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Abstract: A novel approach for design of low-power approximate multipliers by leveraging Long Short-

Term Memory (LSTM) networks within a deep learning (DL)-based framework. Our proposed architecture, 

referred to as the DL -Based Approximate Multiplier (DLAM), exploits the sequence-to-sequence learning 

capabilities of LSTMs to enhance the efficiency of approximate multiplication in terms of both accuracy 

and power consumption. The DLAM model is trained on a diverse dataset, incorporating various input 

patterns and corresponding approximate multiplication outcomes. Through the integration of LSTM units, 

the model captures long-range dependencies within the input sequences, enabling more accurate predictions 

of approximate multiplication results. The trained DLAM exhibits superior performance in terms of both 

precision and energy efficiency when compared to traditional approximate multiplier designs. Furthermore, 

we explore optimization techniques to minimize power consumption without compromising the accuracy of 

multiplication results. Our test findings show that the DLAM accomplishes a significant reduction in power 

consumption while maintaining competitive levels of accuracy, making it a promising candidate for low-

power applications in energy-constrained environments. 

 

Index Terms - low-power design, DL, LSTM networks, metaheuristics, Jellyfish Search Optimization 

algorithm, sequential data. 

 

I. INTRODUCTION 

Approximate computing has emerged as a promising paradigm to strike a balance between computational 

accuracy and energy efficiency in resource-constrained environments. One key aspect of approximate 

computing is the design of low-power approximate multipliers [1], which play a crucial role in a myriad of 

applications, including signal processing [2], machine learning (ML), and digital signal processors [3]. This 

study investigates the incorporation of LSTM [4] networks into a DL-oriented framework to improve the 

optimal accuracy in the design of approximate multipliers.  

LSTM networks are renowned for their ability to capture long-range dependencies in sequential data, 

making them well-suited for tasks involving input sequences with contextual information. In this study, the 

LSTM is harnessed to improve the precision of approximate multiplication outcomes by leveraging its 

sequence-to-sequence learning capabilities. This integration enhances the model's capacity to discern intricate 

patterns and relationships within the input data, leading to more accurate predictions of approximate 

multiplication results. Moreover, to further boost the efficiency of the DLAM, a metaheuristics algorithm is 

incorporated into the training process. Specifically, the Jellyfish Search Optimization algorithm [5], known 

for its ability to explore solution spaces efficiently, is employed to fine-tune the DLAM parameters. This 

http://www.ijcrt.org/


www.ijcrt.org                                             © 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882 

IJCRT2312148 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b282 
 

synergistic combination aims to enhance precision and resilience of the DLAM model, ensuring optimal 

execution in terms of precision and energy efficiency. 

The utilization of LSTM networks and metaheuristics algorithms in approximate multiplier design 

represents a novel approach to address the intricate trade-off between accuracy and power consumption. By 

exploring the synergy between DL and metaheuristics, this research seeks to push the boundaries of 

efficiency in approximate computing, with potential applications in energy-constrained embedded systems 

and edge devices. The subsequent sections delve into the methodology, experimental setup, and results, 

shedding light on the advancements achieved through the integration of LSTM and metaheuristics in the 

context of approximate multiplier design. 

II. LITERATURE REVIEW 

   Usharani et al.[6] introduces Deep-PowerX1, a novel framework integrating DL and Low Power Design for 

logic synthesis optimization. Employing a Deep Neural Network (DNN), Deep-PowerX reduces power and 

area by up to 1.47× and 1.43×, outperforming exact solutions and state-of-the-art tools by 22% and 27%. 

Limitations include a focus on digital CMOS circuits and a predefined error rate constraint. Nagarajan et al. 

[7] introduces an energy-efficient 1-bit GDI-based full swing full adder (EAFA) for approximate computing 

in error-tolerant applications. The proposed 16-bit EAHSETA demonstrates superior performance with 95% 

classification accuracy, outperforming GDI-CMBAI, GDI-AMBAII, and GDI-HSETAII in area and power 

consumption by 88.31%, 80.27%, and 77.34%, respectively. Limitations include focus on handwritten digit 

recognition and potential accuracy trade-offs. The work holds promise for resource-constrained, high-speed, 

low-power DL applications. 

