JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

INDIGENOUS TECHNICAL KNOWLEDGE (ITK) IN ORGANIC PEST MANAGEMENT FOR SUSTAINABLE AGRICULTURE **DEVELOPMENT.**

¹ Ms. Pattapu. Jayasree (II M.Sc. Extension and communication) ²Dr. P. Kalaivani Assistant Professor

Department of Home science, Extension Education

Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore , TamilNadu.

Abstract: This study investigates pest management practices among farmers, focusing on their knowledge of organic pest management. Organic farming is crucial for sustainable development in agriculture. The objectives of study are to study the socio – economic profile of selected area and to assess the knowledge level of farmers on organic pest management. A structured questionnaire was used to collect data from 50 respondents addressing socio-demographics and knowledge of farmers in Perinaickenpalayam village, Naickenpalayam Block, Coimbatore District. The findings indicate that there is no knowledge of organic pest management techniques, with the Chi square analysis supporting this observation and the socio-demographic profile with Anova (p<.05) and t-test (1.078) analysis supporting this observation, revealing no significant differences in the knowledge and socio-demographic profile of the respondents. Most of the farmers are from the middle age group, and all the farmers are married. More than 80% are Hindu. Through organic farming, farmers earn ten to fifteen thousand rupees per month. Fifty percent of farmers said primary goal of farming is to reduce pesticide, use and minimize harm to the environment. Seventy four percent said Common method of organic pest control is crop rotation. This study holds significance in addressing the prevailing lack of awareness about organic pest management among farmers, highlighting the need for educational initiatives to promote organic farming and training programs.

Index Terms - Organic Pest management, knowledge, Farmers, Practices, Educational initiatives, sustainable development, Educational Intervention.

I. Introduction

India is a land of Agriculture. Overall, 58% of people live hood is based on agriculture. people directly depend on farming the agrarian play's vital role in nation's economy. Farmers comes from rural background. they depend on agriculture agriculture contributes 17% of GDP in India economy. India is the largest producers of spices, pulses and milk in the world. (Kalkura. P 2021).

Organic farming management relies on developing biological diversity in the field to disrupt habitat for pest organisms and the purposeful maintenance and replenishment of soil fertility. Organic farmers are not allowed to use synthetic pesticides or fertilizers.

Organic farming is a crop system that emphasizes environmental protection and natural farming techniques. It concerns the end product and the entire system used to produce and deliver the agricultural product. To this end, the entire farm cycle excludes using artificial products such as genetically modified organisms (GMOs) and specific external agricultural inputs, such as pesticides and synthetic fertilizers, from production and

processing to handling and delivery. Organic farmers rely instead on natural farming methods and modern scientific ecological knowledge to maximize the ecosystem's long-term health and productivity, enhance the quality of the products, and protect the environment. Proponents of organic methods believe it is a more sustainable and less damaging environmental approach. Source:(TNAU Agri portal).

The study has been carried out with following objectives

- To study the socio economic profile of selected area.
- To assess the knowledge level of farmers on organic pest.

II. RESEARCH METHODOLOGY

The methodology is the systematic and theoretical analysis of the methods applied to a field of study. The methodology adopted for the present study is entitled "Indigenous technical knowledge (ITK) in organic pest management for sustainable agriculture development" among selected farmers in the Perianaickenpalayam village of Coimbatore, Tamil Nadu. The sample size of the present study was 50 farmers. The interview schedule includes questions related to the demographic profile and knowledge level of farmers in organic pest management. The researcher used and filled in an interview schedule through face-to-face interviews during data collection. A list of variables was prepared based on the objectives of the study. Following data collection, the information was processed, tabulated, and statistically evaluated in line with the study's objectives. Statistical techniques and tests are used for analysing the data.

III. RESULTS AND DISCUSSION

I Socio Economic Profile of the Respondents

TABLE -I Demographic Profile of the Respondents

Particular	Categories	Percentage (%)
Gender	Male	86
	Female	14
Age	26-35	8
-0.0	36-50	58
	>51	34
Marital Status	Married	100
Religion	Christian	6
	Hindu	88
	Muslim	6
Occupation	Own Farming	100
Caste	SC	12
	ST	22
	BC	28
	OC	38
Education	Secondary	22
Qualification	Higher Secondary	24
	Graduate	54
Income of Very Month	5000-10,000	8
	10,000- 15,000	92
Mobiles of family	1	12
Members	2-3	28
	3-4	60

The above table shows the result of gender, the majority of the respondents are male with 86 percent. And 14 percent are female are selected from the Perianaickenpalayam village of Coimbatore District, Tamil Nadu.

