ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

GCMS ANALYSIS OF VAYAHSTHAPANA KHANDA

*Dr. Pallavi K B¹, Dr. Suresh Patil², Dr. Chinmayi L Chigateri³, Dr Gazala Hussain

⁴Dr.Govinda Sharma K⁵

^{1,2&3} PG scholars,^{4&5}Associate Professor

Department of Rasashastra and Bhaishajya Kalpana, Sri Dharmasthala Manjunatheshwara College of

Ay<mark>urveda and H</mark>ospital, Hassan, Karnataka, India

Abstract: Ayurveda pharmaceutics deals with preparation of medicines. There are five basic preparations mentioned termed as *Panchavidha Kashaya kalpana* meant for instant use. Avaleha Kalpana, khanda kalpana are prepared from these five basic formulations as a base or liquid media. Khanda kalpana is accepted by all age group people because of its palatability and higher shelf-life. Vayahsthapana khanda was prepared from Vayahsthapana gana kashaya to increase the palatability and shelf life and it was subjected for analysis. To overcome issue of genuine analytical methods HPTLC, TLC, GC, GCMS are utilised. In this work GCMS analysis of Vayahsthapana khanda is carried to set standards for the formulation.

I. INTRODUCTION

Ayurveda is an ancient Indian science which focuses on curing the ailment of diseased person and improving the health of the healthy individual¹. It has eight branches; *jara-chikitsa* or *Rasayana-chikitsa* is one among them. It is considered as the science which restores the youthful vigour, alleviates diseases and bestows longevity². Acharya Charaka has mentioned the group of ten drugs under vayahsthapana gana which are said to possess longevity effect³. *Bhaishajyakalpana* is a specialized branch which deals with the preparation of medicines. Panchavidha Kashaya kalpana are the primary dosage forms which are meant for instant use. Further, the secondary preparations like avaleha Kalpana (confectionary), khanda kalpana (preparations in granules form), sneha kalpana (oleaginous preparations) are prepared from the five basic formulations⁴. *Khanda kalpana* is one such dosage form which is accepted by all age group people because of its palatability and higher shelf-life. Herbal medications are recognised as essential therapeutic agents for the treatment of a wide range of ailments. The development of genuine analytical methods which is capable of consistently profiling the phytochemical composition, including quantitative studies of marker/bioactive chemicals and other important ingredients is an issue for current period⁵. To overcome this, the chromatographic methods such as high-performance liquid chromatography (HPLC), gas chromatography (GC), gas chromatography - mass spectrometry (GC-MS) and thin layer chromatography (TLC) were utilised extensively and is available in numerous publications.GC-MS is a combination of two different

analytical techniques namely Gas Chromatography (GC) and Mass Spectrometry (MS). It is used to analyse complex organic and biochemical mixtures. GC can separate volatile and semi-volatile compounds with great resolution. MS can provide detailed structural information on most compounds such that they can be exactly identified and quantified⁶. In the present work an attempt was made to analyse the results obtained from GC-MS of prepared *Vayahsthapana khanda*.

Vayahsthapana gana dravya were taken and were made into granular form by following the general method of *khanda* preparation as mentioned by *Acharya Sharangadhara*. It was subjected to GC-MS analysis to know the components⁷.

RESEARCH METHODOLOGY

GC-MS analysis of Vayahsthapana Khanda was done at Chromatogen Analytical solutions Mysuru.

Procedure: The Clarus 680 GC was used in the analysis employed a fused silica column, packed with HP-5MS (5% biphenyl 95% dimethyl polysiloxane, 30 m × 0.25 mm ID× 250 μ m df) and the components were separated using Helium as carrier gas at a constant flow of 2 ml/min. The injector temperature was set at 250°C during the chromatographic run. The 1 μ L of extract sample injected into the instrument the oven temperature was as follows: 50 °C (2 min); followed by 150 °C at the rate of 15 °C min–1; and 150 °C, where it was held for 1min and then followed by 240°C at the rate of 25°C min–1; it was held for 12.00 min. The mass detector conditions were: Inlet line temperature 250 °C; ion source temperature 230 °C; and ionization mode electron impact at 70 eV, a scan time 0.2 sec and scan interval of 0.1 sec. the fragments from 40 to 600 Da. The spectrums of the components were compared with the database of spectrum of known components stored in the GC-MS NIST (2014) library.

