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Abstract: Identifying and correcting faults in IC design have become critical stages as the complexity of 

digital VLSI circuits continues to grow. Presented in this paper is a novel fault identification model based on 

deep learning (DL), utilizing a distinct type of artificial neural network (ANN) known as stacked sparse 

autoencoder (SSAE). The main goal of this proposed model is to tackle the challenge in the exploration 

domain by employing SSAE for identifying features and detecting anomalies in extensive electronic circuits. 

The model comprises three key stages: test pattern creation, feature reduction, and fault detection. 

Unsupervised learning using training data is implemented in the SSAE phase to enhance feature extraction. 

The evaluation of feature extraction effectiveness involves modifying the architecture of the SSAE network. 

The strategy achieves 99.3% fault coverage with ATALANTA and reduces features by 99.7% using SSAE 

for test patterns. 

 

Index Terms - Automatic Test Pattern Generation, ANN, Fault Detection, Digital Circuit, ML, SSAE, Test 

Pattern. 

 

I. INTRODUCTION 

 

   In the rapidly advancing landscape of digital technologies [1], the significance of authentication, error 

Identification, and correction processes in computer-based systems has reached unprecedented levels. This is 

particularly true for large and complex digital systems, where fault detection becomes a formidable challenge 

due to the presence of diverse design bugs and the sheer size of circuits [2]. In response to these challenges, 

recent research endeavors have focused on enhancing fault detection performance through the application of 

AI [3]. The complexity of debugging and correction in Integrated Circuit (IC) design stages is underscored 

by their substantial contribution [4], averaging 70% of the total designs time. Efforts concentrated developing 

efficient algorithms for debugging and correction to align with behavioral specifications, ultimately reducing 

time and cost. Specifically, the study explores how ML algorithms, relying on diverse datasets derived from 

test pattern generators, can effectively detect stuck-at faults. It also investigates the application of SAT-based 

algorithms [5] for detecting gate replacement errors. The significance of the dataset in ML models is 

emphasized, with digital Very Large-Scale Integration (VLSI) circuits utilizing outputs from test pattern 

generators. 
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  Various advanced Automatic Test Pattern Generation tools [6], including the cost-effective ATALANTA 

software developed at Virginia Tech University, are discussed for their efficiency, flexibility, and fault 

coverage capabilities. Traditional methods are contrasted with newer approaches that leverage DL techniques, 

such as ANNs, for improved fault detection and correction processes. SAT and MAX-SAT algorithms are 

explored as essential tools for detecting and correcting specific errors, such as gate replacements. The 

conversion of the entire process into Boolean satisfiability problems and the use of advanced SAT solvers are 

detailed, showcasing their efficacy in detecting specific information and attributes related to fault instances. 

   The current study proposed an efficient method grounded in DL for Identifying features and detecting 

faults in combinational digital circuits. The study utilizes stacked sparse autoencoders to reduce big data and 

extract crucial features with high accuracy. The subsequent sections provide a comprehensive exploration of 

the background of DL and autoencoders, the proposed model, and a performance evaluation, culminating in a 

concluding section. 

II. LITERATURE REVIEW 

   Moness et al. [7] presented a groundbreaking semi-supervised Fault Detection (FD) model for 

combinational and sequential circuits using Deep Sparse Autoencoder. Achieving a notable 187x faster 

running time than SAT solver-based methods, it outperforms classical ML models, obtaining maximum 

validation accuracies of 99.93% and 99.95% for combinational and sequential circuits, respectively. 

Surpassing Radial Basis Function Network (RBFN)-based FD models, it attains a maximum validation 

accuracy of 97.8%. Limitations include dataset dependencies and the need for broader circuit testing. 

Shokrolahi et al. [8] introduced a fault detection method for analog circuits using a deep Convolutional 

Neural Network (CNN) with Power Spectrum Density (PSD) as input images. The proposed PSD-CNN 

method achieves an impressive 99.8% accuracy, outperforming existing techniques. Limitations may include 

applicability to specific circuit types and the need for diverse datasets.  

   Khalil et al. [9] put forward an early transistor fault prediction approach using FFT, PCA, and CNN. 

