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Abstract:  The rapidly expanding domain of Big Data analytics requires powerful distributed computing systems capable of 

skillfully handling the storage, processing, and analysis of extensive data collections. The paradigm of Big Data analytics 

necessitates a paradigm shift in how distributed computing resources are managed. In heterogeneous Hadoop clusters, where nodes 

vary widely in capabilities, traditional static block placement strategies are inadequate. This paper introduces the Dynamic 

Resource-Aware Block Rearrangement (DRABR) algorithm, an innovative approach to resource allocation that dynamically adapts 

to the real-time performance of nodes. By evaluating the processing capabilities and current load of individual nodes, DRABR 

reallocates data blocks across the cluster to optimize computational efficiency and data locality. The algorithm demonstrates a 

significant improvement in job execution times and overall system throughput, presenting a compelling alternative to conventional 

static methods. Our empirical analysis, based on a list of nodes and data blocks, confirms that DRABR's output leads to an optimally 

arranged cluster, showcasing its viability for enhancing Big Data processing in heterogeneous environments. 

 

Index Terms – Hadoop, HDFS, MapReduce, YARN, Data Locality, Scheduling. 

I. INTRODUCTION 

Big data analytics refers to the process of examining and analyzing large and complex datasets, often referred to as "big data," to 

extract valuable insights, patterns, trends, and information that can help organizations make informed decisions and solve complex 

problems. Big data analytics leverages various techniques, technologies, and tools to process, manage, and analyze massive volumes 

of data that are typically too large or complex for traditional data processing and analysis methods. 

Big data analytics is of paramount importance as it equips organizations with the ability to extract invaluable insights and knowledge 

from vast and complex datasets. This capability leads to data-driven decision-making, granting a competitive edge through rapid 

adaptation to market changes, personalized customer experiences, and efficient operations. Its real-time analytics capacity is vital 

in detecting fraud, predicting maintenance needs, and monitoring dynamic trends. Furthermore, big data analytics fosters predictive 

modeling, enhancing the ability to anticipate future developments. It significantly elevates the customer experience by tailoring 

products and services based on individual preferences. Additionally, it contributes to risk management in sectors like finance and 

insurance, aids scientific research and healthcare advancements, and can address pressing global challenges. In essence, big data 

analytics empowers organizations to leverage data's full potential, fostering innovation and competitiveness across various sectors. 

 

Major Contributions: 

 

The major contributions of this research article can be summarized in the following sequence: 
 

 Introduction of DRABR: The article introduces the Dynamic Resource-Aware Block Rearrangement (DRABR) 

algorithm. 

 Adaptive Scheduling: DRABR dynamically allocates resources based on real-time node performance. 

 Improved Performance: DRABR significantly reduces job execution times and enhances cluster throughput. 

 Load Balancing: The algorithm balances workload across nodes, preventing resource bottlenecks. 

 Empirical Validation: The article presents empirical analysis confirming DRABR's effectiveness. 

 Impact on Big Data: DRABR offers a promising approach to improving Big Data processing in heterogeneous 

environments. 
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II. RELATED WORK 

The quest for enhancing Hadoop's efficiency has led to significant research, particularly in the realm of load balancing within 

distributed computing environments. Recognizing that load balancing is a crucial determinant of performance in systems potentially 

comprising thousands of nodes, researchers have employed various algorithms and programming models to optimize this process. 

Shah and Padole (2018) have aggregated key contributions in this area, encompassing scheduling optimizations (Zaharia et al., 

2008; 2010), improvements during job processing (Liu et al., 2016; 2017), and custom block placement strategies (Dharanipragada 

et al., 2017; Hadaps, 2018; Xie et al., 2010; Hsiao, 2013). 

 

Muthukkaruppan et al. (2016) put forth a block placement approach based on a region placement policy that distributes data across 

multiple regions instead of nodes, thus enhancing fault tolerance and data locality within region-based storage clusters. Qureshi et 

al. (2016) introduced a heterogeneous storage media aware strategy that takes into account different storage media types such as 

HDDs, SSDs, and RAM, aligning them with the processing capacity for workload balance, which was demonstrated to reduce 

cluster imbalance. 

Qu et al. (2016) recommended a dynamic replica placement method that employs a Markov probability model to evenly distribute 

replicas across racks, resulting in improved job completion times and uniform replica distribution compared to HDFS and CDRM. 

Meng et al. (2015) devised a strategy that considers network load and disk usage for block placement, outperforming the default 

and real-time block placement policies with better throughput and storage utilization. 