Regarding the age wise distribution, majority fifty eight percent of the respondents were between the age 36-50 years of age, least eight percent with 26-35 years of age, and thirty four percent of the respondents are above 51 years.

In the category of religion, Hindu were dominant with eighty eight percent followed by Christian six percent of the respondents and six percent of respondents are from Muslim. All the respondents have their own farming land.

Regrading category of caste a maximum of thirty eight percent of the respondents are from General category and twenty eight percent of the respondents are BC caste. And twenty two percent respondents are from schedule tribe category and least twelve percent of respondents are schedule category. No one of them are form the other than that are mentioned in the interview schedule.

In the category of marital status hundred percent of respondents are married in the Perianaickenpalayam village. Who are doing organic farming.

In the category of Educational Qualification fifty four percent of the respondents are graduate and twenty four percent of respondents has higher secondary education and followed by twenty two percent have secondary education.

As per monthly income ninety percent of respondents earn ten to fifteen thousand per month and eight percent of people earn five thousand to ten thousand rupees per month.

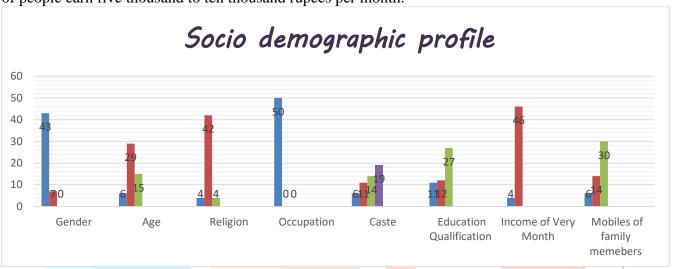


FIG: I Socio Demo Graphic Profile

TABLE – II KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Variable	Categories	Frequency	Percentage
primary goal of organic pest	To eliminate all pests	10	20
management	To reduce pesticide, use	25	50
	and minimize harm to		
	the environment		
	To use the most potent	14	28
	chemical pesticides		
	To maximize crop yield	1	2
	cost		
Common method of organic	Synthetic chemical	1	2
pest control	pesticides		
	Crop rotation	37	74
	Genetic modification of	8	16
	crops		
	Irrigation	4	8
Beneficial insects in organic	Insects that harm crops	4	8
farming	Insects that are not	14	28
	relevant to farming		
	Insects that help control	29	58
	pest population		
	Insects that are resistant	3	6
	to pesticides		
	To attract pollinators	2	4

www.ijcrt.org	© 2023 IJCRT Volume 11, Issue 12 December 2023 ISSN: 2320-2882
---------------	--

Trap crops used for in	To be lure and trap	22	44
organic farming	pests away from the		
	main crop		
	To provide shade for	21	42
	crops		
	To increase soil fertility	5	10
Not a sustainable practice in	Hand picking and	7	14
organic pest management	removing pest		
	Using natural predators	30	60
	to control pests'		
	populations		
	Applying synthetic	9	18
	chemical pesticides		
	Using neem oil as a	4	8
	natural pesticide		

From above table shows fifty percent of respondents twenty-five people stated that primary goal of organic pest management to reduce pesticide, use and minimize harm to the environment and 20 percent stated that to eliminate all pests and one percent said to maximize crop yield cost.

Regarding common method of organic pest control thirty-seven respondents with seventy-four percentage said that crop rotation is the common method of organic pest control and eight percent of respondents said irrigation and insects that harm is the common method of pest control method.

Twenty ninety percent of respondents stated that insects that are not relevant to farming. Twenty eight percent of respondents said that insects that are not relevant for farming and least respondents with six percent of respondents said insects that are resistant to pesticides are beneficial insects in organic farming.

Regrading forty four percent said lure and trap pests away from the main crop in organic farming and twentyone respondents with forty two percent said provide shade for crops and four percent of respondents said to attract pollinators to trap crops used for in organic farming.

sixty percent of respondents using natural predators to control pests' population and eighteen percent of people said applying synthetic chemical pesticides and eight percent of respondents are using neem oil as a natural pesticide they are not sustainable practice in organic pest management.