   Yang et al. [8] introduces Stochastic Computing as a low-cost, low-power alternative for Convolutional 

Neural Networks (CNNs), demonstrating MNIST and CIFAR-10 datasets. SC achieves almost 3x learning 

speed increase for MNIST with 1.37% accuracy degradation and 3.5x acceleration for CIFAR-10 with a 3.39% 

degradation. The methodology involves two CNN architectures, OpenCL framework include bias 

optimization on GPUs and FPGAs. Limitations include potential scalability challenges for larger networks. 

The work provides valuable insights for efficient and accelerated CNN training using stochastic computing. 

Murillo et al. [9] introduces a Posit Logarithm-Approximate Multiplication (PLAM) scheme to enhance the 

efficiency of posit multipliers in Deep Neural Network architectures. Experimental results demonstrate 

remarkable reductions in area, power, and delay, up to 72.86%, 81.79%, and 17.01%, respectively, without 

compromising accuracy. While promising, limitations may include specific applicability and potential 

challenges in scaling for more complex networks. The work significantly contributes to advancing the 

efficiency of Posit arithmetic units in DNNs. 

   Saravanan et al.[10] explores an innovative approach for an energy-efficient hardware accelerator, utilizing 

Silicon Nanowire Reconfigurable Field Effect Transistors for ML acceleration. Employing RFET-based 

Multiply and Accumulate units yields a substantial 70% power reduction compared to traditional CMOS, 

with minimal impact on accuracy. The suggested RFET-driven accelerator accomplishes 94% on MNIST 

datasets, demonstrating a remarkable decrease of 93% in size and energy consumption, and 73% reduction in 

delay. However, limitations may include the generalizability of findings to diverse datasets and application 

scenarios. The study significantly contributes to advancing energy-efficient ML accelerators through RFET 

technology. Kim et al. [11] investigates the impact of approximate multiplication on deep convolutional 

neural networks (CNNs), emphasizing its potential for efficient hardware acceleration. Experiments on 

recognized network architectures, such as ResNet and Inception-v4, demonstrate near FP32 accuracy with 

Mitch-w6 multiplication. The findings justify approximating multiplications while ensuring accurate 

additions in CNNs, offering insights for hardware accelerator design and analytical understanding of 

approximation techniques. Limitations may include specific network architectures and potential trade-offs in 

other applications. The work contributes significantly to advancing efficient CNN hardware accelerators. 
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III. METHODOLOGY 

 

3.1. LSTM model 

 

Fig. 1: LSTM model 

   LSTM is a widely used DL model, especially in sequential modeling. As a variant of recurrent neural 

networks (RNNs) [12], LSTM excels in capturing long-range dependencies and mitigating the vanishing 

gradient problem. Its unique architecture incorporates memory cells, input, forget, and output gates, enabling 

the effective processing of sequential data. LSTMs are particularly favored for applications involving time-

series analysis, natural language processing [13], and speech recognition due to their ability to retain and 

selectively forget information over extended sequences, contributing to their prominence in contemporary 

DL applications. Figure 1 shows one of the LSTM model used in this study. 

The derivation of the forget state, considering the () and (), is expressed through mathematical equations as 

follows. 

 

Table 1: Parameters and Its Representation 

 

 

 

 

 

 

 

(2) 
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   The activation of the Input Gate and Output Gate leads to the generation of a new hidden cell state, Ct. This 

process involves the use of sigmoid (σ) and hyperbolic tangent (tanh) activation functions for both gates. 

Table 1 provides a comprehensive overview of parameters along with their respective representations. 

 

                 

                        

   JellyFish search optimization is employed for this fine-tuning, yielding optimal results. Utilizing this 

objective function, the approximate computing multiplier undergoes training with the optimized LSTM, 

generating a predefined library function.  