 

Dai et al. (2017) developed an improved slot replica placement policy acknowledging the heterogeneity of nodes and categorizing 

them into four sections for data block storage, thus achieving greater load balance and obviating the need for the HDFS balancer. 

Fahmy et al. (2016) proposed a strategy that utilizes the spatial characteristics of data to enhance query execution times significantly 

by co-locating spatially aware data blocks, effectively reducing job execution times. 

 

Park et al. (2016) introduced a probability-based Data Local Map Task Slot (DLMT) approach that adjusts the data placement rate 

along with a replica eviction policy, aiming to enhance both Hadoop performance and cluster space utilization. Herodotou et al. 

(2011) designed the "Starfish" model, which dynamically adjusts Hadoop parameters based on job workload, achieving notable 

performance improvements over the default Hadoop setup, placement policy, and scheduling scheme. 

 

III. BACKGROUND 

A. Hadoop 

 

Hadoop is an open-source framework designed to store and process large datasets across clusters of computers using simple 

programming models. It is built to scale up from a single server to thousands of machines, each offering local computation and 

storage. The core of Hadoop's architecture consists of HDFS for storage, which follows a master/slave design with the NameNode 

managing the file system metadata and DataNodes storing the actual data. For resource management and job scheduling, Hadoop 

uses YARN, with the Resource Manager scheduling the tasks and Node Managers running the tasks on each slave node. This 

architecture supports data redundancy and fault tolerance, enabling reliable data storage and efficient processing of big data. 

 

B. HDFS 

 

The Hadoop Distributed File System (HDFS) is designed to store very large data sets reliably and to stream those data sets at high 

bandwidth to user applications. In its core, HDFS has a master/slave architecture. 

An HDFS cluster consists of a single NameNode, a master server that manages the file system namespace and regulates access to 

files by clients. In addition, there are a number of DataNodes, usually one per node in the cluster, which manage storage attached 

to the nodes that they run on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally, a file is 

split into one or more blocks and these blocks are stored in a set of DataNodes. The NameNode executes file system namespace 

operations like opening, closing, and renaming files and directories. It also determines the mapping of blocks to DataNodes. The 

DataNodes are responsible for serving read and write requests from the file system’s clients. The DataNodes also perform block 

creation, deletion, and replication upon instruction from the NameNode. Fig.1 Illustrates the HDFS Architecture in detailed. 

 

 
Figure 1: HDFS Architecture 
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C. Challenges in Hadoop: 
 
Configuring a Hadoop cluster is intricate due to its sophisticated distributed nature involving both hardware and software. This 

complexity influences Big Data application performance, with hardware considerations like data storage and transfer playing a 

significant role. Software customization can enhance Hadoop's functioning. Challenges include: 
 

 Diversity in Clusters: Optimizing performance across heterogeneous clusters is critical, given the varying data locality 

on such clusters. 
 

 HDFS Block Placement Strategy: There's room for improvement in Hadoop's default block placement method, especially 

in managing the distribution across nodes of varying processing capacities. 
 

 Load Management: Automatic load balancing in Hadoop still presents challenges, especially when data isn't evenly 

distributed, leading to delays. 
 

 Resource Sensitivity: Incorporating awareness of node resources such as processor specs, core count, and memory into 

both HDFS and MapReduce could significantly improve performance. 
 
D. HDFS Block Placement Policy: 
 
Hadoop's architecture includes an HDFS block placement strategy, as articulated by Shvachko and colleagues in 2010, to allocate 

data blocks across its datanodes. On receiving a data storage request, HDFS initially partitions the dataset into blocks of a standard 

size (commonly 64/128 MB) and then produces duplicates of these blocks according to a default replication factor, typically three. 

The goal of this system is to distribute the blocks proportionally among all available nodes. Data locality is a pivotal aspect in the 

robustness and efficiency of MapReduce within Hadoop, hinging on the principle of transferring computations closer to where data 

resides to avoid the transfer of voluminous data blocks to processing locations. This enhances network efficiency and optimizes 

both performance and dependability. Central to this block placement strategy is the concept of 'Rack Awareness,' as depicted in 

Figure 2, illustrating the conventional HDFS block placement practice. 
 
When a cluster node datanode initiates a request, the first block replica is stored on that particular datanode; subsequent replicas 

are distributed at random across the cluster's datanodes. The second replica is typically stored on a different rack than the first, if 

available, or else on the same rack. The third is then placed on a node within the same rack as the second replica. 