TABLE IIA. CORREALTION TEST ON KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Aspects	_0		P Val	lue		
	Age	Gender	Religio	Caste	Educat	Income
	(In		n	Type	ion	
	Years)					
primary goal of organic pest	.170	066	135	275	264	052
management	.237	.651	.349	.053	.063	.720
Common method of organic pest	.295*	.210	105	.029	045	198
control	.038	.143	.469	.841	.754	.169
Beneficial insects in organic farming	.019	027	.139	068	032	259
	.897	.851	.335	.640	.828	.070
Trap crops used for in organic farming	.035	.234	138	.142	.025	069
	.811	.102	.339	.326	.866	.633

	www.ijcrt.org ©	2023 IJCR I	volume 11	, issue 12	December	2023 155	N: 2320-288	<u> </u>
-	Not a sustainable practice in organic	.261	.205	.124	009	.105	.058	
	pest management	.068	.153	.392	.953	.469	.687	

The above table shows the correlation and significance values of Knowledge and socio-demographic profile on organic pest management in farming. The result shows a significant correlation between Knowledge and socio-demographic profile age with the variable standard method of organic pest control, which has significance at 0.05 level at one per cent and five per cent.

The correlation between farmers' Knowledge of organic pest management and socio-demographic profile is insignificant with Gender, Education, Caste and the farmers.

TABLE – III KNOWLEDGE ON ORGANIC PEST MANAGEMENT IN FARMING.

Variable	Categories	Frequency	Percentage
Role of neem in organic	It is a synthetic	4	8
pest control	chemical pesticide		
	It is used as a natural	24	48
	pesticide to deter and		
	kill pests		
	It is a type of	20	40
	genetically modified		
	crop		
Example of cultural	Applying a chemical	4	8
control in organic pest	pesticide		
management	Planting diseases –	28	56
	resistant crops varieties		
	Using pheromone traps	8	16
	Removing plant debris	10	20
	and weeds from the		
	field		
Purpose of introducing	To provide food for	7	14
predator insects in organic	pests		
pest control	To increase pest	17	34
	populations		- L
	To eat and control pest	26	52
	population		
	To pollinate crops	-	-
Organic pest control method	Crop rotation	21	42
involves using a fine mesh	Biological control	14	28
or netting to physically	Pest exclusion	11	22
block pests from reaching	Companion planting	4	8
crops			
Primary advantage of using	Minimal cost	5	10
control method in organic	Rapid pest eradication	20	40
farming	Minimal environmental	22	44
	impact		
	Long – lasting	3	6
	protection		

Forty eight percent said they used as a natural pesticide to deter and kill pests and twenty respondents with forty percent stated neem in organic pest control is a type of genetically modified crop and four percent said to increase crop yield neem is used in organic pest.

Regarding of cultural control in organic pest management fifty six percent said planting diseases resistant crop varieties and sixteen percent stated with using pheromone traps are example of cultural control and eight percent said applying chemical pesticides is example of cultural control in organic pest management.

From the above table fifty two percent said to eat and control pest population is purpose of introducing predator insects in organic pest control and thirty four percent of respondents stated to increase pest population is purpose of introducing predator insects in organic pest management.

The forty eight percent said crop rotation is the best organic pest control method and fourteen respondents with twenty-eight said biological control and twenty two percent said pest exclusion is best method and eight percent said companion planting is Organic pest control method involves using a fine mesh or netting to physically block pests from reaching crops.

Regarding Primary advantage of using control method in organic farming and forty four percent minimal environmental impact is primary advantage and six percent of respondents said primary advantage of using control method in organic farming.

TABLE III.A CORREALTION TEST ON KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Aspects		P Value					
	Age	•	Gender	Religion	Caste	Education	Income
	(In	Years)			Type		
Role of neem in	4	019	.100	.217	095	.057	043
organic pest control		898	.490	.131	.513	.694	.769
Example of cultural		238	151	.111	.170	.091	252
control in organic pest		095	.295	.442	.238	.530	.077
management							
Purpose of introducing	١.	205	053	.139	.095	.100	049
predator insects in		153	.715	.335	.513	.488	.734
organic pest control							
Organic pest control		274	337*	051	.036	085	.139
method involves using		054	.017	.725	.802	.559	.337
a fine mesh or netting	ŀ					$\mathcal{A}(G)$	
to physically block					,	12	
pests from reaching							
crops							
Primary advantage of	.2	292*	.060	.066	.047	.119	211
using control method in		039	.681	.647	.745	.410	.141
organic farming							

Table III.A explains the knowledge level of the farmers in organic pest management. There exists a noteworthy correlation between the age and the variable primary advantage of using the control method in organic farming with 0.05 level at one per cent and five per cent levels.

