ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

SURVEY ON SIGN LANGUAGE DETECTION USING SMART GLOVES FOR DISABLED PEOPLE

¹Sakshi Patil, ²Prof. Vina M. Lomte, ³Yashashree Pawar, ⁴Snehal Raysing, ⁵Ashish Renuse 1-5Department Of Computer Engineering, RMD Sinhgad College of Engineering, Warje, Pune – 411058, India.

Abstract: Communication, in today's world facilitates the exchange of information and ideas, enabling individuals to connect, express and provides access to multiple opportunities. But this communication becomes challenging when it comes to disabled community, particularly those who are mute. These people heavily rely on sign language, but many people are unfamiliar with such language which leads to misunderstandings. This survey paper aims to research and examine various models, attributes including sign language variation, sensor configuration, classification method using Machine Learning algorithms, Neural Network techniques and their performance metrics are analyzed and compared. The literature survey also focuses on analyzing studies that use wearable sensor-based systems. Results from this literature analysis will aid in the development of user-centered and robust wearable sensor-based systems for sign language recognition.

Index Terms - wearable sensor-based systems, sign language, performance metrics, Machine Learning, Neural Network

Introduction

Communication is of paramount importance in various aspects of human life, as it serves as the foundation for effective interaction, understanding, and collaboration. Communication is essential for sharing ideas, thoughts, and information. It allows people to convey their knowledge, experiences, and insights, facilitating the transfer of knowledge and learning. Effective communication is the cornerstone of building and maintaining relationships. Whether in personal or professional settings, open and clear communication fosters trust, empathy, and understanding between individuals. Mute individuals may have difficulty in speaking or producing vocal sounds, but they can still engage in effective communication through various alternative means. For them, traditional means of communication, such as speech, may not be an option. This limitation can create significant challenges in their daily lives, including difficulties in expressing their thoughts, emotions, and needs. Smart hand gloves have emerged as a groundbreaking solution, designed to empower mute individuals by providing them with an alternative means of communication. The gloves empower mute individuals to express themselves more effectively, promoting better understanding and engagement with others. These gloves enable greater independence for users in various aspects of life, from daily communication to accessing information and services. Smart gloves can be a game-changer for mute students and professionals, facilitating their participation in educational settings and the workplace. Smart hand gloves are equipped with a variety of sensors, including Arduino, gyroscopes, and flex sensors, placed strategically across the glove's surface. These sensors detect the wearer's hand movements and gestures in real-time. The interpreted gestures can be displayed as text on a screen or, more commonly, converted into audible speech using text-to-speech (TTS) technology. This speech can be heard through built-in speakers or headphones, allowing others to understand the user's communication.

I. LITERATURE SURVEY

Ref.	Paper Title	Methodology Used	Dataset Used	Accurac	Research Gap Identified
No.	and Publication Details			У	
[1]Shin girirai Chako ma,Phil ip Baron	Title: Converting South African Sign Language to Verbal Journal: SAIEE Africa Research Journal (Volume: 114, Issue: 2, June 2023)	Five flex sensors that measure handshape, an IMU which measure hand motion. Both transmitted to a receiver box.	South African Sign Language manual 26 alphabet	69%	Flex sensors measure finger flexion, not abduction and adduction, means that they are not accurate at signing letters like "U" and "V". Flex sensors are susceptible to wear and tear, reducing sensitivity.
[2] Joseph DelPret o ,Josie Hughes , Matteo D'Aria, Marco de Fazio, and Daniela Rus.	Title: A Wearable Smart Glove and Its Application of Pose and Gesture Detection to Sign Language Classification Journal: IEEE Robotics And Automation Letters, Vol. 7, No. 4, October 2022	Resistive sensor, knitted pattern glove, Accelerometr, ML technique on microcontroller to process and classify data. By pre-training a LSTM neural network running on ST microcontroller.	Poses and Gestures of 24 letters, words of ASL(Americ an Sign Language) (11 static poses and 13 dynamic)	96.3%	7-fold cross-validation has been used, so 7 different networks have been trained which increases computational cost and time, as it requires training and testing the model multiple times. Scope: Augmenting the glove with additional modalities could unlock applications ranging from healthcare to sports.
[3] M. Teja Sai Chand1 , D. Dilip Kumar 2, E. Sai Koushi k3, L.V.R Chaitan ya Prasad4	Title: Gesture based smart hand gloves for disabled persons Journal: IRJET 2022	Designing the Glove, Analog to Digital Conversion, Signal Processing, Integration with GSM Module	It is possible that the authors collected their own dataset or used an existing dataset related to sign language or hand gestures	Here is no specific data or performa nce metrics provided in the context to determin e the acc uray	Limited Information on Dataset, Lack of Detailed Performance Evaluation, Wireless Communication Limitations, Limited Scope of Hand Gestures
[4] Dr. Anupa ma H S, Dr.	Title: Automated Sign Language Interpreter	The system uses a flex sensors which are recorded by Arduino and are	English Alphabets and some phrases	93%	More optimization is needed.