 

 
Figure 2: HDFS Block Placement Policy 

 

E. Challenges with the Default Policy: 
 
The effectiveness of Hadoop and MapReduce is deeply influenced by the distribution and storage of data blocks. While the HDFS 

block placement policy allocates data blocks distinctively, the distribution of replicas lacks uniformity. Addressing this involves 

considering variables like cluster balance, network setup, and disk speed, among others. Points for enhancement of the existing 

strategy include: 

 

 Cluster/Data Imbalance: The standard practice of storing the initial block copy within the client's rack and the others 

elsewhere can lead to imbalances, especially in geographically spread racks. 
 

 Node and Network Diversity: The current policy doesn't effectively address the variety in node capabilities, network 

configurations, and other resources. 
 

 Resource Cognizance: The default system overlooks the processing abilities of nodes when allocating data blocks, which can 

lead to skewed job distributions. It could be refined to account for disk speed, storage types, memory, and additional resources 

for improved data handling. 

 

 HDFS Balancer: To mitigate cluster imbalances, Hadoop introduced the HDFS balancer, which equalizes based on the total 

storage distribution but still overlooks the aforementioned issues. 
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F. Hadoop Schedulers: 
 
YARN employs schedulers to allocate jobs among a multitude of shared resources. It incorporates three scheduling frameworks 

within MapReduce: FIFO, Capacity, and Fair schedulers. MR1 provides all three, defaulting to FIFO, while MR2 offers capacity 

and fair, both of which can be further tailored with a delay scheduler to address data locality concerns. 
 

1) FIFO Scheduler: The FIFO scheduler prioritizes the first job in the queue, dedicating all resources to it and excluding 

concurrent applications, leading to potential underutilization of the cluster. 

 
2) Capacity Scheduler: Featured in MR2 or YARN, the capacity scheduler supports multiple queues for varied users or tasks, 

ensuring a minimum resource quota. It employs FIFO within individual queues and allows for elastic resource allocation. 
 

3) Fair Scheduler: The fair scheduler also uses a queuing system and ensures that jobs in the queue receive attention without 

undue delay. It adopts FIFO, Fair, and DRF (Dominant Resource Fairness) to evenly distribute resources like CPU and memory. 

 

G. DATA LOCALITY AND JOB EXECUTION TIME 

Data Locality refers to the proximity of computational work to the data it operates on. In the context of big data tasks, higher data 

locality means that the processing happens on or near the data nodes, reducing the need for data transfer across the network, which 

can significantly speed up processing times. 

Job Execution Time is the total time taken to complete a specific job, such as a Word Count or TeraSort. It's a crucial metric for 

evaluating the performance of big data tasks because it directly impacts the throughput and efficiency of a computing system. 

 

The formulas to calculate Data Locality and Job Execution Time in a big data environment, particularly when evaluating the 

performance of tasks with algorithms like DRABR, are as follows: 

 

Data Locality (%) = (
Number of Data Local Tasks

Total Tasks Launched
) × 100    …… … (1) 

Number of Data Local Tasks is the count of tasks that were able to run on the nodes where their data was already present. 

Total Tasks Launched is the count of all tasks that were scheduled to run for the job. 

Job Execution Time:  

Job Execution Time=End Time−Start Time       ……...  (2) 

 

Where, Start Time is the timestamp when the job begins execution and End Time is the timestamp when the job completes. 

High Data Locality percentages mean that a greater portion of the tasks were processed where the data is stored, ideally reducing 

network congestion and improving job performance. 

The Job Execution Time directly measures the duration of a job; shorter execution times are generally indicative of better 

performance. 

 

The DRABR algorithm aims to improve both data locality and job execution time by making scheduling decisions that optimize 

the placement of tasks relative to their data. In tasks like Word Count and TeraSort, the DRABR algorithm would attempt to execute 

tasks on nodes where the data resides, thereby improving performance by reducing the time and resources spent on data movement.  
 
IV. Motivation 

 
The motivation for developing the DRABR algorithm arises from the inefficiencies of the default HDFS block placement policy in 

heterogeneous Hadoop clusters. Contemporary computing environments are typically heterogeneous, making the need for a more 

adaptive block placement approach essential. The current limitations include poor load balancing and increased latency due to 

suboptimal block placement, which does not consider the processing capabilities of individual nodes. This can result in performance 

bottlenecks, as data may need to be transferred across nodes or racks, leading to reduced data locality and increased job execution 

times. The DRABR algorithm seeks to overcome these challenges by introducing a dynamic block placement strategy that accounts 

for node heterogeneity and processing power, thereby enhancing MapReduce performance, reducing latency, and improving overall 

cluster efficiency. 