Observation:

Figure 1: GC-MS plot of Vayahsthapana Khanda (TIC)

RESULTS AND DISCUSSION

Peak	Compound name	Formula	Match	CAS#	Prob %
			factor		
1	Glycidyloleate	$C_{21}H_{38}O_3$	717	-	4.91
2	9,12-Octadecadienoyl	$C_{18}H_{31}ClO$	714	7459-33-8	4.34%
	chloride, (Z,Z)-				
3	17-Octadecynoic acid	$C_{18}H_{32}O_2$	713	34450-18-5	4.17%
4	9-Octadecenal	$C_{18}H_{34}O$	712	5090-41-5	4.01%
5	13-Octadecenal, (Z)-	$C_{18}H_{34}O$	709	58594-45-9	3.54%
6	8-Hexadecenal, 14-	$C_{17}H_{32}O$	705	60609-53-2	2.99%
	methyl-, (Z)-				
7	cis-11-Hexadecenal	$C_{16}H_{30}O$	703	53939-28-9	2.76%
8	9,12-Octadecadienoic	$C_{18}H_{32}O_2$	702	60-33-3	2.65%
	acid (Z,Z)-				
9	cis-9-Hexadecenal	$C_{16}H_{30}O$	700	56219-04-6	2.45%
10	Pentanoic acid, 10-	$C_{16}H_{30}O_2$	697	-	2.16%
	undecenyl e <mark>ster</mark>				

Table 1: GC-MS of Vayahsthapana Khanda at RT= 22.9

 Table 2: GC-MS of Vayahsthapana Khanda at RT= 20.4

Peak	Compound name	Formula	Match	CAS#	Prob %
			factor		
1	17-Octadecynoic acid	$C_{18}H_{32}O_2$	721	34450-18-5	5.24%
2	9,12-Octadecadienoyl	C ₁₈ H ₃₁ ClO	712	7459-33-8	3.80%
	chloride (Z, <mark>Z)-</mark>				
3	Glycidylole <mark>ate</mark>	C ₂₁ H ₃₈ O ₃	711	-	3.65%
4	13-Octadecenal, (Z)-	$C_{18}H_{34}O$	<mark>70</mark> 8	585 <mark>94-45-9</mark>	3.23%
5	9-Octadecenal	C ₁₈ H ₃₄ O	706	5090-41-5	2.98%
6	Undec-10-ynoic acid,	$C_{22}H_{38}O_2$	702	/	2.51%
> 0	undec-2-en-1-yl ester			//~	
7	E-10-Pentadecenol	C ₁₅ H ₃₀ O	701		2.42%
8	9,12-Octadecadienoic	$C_{18}H_{32}O_2$	700	60-33-3	2.32%
	acid (Z,Z)-				
9	8-Hexadecenal, 14-	C ₁₇ H ₃₂ O	 699	60609-53-2	2.23%
	methyl-, (Z)-				
10	9-Eicosyne	$C_{20}H_{38}$	696	71899-38-2	1.97%

Table 3: GC-MS of Vayahsthapana Khanda at RT= 19.4

D 1						
Peak	Compound name	Formula	Match	CAS#	Prob %	
			factor			
1	Glycidylpalmitate	$C_{19}H_{36}O_3$	767	-	58.0%	
2	Hexadecanoic acid, 2-	$C_{19}H_{38}O_4$	657	23470-00-0	3.71%	
	hydroxy-1-					
	(hydroxymethyl)ethyl ester					
3	Undecanoyl chloride	$C_{11}H_{21}ClO$	645	17746-05-3	2.47%	
4	Octadecanoic acid	$C_{18}H_{36}O_2$	634	57-11-4	1.69%	
5	15-Hydroxypentadecanoic	$C_{15}H_{30}O_{3}$	634	4617-33-8	1.69%	
	acid					
6	Cyclohexanecarboxylic	$C_{13}H_{24}O_2$	627	27948-10-3	1.29%	
	acid, hexyl ester					
7	Myristoyl chloride	C ₁₄ H ₂₇ ClO	622	112-64-1	1.04%	
8	1-Tetradecyl acetate	$C_{16}H_{32}O_2$	622	638-59-5	1.04%	
9	2-Dodecylcyclobutanone	C ₁₆ H ₃₀ O	621	35493-46-0	1.00%	
10	Glycerol 1-palmitate	$C_{19}H_{38}O_4$	621	542-44-9	1.00%	

© 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

Table 4: GC-MS of Vayahsthapana Khanda at RT= 18.7							
Peak	Compound name	Formula	Match	CAS#	Prob %		
			factor				
1	11-Octadecenoic acid, (Z)-	$C_{18}H_{34}O_2$	837	506-17-2	6.70%		
2	9-Octadecenoic acid, (E)-	$C_{18}H_{34}O_2$	833	112-79-8	5.66%		
3	Hexadecenoic acid, Z-11-	$C_{16}H_{30}O_2$	832	2416-20-8	5.44%		
4	trans-13-Octadecenoic	$C_{18}H_{34}O_2$	832	693-71-0	5.44%		
	acid						
5	cis-13-Octadecenoic acid	$C_{18}H_{34}O_2$	831	13126-39-1	5.23%		
6	9-Eicosenoic acid, (Z)-	$C_{20}H_{38}O_2$	830	29204-02-2	5.02%		
7	9-Hexadecenoic acid, (Z)-	$C_{16}H_{30}O_2$	828	373-49-9	4.63%		
8	Oleic Acid	$C_{18}H_{34}O_2$	828	112-80-1	4.63%		
9	Oleic Acid	$C_{18}H_{34}O_2$	826	112-80-1	4.63%		
10	Palmitoleic acid	$C_{16}H_{30}O_2$	823	373-49-9	4.63%		