[1		
Usha B	Using Data	processed using K			
А,	Gloves	nearest Neigbhor			
Spoorth		ML algorithm			
у	Journal: 2021				
Madhu	International				
shankar	Conference on				
	Artificial				
, Varsha	Intelligence				
Vivek,	and Smart				
Yashas	Systems				
wini					
	(ICAIS)				
Kulkar					
ni	T : (1	1 1 1 1 0			
[5] R.	Title:	designed with flex	Not used	Not	Using both Arduino
Senthil	Implementatio	sensors, detect		mentione	and Raspberry Pi can
Kumar,	n of IoT Based	finger gestures,		d	be costly.
Р.	Smart	and the system,			
Leninp	Assistance	implemented using			
ugalhan	Gloves for	Arduino Uno and			
thi, S.	Disabled	Raspberry Pi,			
Rathika	People	communicates			
, G.		wirelessly for			
Rithika,	Journal: 7th	secure data			
S.	International	transmission and a			
Sandhy	Conference on	GSM module			
a	Advanced	sends alert			
u	Computing &	messages		1	
	Communicatio	messages		1	
	~				
	n Systems (ICACCS),				
	(ICACCS), 2021				
[(1)		Data Danara ing	Ese the static	00.900/	Liste 1 contention of
[6]			For the static	99.89%	Limited exploration of
Rajarsh	Language	Deep Multi-layered	gesture <mark>s, a</mark>		other methodologies, Lack
1	Detection from	CNN Architecture,	dataset with		of diversity in the dataset,
Bhadra,	Hand Gesture	Classification Task	36 classes of		Lack of user interaction
Subhaji	Images using		hand gesture		and feedback, Evaluation
t Kar	Deep Multi-		images was		of real-world performance
	layered		used. For the		
	Convolution		dynamic		
	Neural Network.		gestures, a		
			separate		
	Journal: IEEE		dataset was		
	Second		used. It		
	International		includes 23		
	Conference on		classes of		
	Control,		dynamic hand		
	Measurement		gesture		
	and		images.		
	Instrumentation				
	(CMI),				
	(CMI), India,2021				
[7]		Liddon Marker	The received	85%	The moturity of restance
[7]	Title: Design	Hidden Markov	The paper	0.570	The maturity of gesture
Zhexia	of Smart Car	Models (HMM),	does not		recognition technology,
ng Zou,	Control	Motion Control	provide		the complexity of dynamic
Qinyu	System for	Design,	explicit		gesture recognition,
Wu,	Gesture	Control of Mobile	information		application to real-world
Yuhang	Recognition	Robots Based on			environments, and the path

Zhang Ba	ased on	Dynamic and Static	about		towards
and Ar	rduino.	Gestures,	the dataset		commercialization.
Kaiyua		Human-Computer	used.		
n Wen. Jou	ournal: IEEE	Interaction			
20	021	Research Methods,			
		Gesture-Based			
		Remote-Control			
		Technology for			
		Unmanned			
		Platforms			
[8] Tit	itle: Smart	Uses	The database	85%	Limited amount of signs
	love for the	Accelerometer,	set contained		and gestures, along with
	isabled: A	Flex-sensor,	signs and		samples, in the existing
•	urvey	Raspberry-Pi,	gestures,		database set for the
a, G.		Firebase, Google-	along with		recognition system using
	ournal: CiiT	Search-API for its	samples, for		smart gloves , the
·	ternational	implementation.	the		importance of expanding
	ournal of		recognition		the available dataset for
	rogrammable		system.		more comprehensive and
	evice Circuits				accurate gesture
	nd Systems.				recognition
	the journal's				using smart gloves.
	ol. 13, No. 2				
	sue in				
	ebruary 2021 itle: Leap	Feature	National Sign	95.47%	Skin color-based
	itle: Leap lotion based	extraction	Language of	95.47%	segmentation is used, so
	Iyanmar Sign	method and	Myanmar		unnecessary portion of
•	anguage	recognition	wiyammai		body is also captured.
-	ecognition	using machine			body is also captured.
	sing Machine	learning.			
	earning	proposed			
Sai	e e	system is based			
Myo Jo	ournal: 2021	on skin color			
Htet IE	EEE	detection		$\langle \cdot \rangle$	
~	onference of	by using			
	ussian Young	Y <mark>OLO</mark> CNN			
	esearchers in	and			
	lectrical and	recognition			
	lectronic	process will be			
En	ngineering	based on deep			
[10] <u> </u>		learning.	10 500	06.70	
	ile: Robust	Proposed CNN	10,500	96.7%	Potential application of the
•	lodelling of	model is inspired	images of		model for partially
	atic Hand estures using	from the VGG16 base architecture	static signs		paralyzed individuals is
	-	base architecture which is used to	correspondin g to 25		mentioned, but the paper does not delve into the
0	eep onvolutional	classify these signs	g to 25 English		specific challenges and
	etwork for	into their respective	alphabets		adaptations required o
,	gn Language	classes.	('A'-'Y')		address this
	ranslation		(population's unique
Ansari					needs
	ournal:				
	021				
Int	ternational				
Co	onference on				
1 100					