Applied to 45nm technology circuits, it achieves an impressive 98.93% accuracy, outperforming state-of-the-

art methods. Limitations may include specific circuit applicability. The methodology combines FFT for 

frequency domain fault signature extraction, PCA for dimension reduction, and CNN for final feature 

presentation and classification. The proposed method exhibits a high accuracy of 98.93% in fault prediction, 

surpassing other methods. Hardware implementation on Altera Arria 10 GX FPGA consumes 1.08 W, 

demonstrating practical feasibility. 

   Arabi et al. [10] launched a framework to identify and categorize individual parametric defects in circuits 

using ML algorithms in MATLAB. Utilizing Orcad PSpice for data collection and Monte Carlo analysis for 

simulation, the method achieves remarkable accuracy: 100% for the first circuit, 99.77% for the second, and 

99.72% for the third. Limitations may include dependence on simulation accuracy and specific fault types. 

Overall, the proposed classification algorithm demonstrates superior efficiency, outperforming other research 

works in fault detection and classification. 

   Hussein et al. [11] have done a study for introducing a semi-supervised Fault Detection (FD) model using 

DL for combinational and sequential circuits. Achieving 99.93% and 99.95% validation accuracy for 

combinational and sequential circuits, respectively, the model outperforms classical ML models and SAT 

solver-based methods, showcasing the efficiency of leveraging DL for fault detection in digital circuits. 

Gaber et al. [12] addressed the impact of digital VLSI circuit complexity on verification methodologies. It 

proposes an incremental correction algorithm to generate compact test patterns, reducing dependence on 

specialized patterns. Limitations may include specific circuit dependencies.  

   Radhakrishnan et al. [13] proposed Efficient Partitioning and Placement-based Fault TSV detection in 3D-

IC, addressing challenges in fault detection within Through Silicon Vias (TSVs). Limitations may include 

specific conditions for optimal performance. Wang et al. [14] introduced an LSTM model for efficient online 

detection of intermittent faults in electronic systems. The model exhibits high precision (97%) and recall 

(87%), showcasing its effectiveness. Limitations may include specific conditions for optimal performance.  
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III. METHODOLOGY 

3.1. Autoencoders 

   An autoencoder (AE), a potent unsupervised ML algorithm, facilitates dimensional reducing characteristics 

from elevated to diminished dimensions. Comprising encoder, code, and decoder components, it down-

samples input to a latent space, preserving vital features while discarding redundant ones. The decoder 

reconstructs input from the encoding, enabling effective use of encoding data in supervised algorithms like 

classifiers. Figure 1 depicts a representation of a AE process. 

IV.  
V. Fig. 1: Autoencoder process [15] 

3.2. Sparse autoencoders 

   Sparse autoencoders (SAE) aim to maintain hidden layer node count by activating only a few neurons, 

serving as an alternative to introducing a bottleneck without reduction. This is achieved through a sparsity 

constraint and penalizing hidden layer activation in the loss function. Figure 2 depicts a representation of a 

sparse autoencoder. 

 

 

Fig. 2: Sparse autoencoder [16] 
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3.3. Deep learning 

   Utilizing DL represents a cutting-edge and effective approach in the realm of automated feature extraction 

and fault detection. Leveraging large datasets and employing DL to extract crucial features results in 

enhanced fault detection performance compared to conventional methods. A comparison between various 

types of neural networks (NN) is depicted in Table 1. 

Table 1: Comparison of NNs 

 

 

3.4. SSAE 

 

Fig 3: Deep AE [17] 
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   In complex architectures, SSAE or Deep AE enhances the efficiency typical of AE. Comprising multiple 

stacked layers, each encoder layer becomes the input for the subsequent autoencoder. After separate 

unsupervised training, the network proceeds to a supervised stage. Figure 3 depicts a representation of a deep 

autoencoder. 

3.5. Fault Detection using DL 

   Utilizing Stacked SSAE for fault detection in digital VLSI circuits eliminates the need for an accurate 

mathematical model or formal specifications. Test vectors generated by the powerful ATPG tool 

ATALANTA serve as inputs for SSAE, engaging unsupervised learning in compressing data. Final softmax 

layer aid in classification using the softmax function, offering a normalized probability distribution for 

intuitive analysis. 