                    

3.2. Proposed Methodology 

    In Figure 2, the input module retrieves data for computation, directing it to the approximate multiplier. 

This multiplier encompasses two key processes: a pre-trained library and Jelly-optimized LSTM. Initially, 

the Jelly-optimized LSTM ensures an optimal solution with heightened accuracy. 

 

Fig. 2: Novel approximate computing 

    The fine-tuned values are subsequently saved in a memory unit, forming the refined pre-trained repository. 

This library serves as a repository for a significant amount of data post the Jelly-optimized LSTM process. 

The input data affects the rough multiplier, which generates an output value that is sent to the output module. 

In the end, the approximate computational process yields a high degree of precision, low power consumption, 

and little mistake. 

3.2.1. Innovative Gel-Enhanced (LSTM) 

    We present the Jelly Optimized LSTM, which refines Jellyfish search optimization for LSTM 

hyperparameters. The main hyperparameters, including weight and the LSTM's threshold biases. Assessing 

this objective function produces the best outcome. Following that, the LSTM model is involved in the 

classification procedure within the approximate computing multiplier. The application of the Optimized 

LSTM improves accuracy of approximate calculation by attaining optimal input awareness. 
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3.2.2. Jellyfish optimizer 

    Jellyfish, globally recognized, inhabit diverse water bodies. Characterized by a gentle, bell-shaped 

structure and lengthy, diverse appendages furnished with venom for prey capture, jellyfish exhibit unique 

features, including autonomous movement control. Employing an umbrella structure, they propel themselves 

forward by expelling water, often drifting with currents and tides. Under favorable conditions, jellyfish 

aggregate to form a mass known as a Jellyfish bloom. Formation parameters, including seawater movements, 

levels of oxygen, nutritional content, predatory activities, and temperature impact the formation of swarms. 

The Jellyfish Search algorithm draws inspiration from these creatures' searching behavior and oceanic 

movements. The algorithm involves three actions: living in ocean currents or toward the swarm with a time 

control process, seeking food based on prey quantity, and evaluating an identified prey position. Figure 3 

depicts  oceanic food-searching behavior of Jellyfish. 

 

Fig 3: Behaviour of Jellyfish sea 

3.2.3. Ocean waves 

   Jellyfish are drawn to ocean currents abundant with nutrients. The direction or trend is mathematically 

expressed in Equation (1). 

           

           

   Here, denotes the, calculated as the mean value of each jellyfish location. The parameter β, where β > 0, 

signifies a coefficient influencing the distribution. Positions is expressed through formulae: 

                   

3.2.4. Jellyfish swarm(j) 

   A collective denotes a considerable assemblage of 'j,' preserving its initial location, referred to as passive 

movement or Type A, or embracing fresh location, recognized movement or Type B. In instances of Type A 

movement, 'j' revise their positions using the subsequent formula. 

           

   In this context, UB signifies the upper limit of the exploration area, LB indicates the lower limit of the 

exploration area, and γ represents the motion coefficient. The adjustment of the coefficient with the extent of 

the motion takes place, and a particular value is designated, where γ is established at 0.1. 

   In Equation (9), we simulate Type B motion, which involves randomly selecting jellyfish ('j') to assess the 

course of movement. The jellyfish vector was selected out of interest 'i' directed toward the selected ('j'). If 

the anticipated prey chosen ('j') position exceeds that with 'i,' it resets to the initial position. Conversely, if the 

available prey for the chosen ('j') is minimal compared to the position of 'i,' it moves directly away from that 

(7) 

(8) 

(9) 
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location. This iterative process enables each jellyfish to continually determine enhanced prey positions by 

adjusting their locations. 

                   

 

   To evaluate the types of motion throughout time, a time regulation system is implemented. This system 

oversees the entire swarm, encompassing both type A and type B motions, and guides the motion of jellyfish 

toward an sea wave. The details of the mechanism for temporal control are as follows. 

