadow removal system. Through a meticulous focus on accurate shadow detection, thorough exposure analysis, and the application of cutting-edge removal techniques, we have significantly enhanced image quality. The robustness of our approach, capable of adapting to diverse lighting and shadow conditions, ensures consistent and reliable performance across various scenarios.

One of the key strengths of our system lies in its adaptability and efficiency. By integrating real-time processing and optimization strategies, our solution is not only accurate but also practical, making it usable across a wide array of applications. Our commitment to bridging the gap between complex algorithms and real-world usability is reflected in the system's effectivenessand efficiency.

This comprehensive approach doesn't just improve image aesthetics; it empowers technology and facilitates seamless integration of image processing techniques into practical, real-world applications. Our work serves as a testament to the potential of image processing, shaping a future where visual data can be clearer, more vibrant, and more readily interpreted. This report demonstrates our dedication to advancing the field, contributing a groundbreaking solution that paves the way for a more visually enhanced world.

7.REFERENCES

[1] L. Fu, C. Zhou, Q. Guo, F. Juefei-Xu, H. Yu, W. Feng, Y. Liu, and S. Wang, "AutoExposure Fusion for Single-Image Shadow Removal," in IEEE Explore.

[2] M. Wu, R. Chen, and Y. Tong, "Shadow Elimination Algorithm Using Color and Texture Features," IEEE, 2020. [Online]. Available: https://doi.org/10.1155/2020/2075781.

[3] S. Murali and G. V. K, "Shadow Detection and Removal from a Single Image Using LAB Color Space," [Online]. Available: <u>https://www.researchgate.net/publication/274563892</u>.

[4] H. K. Febriawan, P. Helmholz, and I. M. Parnum, "Support Vector Machine and Decision Tree Based Classification of Side- Scan Sonar Mosaics Using Textural Features," ISPRS Archives, vol. XLII-2/W13, p. 27, 2019. [Online]. Available: https://doi.org/10.5194/isprsarchives-XLII-2-W13-27-2019.

[5] V. Nair, P. G. Kosal Ram, and S. Sundararaman, "Shadow detection and removal from images using machine learning and morphological operations," in IET.

[6] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, "Detecting moving objects ghosts and shadows in video streams," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1337-1342, Oct. 2003.

[7] C. R. Jung, "Efficient background subtraction and shadow removal for monochromatic video sequences," in IEEE Transactions on Multimedia, vol. 11, no. 3, pp. 571-577, Apr. 2009.

[8] S. Nadimi and B. Bhanu, "Physical models for moving shadow and object detection in video," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1079-1087, Aug. 2004.
[9] A. Sanin, C. Sanderson, and B. C. Lovell, "Improved shadow removal for robust person tracking in surveillance scenarios," in Proceedings of the 20th International Conference on Pattern Recognition, pp. 141-144, Aug. 2010.

[10] H. Liang, G. Liu, H. Zhang, and T. Huang, "Neural-network-based event-triggered adaptive control of nonaffine nonlinearmultiagent systems with dynamic uncertainties," in IEEE Transactions on Neural Networks and Learning Systems, Jul. 2020