The variable organic pest control method involves using a fine mesh or netting to physically block pests from reaching crops, which is significant with gender -.337* correlation significance at 0.005 level at one percent and five percent level.

TABLE – IV KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Variable	Categories	Frequency	Percentage
The main principle behind	To attracts pests to the	19	38
using pheromone traps in	trap's ad kill them	17	30
organic pest management	To repel pests away	18	36
ergume pere munugement	from the crops	10	
	To sterilize pests in the	10	20
	vicinity	-	
	To increase crop yield	3	6
"Integrated pest	Using only chemical	7	14
management "IPM refer to	pesticides		
	Combining organic and	20	40
	synthetic pesticides for		
	better results		
	Using a variety of	21	42
	techniques to manage		
	pest while minimizing		
	environmental impact		
	Eliminating all pests	2	4
2 2	from the farm	_	10
Purpose of applying	To provide nutrients to	5	10
diatomaceous earth	the soil	21	42
in organic pest	To act as a physical	21	42
control	barrier that damages pests' exoskeletons		
		10	38
	To improve crop flavor To deter birds form	19	8
	feeding on crops	7 30	8
NOT a common natural	Lady bugs	3	6
predator used in biological	Praying mantises	29	58
pest control	Synthetic pesticides	12	24
	Nematodes	6	12
Primary benefit of using	They provide shade to	2	4
cover crops in organic	crops		10
farming	They are the main crop	16	32
	harvested for sale		
	They improve soil	29	58
	fertility and suppress		
	weeds		
	They attract more pests	3	6
	to the field		

The above table shows thirty eight percent of respondents said to attract pest and kill them and thirty percent said that to repel pests away from the crops and six percent to increase crop production is the main principle behind using pheromone traps in organic pest management.

The forty percent of respondents said that using a variety of techniques to manage pest while minimizing environmental impact and forty percent of respondents stated that combining organic and synthetic pesticides for better results. And four percent of respondents feel that Eliminating all pests from the farm refers to Integrated pest management.

Regarding Purpose of applying diatomaceous earth in organic pest control forty percent said that to act as a physical barrier that damages pests' exoskeletons and eight percent of respondents stated to deter birds form feeding on crops. Thirty percent said to improve crop flavor.

Fifty eight percent of respondents from above table clear shows twenty-nine said praying manties is not common natural predator used in biological pest control. Twelve percent said nematodes is natural predator and twenty percent of respondents said that syntenic pesticides are not a common natural predator used in biological pest control.

Fifty eight percent of the respondents stated Primary benefit of using cover crops in organic farming is improve soil fertility and suppress weeds and thirty-two percentage sated that they are the main crop harvested for sale.

TABLE- IV A. CORREALTION TEST ON KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Aspects	P Value						
	Age	Gender	Religion	Caste	Education	Income	
	(In			Type			
	Years)						
The main principle	.055	.027	055	347*	028	264	
behind using	.706	.853	.703	.014	.845	.064	
pheromone traps in							
organic pest							
management							
"Integrated pest	.324*	189	.000	014	089	150	
management "IPM	.022-	.189	1.000	.923	.541	.300	
refer to	-	\					
Purpose of applying	.208	.142	321	006	.030	023	
diatomaceous earth in	.147	.325	.023	.967	.834	.876	
organic pest control				N. A.			
NOT a common natural	.050	.004	.000	008	.295*	125	
predator used in	.728	.976	1.000	.956	.038	.386	
biological pest control						6 2	
Primary benefit of	.102	232	.154	011	097	.072	
using cover crops in	.483	.105	.287	.941	.503	.617	
organic farming							

It is evident from table shows that there is a strong relation between Age and integrated pest management, and there is a strong relation between cate type and the main principle behind using pheromone traps in organic pest management. There is a significant correlation between socio-demographic profile and knowledge in education and the statement, not a common natural predator used in biological pest control with .295* correlation significance at 0.005 level at one per cent and five per cent levels.