 

V. Proposed System 

 

DRABR: 

 

The Dynamic Resource-Aware Block Rearrangement (DRABR) algorithm is designed to optimize data block placement in 

Hadoop's Distributed File System (HDFS) for clusters with a heterogeneous mix of nodes. Unlike traditional HDFS block placement 

policies that do not account for the varying computational capacities of different nodes, DRABR actively rearranges data blocks 

considering the processing capabilities and current load of each node. The algorithm dynamically adjusts to the cluster's state to 

ensure that data is placed not just for storage efficiency but also for computational efficiency, leading to better load balancing, 

reduced job execution times, and improved data locality. This dynamic approach is particularly beneficial in environments where 

node performance can vary significantly. 
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The DRABR (Dynamic Resource-Aware Block Rearrangement) algorithm is designed to enhance the performance of Hadoop 

clusters by adaptively scheduling and allocating resources. Here's a detailed explanation of its working style in the following steps: 

1. Performance Monitoring: DRABR begins by continuously monitoring each node's performance within the cluster. It 

uses metrics such as CPU usage, memory usage, disk I/O, and network bandwidth, typically collected through tools like 

Ambari. 

2. Dynamic Prioritization: Each node is assigned a dynamic priority based on real-time performance metrics. Nodes 

utilizing fewer resources receive a higher score, indicating greater availability for additional work. 

3. Block Evaluation and Prioritization: Concurrently, data blocks waiting to be processed are evaluated for their size and 

the computational resources they require. Blocks are then prioritized accordingly, with more resource-intensive blocks 

receiving a higher priority for allocation. 

4. Adaptive Block Allocation: The algorithm allocates data blocks to nodes starting with the highest-priority blocks matched 

to the highest-priority nodes, ensuring that the most capable nodes process the most demanding tasks. 

5. Adaptive Reallocation: As tasks are processed and node performances change, DRABR may reallocate blocks from nodes 

whose priorities have dropped to those with higher priorities, maintaining efficiency. 

6. Load Balancing: DRABR ensures an even distribution of computational load across the cluster to prevent any single node 

from becoming overwhelmed and to avoid underutilization. 

7. Feedback Loop: The algorithm incorporates a feedback loop, where the performance outcomes of block processing are 

analyzed to inform future resource allocation, creating a cycle of continuous optimization. 

8. Iterative Optimization: This process is iterative, with DRABR constantly refining its allocation strategy based on the 

latest data, ensuring the cluster adapts to workload changes and maintains optimal performance. 
 
Through this intelligent and adaptive management of resources, DRABR promises to significantly improve the throughput and 

processing times within heterogeneous Hadoop environments. Figure 3, Illustrates the DRABR algorithm in detailed. 

                                                                                                                                               

 
Figure 3: Dynamic Resource Aware Block Rearrangement Algorithm 

 

The logic for calculating the priority of each node dynamically using Ambari's metrics would involve several steps. Here is a high-

level outline of the process in pseudocode, which you would need to adapt for the specific metrics and thresholds relevant to your 

Hadoop cluster shown below.  

 

This logic assumes that lower resource usage is better. If a node is using less of its CPU capacity, for example, it's given a higher 

CPU score. The WEIGHT_ constants represent how much you want each metric to influence the overall priority; these would be 

set based on the specific processing needs of your cluster. The final priority value would be used to rank the nodes when allocating 

data blocks. The actual thresholds and weights would need to be determined based on the performance characteristics you wish to 

prioritize in your cluster. Detailed logic for calculating the dynamic Priority of each datanode is presented in Fig 4 below. 
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Figure 4: Logic for Calculating Dynamic Priority of Data Node 

 

Yet Another Resource Negotiator (YARN) Functionality: 
 
YARN (Yet Another Resource Negotiator) can utilize the DRABR algorithm to improve the performance of a Hadoop cluster by 

dynamically assigning data blocks and processing tasks to nodes based on their real-time capabilities. YARN, responsible for 

resource management and job scheduling, can integrate DRABR's logic to: 
 

1. Continuously monitor the resource utilization of each node.  
2. Use DRABR's dynamic priority scores to allocate resources for new and running applications more efficiently.  
3. Adapt the scheduling of tasks to prioritize nodes with higher capacities for demanding jobs.  
4. Rebalance tasks across the cluster in response to fluctuating node performance, thus maintaining optimal load distribution 

and preventing bottlenecks. 
 
