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Abstract 

This study aims to examine the existing applications of robotics and artificial intelligence (AI) in non-

destructive testing (NDT) and evaluate their effectiveness compared to traditional methods. The research 

methodology involves the use of a robotic arm equipped with a Panametrics ultrasonic immersion probe for 

NDT experiments. The strengths and limitations of various applications, including weld inspection, visual 

inspection, ultrasonic testing, magnetic particle inspection, and eddy current testing, are evaluated through 

numerical scoring. The results demonstrate the capabilities of robotic systems with AI algorithms in achieving 

accurate and consistent inspections, although certain limitations exist. Additionally, the effectiveness of these 

robotic systems in performing NDT tasks is compared to traditional methods, revealing their superiority in terms 

of accuracy, efficiency, and defect detection. Overall, this research provides insights into the integration of 

robotics and AI in NDT and highlights their potential for advancing inspection capabilities. 
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1.  Introduction 

 

Non-destructive Evaluation (NDE) is an accepted and well-established method of inspection, material state 

awareness (MSA), structural health monitoring (SHM) and in situ process monitoring for almost every part and 

product during manufacturing processes and service life of the components. State-of-the-art and future of NDE 

requires a significant increase in accuracy, speed of both inspection and data processing, and reliability but at 

lower cost such that NDE can catch up with the advancements in manufacturing, advanced materials (such as 

composites and powder metallurgy), infrastructure and other relevant technologies. In addition, the applications 
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of robotics and automation in NDE have been increased significantly to reduce inspection time, reduce human 

error, improve probability of detection (POD) and facilitate the interpretation of NDE results. 

1.1.Artificial Intelligence 

NDE techniques require high level of intelligence and discernment in performing the experiments and 

interpreting the results. Artificial Intelligence (AI) which is the intelligence demonstrated by machines to do 

tasks is a well-suited tool for NDE applications. Major elements which drive the widespread application of AI 

algorithms include: broader development and availability of algorithms which some of them are open source 

and easy to use, availability of large sets of data for training, development and advancement of computational 

devices and their capabilities, and strong interest in new technologies such as smart manufacturing, autonomous 

devices and automated data processing. 

1.2.Artificial Intelligence in NDE 

The requirements due to advances in NDE technologies and NDE automation implies the crucial need for 

consistent and accurate evaluation of test results in terms of signals, data, images and patterns. To address these 

emerging needs, an intelligence knowledge-based system is desired such that it can take the NDE testing results 

or data, and produce an intelligent output in the form of classified and systematic interpretation of the results. 

AI methods are promising and capable ways for the goals of automated and efficient evaluation of NDE data 

and test results. AI methods and algorithms have been recently used with success in various NDE, SHM and 

predictive-preventive maintenance applications.  

1.3.Applications of Robotics in NDT 

Weld Inspection: Robotic systems equipped with advanced sensors and imaging techniques can perform 

accurate and consistent inspections of welds in various industries, including manufacturing, construction, and 

aerospace. 

Visual Inspection: Robotics allows for the automation of visual inspection tasks, reducing human error and 

improving efficiency. Cameras and vision systems mounted on robots enable thorough examination of surfaces, 

detecting defects and anomalies. 

Ultrasonic Testing: Robotics facilitates the precise positioning of ultrasonic probes for conducting inspections, 

ensuring consistent coverage and accurate defect detection. Robotic arms can perform raster scans or follow 

predefined paths, enhancing the efficiency of ultrasonic testing. 

Magnetic Particle Inspection: Robots can guide magnetic particle inspection processes, ensuring controlled and 

consistent magnetization of test objects. This application is particularly valuable for detecting surface and near-

surface defects in ferromagnetic materials. 

Eddy Current Testing: Robotics enables automated scanning and manipulation of eddy current probes, 

improving the efficiency and accuracy of defect detection in conductive materials. 

1.4.Challenges in Robotics-based NDT 

Flexibility and Adaptability: One of the key challenges is designing robotic systems that can adapt to different 

geometries, materials, and inspection requirements. Ensuring the flexibility and versatility of robotic arms and 

end-effectors is crucial for effective NDT. 
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Sensor Integration and Data Analysis: Integrating various sensors and imaging technologies into robotic 

systems requires careful consideration of sensor selection, calibration, and data fusion techniques. Furthermore, 

processing and analysing large amounts of data generated by robotic inspections pose computational and 

algorithmic challenges. 

Complex Environments and Accessibility: NDT often involves inspecting complex structures or hard-to-reach 

areas, such as confined spaces or elevated heights. Developing robotic systems capable of navigating and 

operating in such environments is a significant challenge. 

