
www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

IJCRT2312180 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b539

Unintentional Bugs To Vulnerability Mapping In

Android Applications

1Dhanshetti Ashish Arun, 2Gandhare Pratiksha Bhaskar, 3Bhutale Ashwini Maruti, 4Deshpande G. R
1Student, 2Student, 3Student, 4Assistance Professor

1Department of Computer Engineering
1Gramin Technical & Management Campus Vishnupuri, Nanded, India

Abstract: The intention of an Android application, determined by the source code analysis is used to identify

potential maliciousness in that application. Similarly, it is possible to analyze the unintentional behaviors of

an app to identify and reduce the window of vulnerabilities. Unintentional behaviors of an app can be any

developmental loopholes such as software bugs overlooked by a developer or introduced by an adversary

intentionally. Find Bugs and Android Lint are a couple of tools that can detect such bugs easily. A software

bug can cause many security vulnerabilities (known or unknown) and vice-versa, thus, creating a many-to-

many mapping. In our approach, we construct a matrix of mapping between the bugs and the potential

vulnerabilities. A software bug detection tool is used to identify a list of bugs and create an empirical list of

the vulnerabilities in an app. The many-to-many mapping matrix is obtained by two approaches - severity

mapping and probability mapping. These mappings can be used as tools to measure the unknown

vulnerabilities and their strength. We believe our study is the first of its kind and it can enhance the security

of Android apps in their development phase itself. Also, the reverse mapping matrix vulnerabilities to bugs

could be used to improve the accuracy of malware detection in Android apps.

Index Terms - android applications, bugs, mapping, security, vulnerability.

I. INTRODUCTION

There has been an unprecedented growth in the use of smartphones across the globe. In January 2015

Android ranked as the top smartphone platform in the U.S with 53.1 percent market share, followed by Apple

with 41.6 percent, BlackBerry with 1.8 percent, Microsoft with 3.4 percent and Symbian with 0.1 percent.

Android is based on Linux kernel where applications run data independently and inter process communication

is strictly based on a permission system. Application download requires users to blindly grant access to the

listed permissions or deny installation. Peter Bright’s article describes “Google has no ability to push out

updates to the operating system; it has to depend on a range of OEMs and network operators to adopt its source

code changes and distribute them to users. Both Apple and Microsoft, in contrast, have a direct channel to

update their mobile operating systems”. This limitation along with an opensource platform allows adversaries

to take full advantage of the Android ecosystem that compromises integrity, availability and confidentiality of

the user. Applications available online in Android market are prescreened by Google corporation but attackers

bury malware codes within an app which don’t infest until after the app has been downloaded. Malicious intents

have been well studied and developer tools exist to discover and correct them by static or dynamic analysis on

the source code of an application. However, little has been done to address the vulnerabilities caused by

unintentional software defects.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

IJCRT2312180 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b540

Fig. 1.The proposed system of bugs to vulnerability mapping

Fig. 2. Flowchart of finding bugs.

Given the rise in mobile malwares, we intend to identify the vulnerabilities exposed by the unintentional

software bugs in the application. These can be used by the cyber exploiters as a gate pass to the resources

and sensitive information of the mobile system. There have been numerous studies on bugs and

vulnerabilities but no work has systematically explored the mapping of bugs to vulnerabilities and the

consequent threats in Android ecosystem. Such mappings will enhance the identification of malicious

Android applications. Our empirical study is the first of its kind and the preliminary results elucidate the

need for more sophisticated mapping between bugs, vulnerabilities and threats. The proposed system of

mapping is shown in Figure 1.

II. DATA COLLECTION

The first requirement to formalize the mapping concept was to prepare a repository of android applications

with their original source codes i.e. which were not reverse engineered using tools like APK tool, JD-GUI

and DEX2JAR. The applications were grouped in two ways based on the functional categories or the

permissions they require to execute a service. Developers can set certain permission attributes to require

authorization to access the resources of the mobile system for the app’s functioning. These permissions are

defined in an XML file called manifest “AndroidManifest.xml”. To ensure the selected applications were

popular and common, the application list was sorted based on popularity and the first 230 were selected.

Further, these 230 apps were classified based on four major permissions and six functional categories.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

IJCRT2312180 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b541

Functional

Category

Number

of Apps

General 5

Finance 5

Gaming 5

Weather 5

Online

Shopping

5

Weather 5

Total 30

TABLE I. APPLICATIONS GROUPING BASED ON FUNCTIONAL CATEGORIES

Major Permission Type Number of

Apps

Internet 50

Location access 50

Storage 50

Short Message Service

(SMS)

50

Total 200

TABLE II. APPLICATIONS GROUPING BASED ON PERMISSION CATEGORIES

III. BUGS-VULNERABILITY MAPPING PROCEDURE

 In this approach, two static code analysis tools were used. They are Lint and Find Bugs The outcome of

static analysis provided the list of bugs found in each app with its severity level, called the bug rank. Bugs are

given a rank 1-20, and grouped into the categories scariest (rank 14), scary (rank 5-9), troubling (rank 10-14),

and of concern (rank 15-20). The list of vulnerabilities included in this study were obtained from existing

known vulnerabilities The empirical mapping of bugs to expected vulnerabilities was generated as a 2D matrix

where each column represents a vulnerability and each row a bug. Each of these bugs were manually analyzed

using the bug description in Find Bugs and predicted into a vulnerability that might occur while executing an

app. The architecture of the model is illustrated in the Figure 3. The construction of the matrix cell was done

by two methods namely Severity mapping and Probability Mapping. A proposed third method combining the

two methods is addressed as future work, shown in Figure 4.