σ(z⃗)i =
ezi

∑ e
xjk

j=1

     (4) 

z-Input vector of softmax, zi-output vector of neural network, k-Quantity of categories in the multi-category 

classifier. 

3.6. Suggested Anomaly Detection Methodology 

   We elaborate on detailed explanation of our DL -based fault detection model, as illustrated in Figure 8. The 

algorithm comprises three primary stages:  

Step 1: Test Pattern Generation 

   The initial step involves generating unique and extensive test patterns for the digital circuit. Utilizing the 

ATALANTA tool, based on the FAN algorithm, producing multiple evaluated sequences with accurate 

results and anomalies masks corresponding to each pattern. 

Step 2: Feature Reduction 

   Post data generation, the neural network uses SSAE for unsupervised learning, crucially reducing feature 

dimensions in large digital circuits. The goal is minimal features without compromising accuracy, achieved 

by training on test patterns and fault-free responses. SSAE efficiently distills pertinent features, enhancing 

overall performance, particularly in fault detection. 

Step 3: Fault Detection 

  In the final stage, faults for each test pattern are identified using a softmax classifier. The classifier 

transforms real values into probabilities, aiding precise fault detection and enhancing overall effectiveness. 

VI. RESULT AND DISCUSSION 

   The algorithm employs a SSAE for detecting stuck-at-0 and stuck-at-1 faults and applied to 8 integrated 

circuits, the methodology is derived from the ISCAS'85 benchmark. On an Intel Core i7 10750 processor 

running at 2.6 GHz with 16 GB system memory, the execution took place. Each ISCAS'85 was processed in 

the ATALANTA software, identifying stuck-at-0 and stuck-at-1 faults and generating a specific number of 

test patterns for each fault. For each digital circuit, we selected 30/50 test vectors for each error identification. 

Table 2 provides information on the faults, the percentage of fault coverage, test vectors and number of 

inputs and outputs for each electronic circuit. 
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Fig 4: proposed model 

Table 2: Fault coverage, fault occurrences, test patterns, and Inputs and outputs quantity for eight 
combinational circuits. 

 

   Table 3 outlines SSAE the parameters. Through experimental tuning, adjustments were made to optimize 

the reduction of features. Additionally, the sparsity constraint (�) underwent experimental fine-tuning to 

improve the reconstruction performance of SSAE, with considerations for 100 epochs and a batch size of 32. 

The table also presents a comparison of validation accuracy between simple AE and SSAE. This comparison 

underscores that SSAE attains a peak reconstruction accuracy of approximately 99.7% for the "c5315" circuit, 

initially featuring 300 inputs and outputs but compressed to 21 through three SSAE with a sparsity of around 

10e-9. 

Table 3: The number of concealed neurons and the validation accuracy in feature extraction with sparsity 

constraints. 

 

   Figure 9 illustrates the impact of sparsity constraint (ρ) on SSAE’s accuracy. Experiment involved varying 

sparse constraint (𝜌𝜌₁=0.50, 𝜌𝜌₂=0.067, 𝜌𝜌₃=0.024) across five different combinational circuits. The SSAE 

model implementation employed three Sparse Autoencoders (SAE) with the architecture detailed in Table 3. 

The results indicate that the optimal sparsity constraint value is approximately 0.024. 
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Fig.9: The impact of imposing sparsity constraints on the precision of SSAE. 

VII. CONCLUSION 

   The study presented an innovative ANN-based method for detecting stuck-at-faults in the 27-channel 

interrupt controller and Arithmetic Logic Units circuits sourced from the ISCAS'85 benchmarks. The 

algorithm addresses the challenge of search space explosion by compacting digital circuit features through 

the utilization of test patterns generated by the ATALANTA software. Employing a stack of three sparse AEs 

enhances the algorithm's capacity to achieve optimal reconstruction accuracy, particularly beneficial for 

troubleshooting extensive-scale electronic circuits. SSAE is integrated by a softmax classifier for supervised 

learning, leveraging fault masks. Executed on 8 logical circuits, the approach attains remarkable fault 

coverage of approximately 99.3% with ATALANTA, while simultaneously achieving around 99.7% using 

test patterns.  
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