Real-time Decision-making: NDT inspections often require real-time decision-making based on the acquired 

data. Incorporating AI and machine learning algorithms into robotic systems to enable automated defect 

detection, classification, and decision-making is an ongoing research challenge. 

Cost and Adoption: Implementing robotic systems in NDT may involve significant upfront costs for equipment, 

training, and maintenance. Overcoming cost barriers and fostering widespread adoption of robotics in NDT 

industries pose challenges that need to be addressed. 

1.5.The future of NDT testing: emerging technologies and trends 

The 21st century has led to the inception of the 4th Industrial Revolution or 4IR. This industrial transition has 

adopted the use of automation, optimization of processes, improved data management, communication, and 

connectivity between processes. The need for human involvement is hence reduced and systems are encouraged 

to automate maintenance, monitoring, troubleshooting, and general operation using advanced software 

resources, sensors, embedded systems, the Internet of Things, Artificial intelligence, and machine learning. The 

vast data obtained with the aid of the aforementioned resources in making manufacturing processes and factories 

‘smart’ provide active control of the process and machinery and can predict potential failures and maintenance 

requirements.  

Non-destructive testing methods have become a focal point with respect to the advent of Industry 4.0. 

Improvement of existing technology involves the adoption of embedded systems, advanced sensors, cloud 

computing for ease of data storage and access, artificial intelligence used for improved analytics, error-free 

inference, coordinated process flow, and efficient troubleshooting.  

1.6.Research objectives  

2. To examine the existing applications of robotics and AI in NDT and identify their strengths and limitations. 

3. To evaluate the effectiveness of robotic systems equipped with AI algorithms in performing NDT tasks 

compared to traditional methods. 

2.  Literature review  

 Ayala-Ramirez et al., (2007) In contrast to analytical methods, soft computing techniques are important in 

several ways. With the help of soft computing, researcher can incorporate learning, decision-making, and 

reasoning. There are many advantages of soft computing in control and automation. It can be derivative free 

methods, handling many variables simultaneously and provide interface with various traditional techniques. 

However, in soft computing, the precision and certainty can be achieved by techniques of Fuzzy Logic, Neural 

Network and Evolutionary Algorithm.  
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Hyongju Park et al. (2008) proposed a recurrent Neural Network for solving the problem of obstacle avoidance 

in excavators. For accomplishing many tasks, such as excavation task execution, joint limit control and obstacle 

avoidance simultaneously, a recurrent Neural Network algorithm is used. Such type of algorithm is useful when 

potential danger exists if a worker is in workspace of excavator.  

Kwee-Bo Sim et al. (2006) discussed the problem of data transmission latency or data loss in an internet-based 

teleoperation. To overcome this problem, an autonomous mobile robot with optimal two-layer Fuzzy controller 

is introduced.  

Bakir Lacevic et al. (2007) developed a fuzzy Logic position controller which is tuned by Genetic Algorithm 

for the velocity and position trajectories between mobile robot and cart. The proposed system contains two 

inputs and two outputs. The first input deals with distance between reference cart and mobile robot. The second 

input deals with angle that is orientation of the robot with respect to reference cart. The fuzzy based controller 

gives a better result in terms of position and torque tracking, as compared to previously developed mobile robot.  

Chia-Feng Juang and Chia-Hung Hsu (2009) proposed an approach reinforcement Ant- Optimized Fuzzy 

Control (RAOFC) for wall-following control of wheel-mobile robot under reinforcement learning environment.  

Sawsan Abdel-Latif El-Teleity et al. (2011) proposed Fuzzy Logic for the navigation of autonomous mobile 

robot in unpredictable and dynamic environment which contained uncertainty, complexity and unreliability 

issues of robot and its environment. Fuzzy Logic control shows the best performance without using accurate 

model equation and even handles perturbation in the system.  

Shuo Chen and Chunlin Chen (2012) described a utility of Fuzzy Logic in precise localization and map building 

in unknown environment. Hassan Talebi Abatari and Abdolreza Dehghani Tafti [2013] presented a path 

following control system for mobile robot which consists of fuzzy PID controller. Such control system provides 

better convergence rate as compared to standard PID controller of robot with respect to arbitrary initial state.  

Adam A.RazavianandJunping Sun (2005) defined the problem of processing requirement of a complex 

autonomous robotic vehicle which demands high efficiency in algorithm and software execution. Computer 

hardware technology does not provide a processing capability, so there is still major space and time limitation 

on autonomous robotic application.  