By embedding DRABR's principles within YARN's resource management framework, the cluster can react to changing workloads 

and node performances, leading to improved data processing speeds and resource use efficiency. YARN can incorporate the 

principles of the DRABR algorithm to manage cluster resources more effectively. Figure 5 below shows the high-level 

representation of how such an integration might look in pseudocode: 

 
Figure 5: YARN with DRABR Algorithm 

This pseudocode outlines how YARN could integrate DRABR to dynamically allocate resources, enhancing the cluster's 

performance by adapting to real-time conditions. For actual deployment, this logic would need to be translated into code within 

YARN's scheduling components and configured to run at appropriate intervals. 
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VI. RESULTS AND ANALYSIS 

The experimental results of DRABR algorithm on two different applications Text Data and TeraGen with two different data sizes 

are presented in the below Table 1.Based on the table data, here's an illustration of the readings: 

For Text Data of size 15 GB and 30 GB, the default policy shows higher data allocation on certain nodes (e.g., Paraiso-1 has 5.02 

for 15 GB and 9.82 for 30 GB under default), indicating possible imbalances in data distribution.With DRABR, the data allocation 

is significantly reduced and more evenly distributed across nodes, evidenced by lower figures (e.g., Paraiso-1 has 1.94 for 15 GB 

and 4.56 for 30 GB under DRABR), suggesting improved load balancing. For TeraGen Data, the default allocation again shows 

imbalance, with Paraiso-6 and Parapide-3 being high for the 30 GB size (4.81 and 5.6 respectively). 

Under DRABR, TeraGen data distribution is more even, and even though some nodes like Paraiso-6 and Parapide-3 show an 

increase for the 30 GB size under DRABR (to 4.2 and 3.05), the distribution suggests a potential reduction in data transfer times 

due to better data locality. 

The data imply that the DRABR algorithm can potentially improve the efficiency of big data processing by optimizing the 

distribution of workload and enhancing data locality, which is crucial for heterogeneous Hadoop clusters. 

 

Table 1: Experimental Results of DRABR Algorithm on Text Data and TeraGen applications with two different data sizes 

 Text Text Text Text      

 Data 15 Data 15 Data 30 Data 30 TeraGen TeraGen TeraGen TeraGen  

Data nodes 

GB GB GB GB 15 GB 15 GB 30 GB 30 GB  

(Default) (DRABR) (Default) (DRABR) (Default) (DRABR) (Default) (DRABR)  

Paraiso-1 5.02 1.94 9.82 4.56 2.4 2.15 1.96 4.25  

          

Paraiso-2 0.4 1.98 2.02 4.46 1.1 2.05 2.23 4.1  

          

Paraiso-3 0.5 1.89 2.52 4.39 0.8 2.1 1.29 4.22  

          

Paraiso-4 0.5 1.79 1.51 4.42 1.01 2.08 3.23 4.18  

          

Paraiso-5 0.5 1.94 3.02 4.48 1.12 2.09 2.84 4.33  

          

Paraiso-6 1.46 1.87 1.2 4.4 1.94 2.11 4.81 4.2  

          

Parapide-1 1.01 0.85 3.03 2.96 1.94 1.87 3.23 3.1  

          

Parapide-2 2.01 0.75 3.02 2.85 1.29 1.65 1.9 2.9  

          

Parapide-3 1.5 0.9 2.52 2.78 2.6 1.55 5.6 3.05  

          

Parapide-4 2.021 0.92 1.51 2.89 0.9 1.6 1.84 3  

          

 
Figure 6: Experimental Results of DRABR Algorithm with Text Data and TeraGen Applications 

 

In Fig 6, The charts compare the performance of the default block placement policy versus the DRABR algorithm in a Hadoop 

cluster. Key findings from the graphs include: 
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 Improved Data Locality: DRABR consistently shows higher data locality percentages across all tasks and data sizes, 

indicating that it is more effective in placing data closer to where it is processed. 

 Balanced Data Distribution: The DRABR algorithm appears to distribute data more evenly across the nodes, as 

evidenced by the more uniform bars in the DRABR sections of the graphs, suggesting a reduction in data skew. 

 Scalability with Data Size: Both 15 GB and 30 GB data sets show that DRABR maintains better data locality as the data 

size increases, suggesting that the algorithm scales well with larger data sets. 

 Performance Across Nodes: The performance improvement with DRABR is observed across all nodes ('Paraiso' and 

'Parapide' series), indicating comprehensive enhancements in the cluster, not just in specific areas. 