Fig 3. Model for generating the matrix of Bugs to vulnerability mapping

A. Severity Mapping

 In this technique, we used the functional category containing six groups and 30 applications as shown in

Table I. Each category of 5 applications was then subjected to Find Bugs analysis to obtain a potential list of

bugs with their ranks. The known vulnerability was assigned a boolean value of zero or one in the static

vulnerability list using the description of a bug in Find Bugs report. The severity of a bug-vulnerability was

calculated as Low (1-7), Medium (8-14) or High (14-20) by taking the median of all the ranks obtained in

each category.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

IJCRT2312180 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b542

B. Probability Mapping

This method was similar to the previous one, only differing in the grouping category and number of tested

applications. Application grouping of permission category, containing four groups and 200 applications

were used as shown in Table II. Each category of 50 applications was again subjected to Find Bugs analysis

to obtain a potential list of bugs with their ranks. After assigning a boolean value to the known vulnerability

in static vulnerability list, the probability of occurrence of a bug-vulnerability was calculated by using the

following formulas.

 No of Apps having the bug

P(B) =

Total No of Apps in dataset × Total No of Bugs

where N b is categories of bugs in data set

 No of Apps having the vulnerability for a given bug

P(V |B) =

Total No of Apps in the dataset

C. Mixed Mapping

The mixed mapping procedure can be used to first group the applications based on functional categories

and then subgroup them into permission categories as shown in Figure 3. This approach would help to

narrow down the range of known vulnerabilities and aid in investigating more sophisticated mapping

matrix by developing an Index which is a function of both severity and probability mapping indexes as

shown below; I(Bi,Vi) = f(S,P(V/B)) where S is severity index and P(V/B) is probability index.

Fig4. Application grouping based mixed mapping matrix methodology

VI. CONCLUSION AND FRAMEWORK

We have presented this study to systematically examine the mapping between unintentional bugs and known

vulnerabilities. We examined the third party Android apps for unintentional and malicious intent, that can be

triggered by downloading the app. The results are encouraging and indicate the need for further studies on this

huge unexplored area of relationship between bugs and vulnerabilities, and vice-versa. We also believe that

there are possibly many more vulnerabilities associated with bugs in Android based apps which were not a part

of this study. In future, the obtained matrices can be improved by identifying, and adding more vulnerabilities

and bugs, and determining an index for measuring the strength of a given vulnerability.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

IJCRT2312180 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b543

IV. References

 [1] COMSCORE, “PRESS RELEASES REPORTS, SMARTPHONE PLATFORM MARKET SHARE, DEC 2014 U.S.” URL:

HTTP://WWW.COMSCORE.COM/INSIGHTS, ACCESSED ON: JAN 2015. [ONLINE]. AVAILABLE:

HTTP://WWW.COMSCORE.COM/INSIGHTS

[2] V. Okun, A. Delaitre, and P. E. Black, “Report on the static analysis tool exposition (sate) iv,” U.S.

National Institute of Standards and Technology (NIST) Special Publication (SP), 2013.

[3] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt, and S. Albayrak, “Using static

analysis for automatic assessment and mitigation of unwanted and malicious activities within android

applications,” in Malicious and Unwanted Software (MALWARE), 2011 6th International

Conference on. IEEE, 2011, pp. 66–72.

[4] J. Fonseca and M. Vieira, “Mapping software faults with web security vulnerabilities,” in

Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International

Conference on. IEEE, 2008, pp. 257–266.

[5] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinellis, “Dismal code: Studying

the evolution of security bugs,” in Proceedings of the LASER Workshop, 2013, pp. 37–48.

[6] J. Wu, Y. Wu, M. Yang, Z. Wu, and Y. Wang, “Vulnerability detection of android system in fuzzing

cloud,” in Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing.

 IEEE Computer Society, 2013, pp. 954–955.

[7] W. Jimenez, A. Mammar, and A. Cavalli, “Software vulnerabilities, prevention and detection

methods: A review1,” in Proc. European Workshop on Security in Model Driven Architecture.

Citeseer, 2009, pp. 6–13.

[8] G. Schryen, “Is open source security a myth? what do vulnerability and patch data say?”

Communications of the ACM (CACM), vol. 54, no. 5, pp. 130–139, 2011.

[9] Google, “Android tools project site - android lint,” URL: http://tools.android.com/tips/lint, Accessed

on: Feb 2013. [Online]. Available: http://tools.android.com/tips/lint

[10] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Evaluating static analysis defect

warnings on production software,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools and engineering, ser. PASTE ’07. New York, NY, USA:

ACM, 2007, pp. 1–8. [Online]. Available: http://doi.acm.org/10.1145/1251535.1251536

[11] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not too many,” in Proceedings of

the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, ser. PASTE ’07. New York, NY, USA: ACM, 2007, pp. 9–14. [Online].

Available: http://doi.acm.org/10.1145/1251535.1251537

[12] S. Christey, “Unforgivable vulnerabilities,” The MITRE Corpotarion, 2007.

[13] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability discovery. Pearson Education,

2007.

http://www.ijcrt.org/