TABLE - V KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Variable	Categories	Frequency	Percentage
Pest control method	Companion planting	9	18
involves introducing	Biological control	20	40
specific nematode species	Soil sterilization	19	38
into the soil – dwelling pest	Fertilizer application	3	6
Practice of rotating crops to	Pesticide application	2	4
disrupt the life cycles of	Mono cropping	26	52
pests and diseases	Crop rotation	16	32
	Genetic modification	3	6
Primary purpose of using	To eradicate all pests	4	8
organic pesticides in	To reduce pesticide	16	32
farming	costs		
	To minimize harm to	22	44
	the environment and		
	human health		
	To increase crop yield	5	10
	without any constraints		
key characteristic of	They are synthetic	4	8
organic pesticides	chemicals		
	They have no impact	17	34
	on the environment		
	They are only effective	24	48
	against a single pest		
	species	_	
	They are derived from	7	14
	natural sources		10
Role of organic pesticides in	To be used in	5	10
integrated pest management	combination with		
(IPM)	synthetic pesticides	2.4	10
	To be the sole method	24	48
	of pest control	16	22
	To be avoided entirely	16	32
	in IPM practices	5	10
	To be a primary tool for	3	10
	pest prevention		

Forty percent of respondents said pest control method involves introducing specific nematode species into the soil – dwelling pest and thirty-eight said biological control. Six percent stage said fertilization is pest control method in nematode species.

The regarding practice of rotating crops to disrupt the life cycles of pests and diseases fifty two percent mono cropping and thirty two percent said crop rotation and six percent said that Is best for practicing of rotating crop to disrupt the life cycle of pest and diseases.

Forty eight percent respondents stated that they are only effective against a single pest species are key characteristic of organic pesticides Thirty four percent said there is no impact on environment. Fourteen percent said they are derived from natural sources.

Forty eight percent of respondents said sole method of pest control is role of organic pesticides in integrated pest management (IPM). And thirty two percent said avoid IPM practices and ten percent said to be a primary tool for pest prevention.

TABLE V A. CORREALTION TEST ON KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Aspects		P Value						
	Age		Religion	Caste	Education	Income		
	(In	Gender		Type				
	Years)							
Pest control method	.205	146	060	135	.065	.284*		
involves introducing	.153	.313	.678	.351	.652	.046		
specific nematode								
species into the soil –								
dwelling pest								
Practice of rotating crops	.200	055	154	.049	.092	041		
to disrupt the life cycles	.163	.705	.287	.738	.523	.779		
of pests and diseases								
Primary purpose of using	.017	025	.065	213	061	.046		
organic pesticides in	.904	.861	.655	.137	.672	.752		
farming								
key characteristic of	.323*	245	.061	.013	.023	130		
organic pesticides	.022	.086	.674	.927	.875	.370		
Role of organic	191	211	.062	104	084	.246		
pesticides in integrated	.183	.141	.667	.473	.564	.085		
pest management (IPM)								

The knowledge level of the farmers in organic pest management clearly shows significance between age and statement with a critical characteristic of organic pesticides with .323* correlation significance at 0.005 level at one per cent and five per cent level. Income has .284* correlation significance with the Pest control method, which involves introducing specific nematode species into the soil-dwelling pest.

TABLE - VI KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Variable	Categories	Frequency	Percentage
Example of an organic	Glyphosate	5	10
pesticide commonly used in	DDT	28	56
farming	Pyrethrin	15	30
	Atrazine	2	4
Organic pesticides typically	By altering the genetics	4	8
work to control pests	of pests		
_	By physically repelling	12	24
	pests from		
	By interfering with	30	60
	pest's metabolic		
	processes or nervous		
	system		
	By providing food for	4	8
	pests to distract them		
	from crops		
Farmers consider when	Organic pesticides do	6	12
using organic pesticides to	not harm beneficial		
minimize to harm to	insects		
beneficial insects	Only apply organic	21	42
	pesticides during the		
	day		
	Choose pesticides that	19	38
	are specific to the target		
	pest		
	Avoid using organic	3	6
	pesticides altogether		
Primary benefit of using	They are less expensive	12	24
organic farming	than synthetic		
	pesticides		
	They align with organic	19	38
	farming principles and		/ (S)
	regulations		770
	They are more potent	16	32
	than synthetic		
	pesticides		
Organic pesticides be stored	In direct sunlight	4	6
to maintain their	Ina cool, dry place	19	38
effectiveness	away from children and		
	pets	22	4.1
	In the field for easy	22	44
	access during spraying	_	4.0
	In the refrigerator	5	10

Fifty-six of respondents said DDT is the example of an organic pesticide commonly used in farming. Thirty percentage stated Pyrethrin and remaining ten stated Glyphosate is example of an organic pesticide commonly used in farming and four percent of respondents said Atrazine respectively.