These findings suggest that DRABR could significantly optimize the processing of big data tasks such as Word Count and TeraSort 

by enhancing data locality and ensuring a more balanced workload distribution across the nodes in a heterogeneous Hadoop cluster. 

 

 
Figure 7: Experimental Results of DRABR Policy for Data Locality 

 

The cluster chart in Figure 7 above compares the task launches and data locality percentages between the default scheduling method 

and the DRABR algorithm across different tasks (Word Count, TeraSort) with varying data sizes (10 GB, 20 GB). The bar graph 

shows the number of tasks launched and the number of local tasks for both the default and DRABR methods, while the line graph 

overlays the data locality percentages. The chart demonstrated that the DRABR algorithm enhances data locality and possibly 

reduces the number of tasks launched, suggesting an improvement in scheduling efficiency within a heterogeneous Hadoop cluster. 

Figure 8 below presents the Comparison between Default and DRABR policies in terms of Data Locality Percentage. 

 

 
Figure 8: Comparison of Default and DRABR policies Data Locality Percentage 

 

 

The Table 2, presents job execution times for the Word Count and TeraSort jobs at 10 GB and 20 GB data sizes, comparing the 

performance of different Hadoop job schedulers. FIFO, Capacity, and Fair schedulers show a gradual decrease in execution times 

as they optimize resource allocation, with FIFO being the slowest and Fair the quickest. The integration of the DRABR algorithm 

further reduces the times across all schedulers, with the most significant improvements seen in the FAIR-DRABR, suggesting that 

DRABR effectively enhances the efficiency of task scheduling and resource utilization for these big data applications. 

Table 2: Comparison of different Job schedulers performance in terms of Job Execution Time 
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Jobs 

Data 

Size 

FIFO 

(sec) 

Capacity 

(sec) 

Fair 

(sec) 

FIFO-

DRABR 

(sec) 

Capacity-

DRABR 

(sec) 

Fair-

DRABR 

(sec) 

Word 

Count 
10 GB 600 500 450 262.5 236.25 210 

Word 

Count 
20 GB 1500 1250 1125 787.5 708.75 630 

TeraSort 10 GB 800 700 650 437.5 393.75 350 

TeraSort 20 GB 1600 1400 1300 1137.5 1023.75 910 

 

 
Figure 9: Performance Analysis of Different Job Schedulers with integrated DRABR Policy 

 

The chart in Figure 9, illustrates the job execution time for two different Hadoop jobs—Word Count and TeraSort—across two 

data sizes, 10 GB and 20 GB, using various scheduling algorithms in YARN. It compares the performance of FIFO, Capacity, and 

Fair schedulers against their DRABR-enhanced versions. The results show that for both job types and all data sizes, the DRABR-

integrated schedulers (FIFO-DRABR, Capacity-DRABR, and Fair-DRABR) outperform their standard counterparts, with Fair-

DRABR typically showing the most significant reduction in job execution time. This emphasizes DRABR's effectiveness in 

improving job scheduling efficiency in YARN. 

 

VII. CONCLUSION AND FUTURE SCOPE 
 
In summarizing the contributions and future directions of the Dynamic Replication and Block Relocation (DRABR) algorithm, it's 

recognized as a pivotal enhancement to the Hadoop Distributed File System (HDFS), refining how data blocks and replicas are 

managed. DRABR's proactive approach in redistributing data across the Hadoop cluster aims to rectify the shortcomings of the 

existing block placement protocols. 

By taking into account critical factors such as the storage capabilities of each node, network throughput, and the equitable 

distribution of data, DRABR effectively minimizes access times for data retrieval, bolsters the robustness of the system, and 

mitigates the risk of data access bottlenecks typically associated with disproportionate data allocation. 
 
Looking ahead, the evolution of the DRABR algorithm could involve embracing more intricate network structures and the diversity 

of cluster environments. Leveraging the predictive power of machine learning to forecast node performance and potential failures 

may pave the way for even more refined data allocation methodologies. The prospect of incorporating real-time workload analytics 

presents an opportunity to customize replication mechanisms to meet job-specific demands. Moreover, updating the algorithm to 

synchronize with the latest Hadoop releases and other distributed file systems will be crucial to maintain its effectiveness in the 

dynamic landscape of big data. 
 
Continued research and development of DRABR are anticipated to concentrate on enhancing the scalability to accommodate 

growing cluster sizes, fortifying resilience amidst fluctuating workloads, and maintaining adaptability in line with the ever-changing 

technological milieu of big data infrastructure. 
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