Table 5: GC-MS of Vayahsthapana Khanda at RT= 17.6

	Tuble 51 66 1115 61 Fujunisinapuna Mianaa at K1 – 17.6						
Peak	Compound name	Formula	Match	CAS#	Prob %		
			factor				
1	n-Hexadecanoic acid	$C_{16}H_{32}O_2$	852	57-10-3	56.5%		
2	n-Hexadecanoic acid	$C_{16}H_{32}O_2$	836	57-10-3	56.5%		
3	Pentadecanoic acid	$C_{15}H_{30}O_2$	808	1002-84-2	12.2%		
4	n-Hexadecanoic acid	C ₁₆ H ₃₂ O ₂	800	57-10-3	56.5%		
5	Tetradecanoic acid	$C_{14}H_{28}O_2$	799	544-63-8	8.88%		
6	Undecanoic acid	$C_{11}H_{22}O_2$	791	112-37-8	6.62%		
7	Tetradecanoic acid	$C_{14}H_{28}O_2$	790	<u>544-63-8</u>	8.88%		
8	n-Hexadecanoic acid	$C_{16}H_{32}O_2$	785	57-10-3	56.5%		
9	Dodecanoic acid	$C_{12}H_{24}O_2$	779	143-07-7	<mark>4.4</mark> 1%		
10	Tridecanoic acid	$C_{13}H_{26}O_2$	777	638-5 <mark>3-9</mark>	4.07%		

Table 6: GC-MS of Vayahsthapana Khanda at RT= 17.3

Peak	Compound name	Formula	Match	CAS#	Prob
			factor	0	%
1	Hexadecanoic acid, methyl	C ₁₇ H ₃₄ O ₂	836	112-39-0	37.4%
	ester				
2	Hexadecanoic acid, methyl	$C_{17}H_{34}O_2$	825	112-39-0	37.4%
	ester	<u> </u>			
3	Methyl 2,2'-dibenzoate(ester)	$C_{16}H_{14}O_4$	822	-	23.4%
4	Hexadecanoic acid, methyl	$C_{17}H_{34}O_2$	818	112-39-0	37.4%
	ester				
5	Hexadecanoic acid, methyl	$C_{17}H_{34}O_2$	812	112-39-0	37.4%
	ester				
6	[1,1'-Biphenyl]-4,4'-	$C_{16}H_{14}O_4$	805	792-74-5	12.8%
	dicarboxylic acid, dimethyl				
	ester				
7	Hexadecanoic acid, methyl	$C_{17}H_{34}O_2$	792	112-39-0	37.4%
	ester				
8	Phthalic acid, 3-methylphenyl	$C_{21}H_{15}NO_6$	787	-	6.58%
	2-nitrophenyl ester				
9	Tridecanoic acid, 4,8,12-	$C_{17}H_{34}O_2$	785	10339-74-9	6.07%
	trimethyl-, methyl ester				
10	Diethylmalonic acid, propyl	$C_{13}H_{21}F_{3}O_{4}$	775	-	4.28%
	1,1,1-trifluoroprop-2-yl ester				

www.ijo	crt.org
---------	---------

© 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

Vavahsthanana Khanda at RT- 1

Peak	Compound name	Formula	Match	CAS#	Prob %	
			factor			
1	Undecanoic acid	$C_{11}H_{22}O_2$	772	112-37-8	24.0%	
2	Tetradecanoic acid	$C_{14}H_{28}O_2$	770	544-63-8	22.1%	
3	Tridecanoic acid	$C_{13}H_{26}O_2$	768	638-53-9	20.4%	
4	Tetradecanoic acid	$C_{14}H_{28}O_2$	757	544-63-8	22.1%	
5	Tetradecanoic acid	$C_{14}H_{28}O_2$	747	544-63-8	22.1%	
6	Tetradecanoic acid	$C_{14}H_{28}O_2$	747	544-63-8	22.1%	
7	n-Decanoic acid	$C_{10}H_{20}O_2$	746	334-48-5	8.05%	
8	n-Decanoic acid	$C_{10}H_{20}O_2$	746	334-48-5	8.05%	
9	Tridecanoic acid	$C_{13}H_{26}O_2$	744	638-53-9	20.4%	
10	Dodecanoic acid	$C_{12}H_{24}O_2$	743	143-07-7	7.12%	