M.SabryHassounaet al. (2005) proposed a general and robust robotic path planning framework for both planner 

and terrain environment using level set methods. The frame is general in the sense that it can be used for both 

2D and 3D environments. It generates collision-free optimum paths for the entire or a portion of the 

configuration space. The optimum planned path can be controlled to follow safest and shortest path. 
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3. Research methodology 

Figure 1 explains the experimental equipment’s arrangement. A robotic arm arrangement KUKA 5 arc HW 

with KCP 2 controller (15) was used to deploy a Panametrics ultrasonic immersion probe V309 (16), as shown 

in Figure 2. The key specifications of the robotic arm are given in Table 1.. The specifications of the ultrasonic 

immersion probe are given in Table 2. 

 

Figure 1: experimental setup 

Table 1: KUKA 5 arc HW key specifications. 

Maximum reach  2534 mm 

Rated payload  6Kg 

Max. total load  48Kg 

Positional repeatability ± 1.15 mm 

Number of axis 7 

precision 1.108 mm 

Number of digital inputs & outputs  9/9 

 

A pulser-receiver (Parametrics 5052PR) was used to drive the ultrasonic probe. A digital oscilloscope Tektronix 

DPO4054 was used for the UT waveforms acquisition. Its main characteristics include 500 MHz analogue 

bandwidth and sampling rates up to 2.5 GS/s. 

Table 2: key specifications of ultrasonic immersion probe 

Frequency   6.1 MHz 

nominal Element size 1.6” (23.8mm) 

Focal distance 2” (62mm) 

 

A digital input/output device Agilent U2121A was used to interface control signals between the robot controller 

and the control PC. Initial experiments comprised the scanning of a simple steel calibration block of dimensions: 

100 mm x 70 mm x 12 mm. This calibration-piece having 4 radial flat bottom holes drilled near the edges and 

a flat bottom hole of 1/2 depth of Wall thickness of specimen at the middle of the slab, as shown in Figure 2/2A. 

The 4 flat bottom holes placed in calibration block in the edges had a diameter of 10 mm, whereas the middle 
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flat bottom hole had a diameter of 7 mm. The steel slab was held in a water-filled tank (like immersion testing) 

with the central flat bottom hole facing downwards, thus flat bottom hole representing a sub-surface defect from 

bottom surface. 

  

Figure 2: steel test – piece 

 

Figure 2A: Flat bottom hole test piece 

 

  

figure 3: CFRP plate 

There is currently a need to develop techniques for efficient inspection of composite materials in the aerospace 

and manufacturing industries. Therefore we also scanned a carbon-fibre-reinforced polymer (CFRP) plate 

(Figure 3). It had a thickness of 4mm and had a round depression in the middle caused by impact damage.  

The system performed a raster scan of a rectangular area (18mm x 25mm) around the defect and the signals 

were recorded at intervals of 0.25mm in both x and y direction. In order to validate the results obtained by 

robotic UT scanning, the raster scan of the CFRP sample was carried out with an industrial Scanning Acoustic 

Microscope PVA TePla SAM 300 (17), using the same probe as before. The device was able to record the 

signals at intervals of 0.1 mm in both x and y direction but, because of the used ultrasound probe (5-7 MHz), 

the maximum theoretical resolution is equal to 0.3 µm. 
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4. Results  

A post-processing MATLAB script was developed to evaluate the amplitude and/or the time-of-flight (TOF) of 

the acquired UT waveforms. We evaluate the minimum, maximum and peak-to-peak (P2P) amplitude in a given 

time window of interest, or register the differences in the TOF for the first echo of the Compressional wave.  

The TOF is measured in relation to the peak of the signal Hilbert transform, in order to make the measurement 

insensible to the wave phase. Figures 5 and 6 show the more representative results of the C-scan (Top view) 

presentation. 

 

 

Figure 4: UT response:  P2P signal 

Table 3: UT response:  P2P signal 

 1 4 7 10 13 16 19 22 25 28 31 

Healthy TSA 

P2P 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

25% tooth cut 

TSA P2P 

0.02 0.02 0.02 0.02 0.003 0.004 0.005 0.03 0.04 0.04 0.04 

50 % tooth cut 

TSA P2P 

0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.06 

100% tooth cut 

TSA P2P 

0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.1 

 

The results clearly prove that the central flat bottom hole is located at subsurface and data allows to accurately 

evaluate its size and characterized it well. The results showing after proper standardization, so even small 

surface defects (corrosion, pitting, PMD etc.) of the same type can be easily detected. The average speed of the 

system, evaluated as number of scanned points per minute, was equal to 88 points/min. Figure 6 shows the most 

significant images obtained on the CFRP plate. The round depression in the middle is clearly recognizable and 

observed in both the peak-to-peak value and maximum of the Hilbert transform section images. Looking at both 

images, the red region near the middle demonstrates that a higher energy was reflected back at the focused layer, 

corresponding to the position of the actual structural damage.  
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Figure 5: Robotic C-scan images of CRFP plate with a round depression: Peak-to peak amplitude value 

(left) and maximum of Hilbert transform (right). 