Organic pesticides typically work to control pests, the majority of respondents sixty percent marked by interfering with pest's metabolic processes or nervous system. And eight percent respondents said by providing food for pests to distract them from crops and by altering the genetics of pests.

The majority of respondents forty percent said only apply organic pesticides during the day. And twelve percent said organic pesticides do not harm beneficial insects and forty two percent stated that choose pesticides that are specific to the target pest.

The majority of respondents with thirty eight percent said that They align with organic farming principles and regulations and thirty two percent said they are more potent than synthetic pesticides and twenty four percent stated that they are less expensive than synthetic pesticides. They are primary benefit of using organic farming. Regarding Organic pesticides be stored to maintain their effectiveness forty-four percentage said in the field for easy access during spraying organic pest and thirty eight percent said in a cool, dry place away from children and pets. Ten percent in the refrigerator and six percent said direct sunlight is maintain effectiveness in organic pesticides for filed.

TABLE VI. A CORREALTION TEST ON KNOWLEDGE ON ORGANIC PEST MANAGEMENT

Aspects	P Value					
	Age	Gender	Religion	Caste	Education	Income
	(In Years)			Type		
Example of an	093	060	.068	.151	164	129
organic pesticide	.521	.680	.638	.297	.255	.373
commonly used in						
farming						
Organic pesticides	111	068	125	.257	022	029
typically work to	.442	.641	.388	.072	.879	.839
control pests		\\\				
Farmers consider	089	<mark>0</mark> 86	.100	067	.391**	.041
when using organic	.538	.554	.487	.645	.005	.775
pesticides to))
minimize to harm						
to beneficial insects						
Primary benefit of	084	068	.064	.031	.128	.401**
using organic	.561	.638	.658	.832	.376	.004
farming					10	

The socio-demographic profile of education and knowledge level of farmers in organic pest management correlates with what farmers consider when using organic pesticides to minimize harm to beneficial insects with 0.01 per cent levels at one per cent and five per cent levels.

The Primary benefit of using organic farming correlates with a .401** level at one per cent and a five per cent level of education.

IV. CONCLUSION

From the study "Indigenous technical knowledge (ITK) in organic pest management for sustainable agriculture development". It can be concluded that the farmers need more knowledge of organic pest management. To evaluate farmers' knowledge of organic pest management, The researcher conducted ANOVA, T-test and correlation. Organic pest management offers a sustainable and environmentally friendly approach to controlling pests in agriculture.

The mostly grown crops are banayan, coconut and curry leaves in Perinaickenpalayam village. The findings indicate that training programs, government policies, and schemes are necessary to improve organic farming and new organic farming techniques. Most of the farmers are from the middle age group, and all the farmers are married. More than eighty per cent are Hindu. Through organic farming, farmers earn ten to fifteen thousand rupees per month. Organic pest management utilizes natural predators, crop rotation, and non-chemical methods. It promotes sustainable balance, and it helps in environmental conservation.

V. REFERENCE

- 1. Abhishek.S, & Prasad (2014). Development organic package of practices in medicinal herbs with special reference to Integrated nutrient management and Integrated pest management. Hemwati Nandan Bahuguna Garhwal University, Sodhganga@INFLIBNET.
- 2. Vinitha. VK, Kalarani. TG (2022). Value chain in organic farming- A study with Reference to Kerala. University of Kerala, Sodhganga@INFLIBNET.
- 3. Rajagopal (2014) Role of television in the management of organic farming in Karnataka A study educational multimedia and Research Gate, University of Mysore, Sodhganga@INFLIBNET.
- 4. Haneesh.P, Joy.VS (2018). Working of organic farming industry in North Kerala, University of Kerala. Sodhganga@INFLIBNET