3.2.5. Time control mechanism 

   Jellyfish are consistently drawn to ocean currents abundant with nutritious plants, often influenced by 

factors such as temperature, wind, and atmospheric changes carried within these currents. As a response, 

jellyfish swarms migrate to alternate ocean currents, forming new swarms. Within a swarm, jellyfish exhibit 

movement between Type A and Type B motions. Initially, Type A motion is predominantly selected, 

gradually transitioning to a preference for Type B motion. Where,  

 

      

 

 

Fig. 4: Suggested assessment of image processing efficiency. 
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IV. RESULT AND DISCUSSION 

   Synopsys compiler is used to simulate the proposed multiplier, which is written in Verilog. The proposed 

multiplier is evaluated taking into account variables like area, delay, power, mean relative error (MRE), and 

normalized error distance (NRE), in contrast to conventional provide multipliers like Under Designed 

Multiplier (UDM), Partial Product Perforation (PPP), Static Segment Multiplier (SSM), Approximate 

Compressor-Based Multiplier (ACM), and ML-based Approximate Multiplier (MLAM). In the context of 

image processing applications, a Geometric Mean Filter (GMF) is utilized to enhance the visual effects of 

images by executing geometric mean operations on pixels, effectively eliminating undesired noise. The 

resulting output image post the GMF application is expressed as follows. 

            

   Here, I present the original picture. The numbers of pixels within the GMF increased to the power of 1/mn 

are multiplied for each pixel in the GMF treated image at coordinates (x, y). In order to assess the 

effectiveness of the proposed DL-based multiplier, two grayscale images with Gaussian noise and 8 bits per 

pixel are used. A 3*3 mean filter with surrounding pixels focused around them is applied to the noisy images. 

Figure 4 shows the procedure involving the suggested Peak Signal-to-Noise Ratio (PSNR) and energy 

required. Table 2 presents the performance metrics of the proposed multiplier. The ratio of an image's 

maximal potential power to the amount of corrupting noise that degrades its quality is known as PSNR.   

   In the suggested DL multiplier framework, a approximated library is created for every conceivable input 

combination. The model undergoes training using different levels of output truncation, accompanied by 

associated area, energy, and error measurements. This training assists the model in determining the most 

suitable truncation bits and error compensation values. In the case of an 8-bit multiplier, 216 input 

combinations and error metrics are taken into account for numerous truncation and error compensation values, 

guiding the LSTM model in choosing the optimal multiplication while considering input variations. 

Table 2: Power, Delay Analysis And Area Of Proposed Multiplier 

 

Table 3: NRE and MRE analysis  

 

(13) 
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   Relative to alternative approximate multipliers, the suggested DL multiplier exhibits enhanced efficiency 

concerning area, power, and delay. Table 3 presents a contrast of error metrics for the proposed multiplier. 

The noted diminished values of Mean Relative Error (MRE) and Normalized Error Distance (NRE) signify 

the improved adaptability of the proposed multiplier for applications demanding substantial power 

conservation with heightened tolerance for errors. 

Table 4: Average Energy And PSNR Required For Filtering 

 

   Table 4 displays the Peak Signal-to-Noise Ratio (PSNR) and saved energy for images affected by noise, 

which have undergone processing to generate Geometric Mean Filtered images. The energy requirements for 

ML and DL  based approximate multipliers are 1.92 μJ and 1.35 μJ, respectively. The PSNR outputs for 

multipliers are recorded as 71.5 and 74.9, respectively. 

V. CONCLUSION 

   The proposed DL multiplier, incorporating a fine-tuned LSTM model and Jellyfish Search Optimization, 

demonstrates notable advancements in approximate computing. The DL model efficiently handles the 

generation of an approximated library for diverse input combinations, optimizing truncation levels and error 

compensation values. Comparative evaluations against conventional approximate multipliers underscore the 

superiority of the proposed DL multiplier in terms of power, delay, and area. Additionally, experimental 

results on noisy image processing reveal significant energy savings and improved PSNR with the DL-based 

approach. The study highlights the efficacy of DL techniques, paving the way for high-performance 

approximate multipliers in applications demanding energy efficiency and error tolerance. 
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