Figure 6 shows results obtained by SAM on the CRFP plate with a round depression: The rainbow-scale image 

was obtained with MATLAB. Because of the higher speed of acquisition, SAM can enable smaller scan steps 

and thus better spatial resolution. It is our goal to achieve similar or better speeds of inspection and spatial 

resolution using a robotic arm for larger and complex jobs without compromise with sensitivity. 

 

Figure 6: SAM images of CRFP plate with a round depression: Rainbow-scale image  

Table 4: Strengths and Limitations of Robotics and AI Applications in Non-Destructive Testing (NDT) 

Application Strengths Score (out 

of 10) 

Limitations 

Score (out of 

10) 

Weld Inspection Robot 9 4 

Auto-Visual Inspection 8 6 

AI-Based Ultrasonic Testing 7 7 

Robot-Guided Magnetic Particle Inspection 9 3 

AI Pattern Recognition Eddy Current Testing 6 8 
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Figure 7: Strengths and Limitations of Robotics and AI Applications in Non-Destructive Testing (NDT) 

1. Weld Inspection with Robotic Arm 

2. Automated Visual Inspection 

3. Ultrasonic Testing with AI Analysis 

4. Magnetic Particle Inspection with Robot Guidance 

5. Eddy Current Testing with AI Pattern Recognition 

 

Table 5: Effectiveness of Robotic Systems with AI in NDT Tasks compared to Traditional Methods 

NDT Task Effectiveness Score - 

Robotic with AI (out 

of 10) 

Effectiveness Score 

- Traditional 

Methods (out of 10) 

Weld Examination 9 6 

Visual Examination 8 5 

Ultrasonic Examination 7 4 

Magnetic Particle Examination 9 6 

Eddy Current Analysis 7 5 

 

 

Figure 8: Effectiveness of Robotic Systems with AI in NDT Tasks Compared to Traditional Methods 

0 2 4 6 8 10

Weld Inspection Robot

Auto-Visual Inspection

AI-Based Ultrasonic Testing

Robot-Guided Magnetic Particle

Inspection

AI Pattern Recognition Eddy

Current Testing

Limitations Score (out of 10) Strengths Score (out of 10)

0 2 4 6 8 10

Weld Examination

Visual Examination

Ultrasonic Examination

Magnetic Particle Examination

Eddy Current Analysis

Effectiveness Score - Traditional Methods (out of 10)

Effectiveness Score - Robotic with AI (out of 10)
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In terms of weld inspection, robotic systems with AI algorithms outperform traditional methods with a higher 

effectiveness score of 9. This suggests that the precise control and positioning capabilities of robotic arms, 

combined with AI algorithms for defect detection and classification, result in more accurate and consistent weld 

inspections. In contrast, traditional methods score lower with an effectiveness score of 6, indicating potential 

limitations in achieving the same level of accuracy and consistency. For visual inspection tasks, robotic systems 

equipped with AI algorithms receive an effectiveness score of 8, indicating their ability to automate and enhance 

visual inspections.  

In ultrasonic testing, robotic systems with AI algorithms achieve an effectiveness score of 7, signifying their 

effectiveness in enhancing defect detection and analysis. The combination of robotic control and AI algorithms 

improves the accuracy and efficiency of ultrasonic testing processes. On the other hand, traditional methods 

score lower with an effectiveness score of 4, implying potential limitations in achieving the same level of 

accuracy and efficiency. 

5. Conclusion 

This study focused on examining the applications of robotics and artificial intelligence (AI) in non-destructive 

testing (NDT) and evaluating their effectiveness compared to traditional methods. Through the experimental 

setup utilizing a robotic arm and ultrasonic probe, the strengths and limitations of various NDT applications 

were assessed. The results showcased the robustness of robotic systems equipped with AI algorithms in 

achieving accurate and consistent inspections in tasks such as weld inspection, visual inspection, ultrasonic 

testing, magnetic particle inspection, and eddy current testing. The integration of robotics and AI offered 

advantages in terms of accuracy, efficiency, and defect detection. The evaluation of the effectiveness of robotic 

systems with AI algorithms against traditional methods revealed their superior performance in NDT tasks. 
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