Discussion:

Vayahsthapana Khanda was analysed using Gas Chromatography-Mass Spectrometry (GC-MS) at varied retention times (RTs), which produced a diverse array of bioactive chemicals. Glycidyloleate, Octadecadienoyl chloride, 17-Octadecynoic acid, 9-Octadecenal and 13-Octadecenal were among the significant substances at RT=22.9. The 17-Octadecynoic acid, Octadecadienoyl chloride, glycidyloleate and 13-Octadecenal were among the substances visible at RT=20.4. Compounds including Glycidyl palmitate, derivatives of hexadecanoic acid and undecanoyl chloride were present in RT=19.4. Different fatty acid isomers such as cis-Vaccenic acid, 9-Octadecenoic acid and trans-13-Octadecenoic acid were present in RT=18.7. The fatty acid compounds Hexadecanoic acid methyl ester and Methyl dibenzoate were identified by RT=17.6. The variety of detected chemicals and their varying relative abundances over various RTs point to the Vayahsthapana Khanda's complicated chemical makeup. The components like 17-Octadecynoic acid, dodecynoic acid, Tetradecanoic acid, Hexadecanoic acid-methyl ester, n-Hexadecanoic acid and Pentadecanoic acid possess antioxidant property. Further,9-Octadecenamide, 9,12-Octadecadienoic acid, cis-Vaccenic acid act as anti-inflammatory^{8,9}. Also, GCMS suggests the existence of fatty acids, esters and other derivatives, which help to explain other therapeutic properties of the sample. Vayahsthapana Khanda contains a complex combination of compounds, which is highlighted by the changes in compound probabilities and match factors. This GC-MS analysis offers important insights into the molecular structure of Vayahsthapana Khanda, assisting in its characterisation for therapeutic application and fostering a better knowledge of its possible pharmacological actions.

CONCLUSION:

In the present work prepared *vayahsthapana khanda* was subjected for GC-MS analysis and the obtained results were tabulated and discussed with respect to its properties. Seventy constituents were found with seven different Retention Times. It helps to predict the formula and structure of bio-molecules which can be used as drugs. The GC-MS results found in *Vayahsthapana Khanda* can be considered as the preliminary standards for further study.

© 2023 IJCRT | Volume 11, Issue 12 December 2023 | ISSN: 2320-2882

Figure 2: Compounds at different RT

nitrophenyl ester

Tridecanoic acid, 4,8,12-trimethyl-, methyl ester

References

- ShastriKashinath, ChaturvediGorakhnath, editor. Vidyotni Commentary on CharakaSamhita of AcharyaCharaka, Sutrasthana; ArthedashmahamooliyaAdhyaya: 30/26. Varanasi: ChaukhambhaBharti Academy reprint 2018; p. 587
- 2) Kumar Y, Jatav R, Singh R, Singh CB, Kumar A. RASAYANA-A BOON OF AYURVEDA.
- Agnivesha, Charaka, Dridhabala, Chakrapanidatta, sutrasthana, Shadvirechanashatashritiya. 4/18. In: VaidyaJadavajiTrikamjiAcharya, Charakasamhita, reprint 2013, Varanasi: Chaukhambhaprakashan 2013, P.34
- 4) MangeshDhote PG scholar, Department of Rasashastra&Bhaishajya Kalpana, Mahatma Gandhi Ayurved College Hospital & Research Centre. Salod(H). Wardha. MS. India
- 5) Wanjari AS, Bhutada S, Desai P, Chouragade NB, Wanjari DS. Standardization of Herbal Products in Relation to Indian Market. Research Journal of Pharmacognosy and Phytochemistry. 2016;8(4):245-51.
- 6) Hussain SZ, Maqbool K. GC-MS: Principle, Technique and its application in Food Science. International Journal of Current Science. 2014 Mar;13:116-26.
- Acharyasharangadhara, adhamalla, kashirama, madyamakhanda, avalehadyaya. 8/1 In: Shastrividyasagarparashurama, Sharangadharasamhitha, reprint 2018, Varanasi: Chaoukhambhaorientalia 2018, P. 206.
- Malik B, Pirzadah TB, Tahir I, Abdin MZ, Rehman UI. Phytochemical studies on Cichoriumintybus L.(CHICORY) from Kashmir Himalaya using GC-MS. Journal of Pharmacy Research. 2016 Nov;10(11):715-26.
- 9) Tyagi T, Agarwal M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistiastratiotes L. and Eichhorniacrassipes (Mart.) solms. Journal of Pharmacognosy and phytochemistry. 2017;6(1):195-206.