	Communication , and Intelligent Systems (ICCCIS)				
[11] Thanek ar Aadit, Jha Deepak , Patil Janhavi , Deone Jyoti	Title : Video Chat Application for Mutes Journal: 2021 International Conference on Emerging Smart Computing and Informatics (ESCI)	Deep Learning CNN algorithm.	ASL (American Sign Language) and ISL (Indian Sign Language	85%	Lack of utilization of gloves or special-purpose cameras, Limited recognition of one-handed gestures, Time required for image capture, Lack of comparative analysis.
[12]Ak ash Kumar Panda, Romme 1 Chakra varty, Soume n Moulik	Title: Hand Gesture Recognition using Flex Sensor and Machine Learning Algorithms Journal: 2020 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)	proposed a mechanism of hand gesture recognition using flex sensors and Arduino UNO. Hand gestures are analysed with the help of different traditional machine learning algorithms. An adversarial learning approach is made that performs better classification in comparison with these traditional learning	American Sign Language dataset	88.32%	paper does not explicitly address potential drawbacks, constraints, or scenarios where the proposed approach may face difficulties.
[13]Pav an Telluri, Saradee p Manam , Sathwi c Somaro uthu, Jayashr ee M Oli, Chintha la Rames h	Title: Low cost flex powered gesture detection system and its applications Journal: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA)	models. system makes use of flex sensors, on-board gyroscope and accelerometer.	Standard American Sign language	Not mention ed	NA

www.ijcrt.org

$\textcircled{\sc c}$ 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

[14] Jieming Pan , Yuxuan Luo, Yida Li, Chen- Khong Tham, Chun- Huat Heng, Aaron Voon- Yew Thean	Title: A Wireless Multi-Channel Capacitive Sensor System for Efficient Glove-based Gesture Recognition with AI at the Edge Journal: IEEE Transactions on Circuits and Systems II: Express Briefs (Volume: 67, Issue: 9, September 2020)	sensor data is captured by a 16- channel CDMA- like capacitance- to-digital converter for training/inference at the edge device. Proposed system approach takes advantage of the capability of the machine learning (ML) algorithms and directly processes the code-modulated signals without demodulation.	10 American Sign language dataset	99.7%	investigation into its performance in real-world scenarios, considering variations in environmental conditions and user dynamics, could be valuable.
[15] Wentao Dong, Lin Yang, Giancar lo Fortino	Title: Stretchable Human Machine Interface Based on Smart Glove Embedded With PDMS- CB Strain Sensors Journal: IEEE SENSORS JOURNAL, VOL. 20, NO. 14, JULY 15, 2020	High Deformability With the Bending Action of Fingers. High Sensitivity for Detecting the Bending Action of Fingers and the Motion Control of Robot Fingers. PDMS-CB strain sensors Smart sensor systems, human machine interface, sensor arrays, stretchable electronics, smart glove, PDMS-CB strain sensor. STRETCHABLIT Y ANALYSIS FINGER MOTION DETECTION HRI algorithm	Strain data from the smart glove with different fingers bending; Photos of the smart glove with fingers bending action	96%	The paper proposes a design and principle for this smart glove, but it does not explicitly mention any existing solutions or technologies that address this specific application. Therefore, the research gap could be the lack of a comprehensive and reliable HMI system for controlling robot fingers using stretchable strain sensors integrated into a glove.
[16] Dipon Talukd er, Fatima Jahara.	Title: Real- Time Bangla Sign Language Detection with Sentence and Speech Generation Journal: 2020 23rd	Image Capture , object detection algorithm used in this project is YOLOv4 ,Google Text-to-Speech (gTTS) API	American Sign Language (ASL) Dataset, Thai Sign Language Dataset	97.95%	Lack of Comparison with Existing Methods , Limited Dataset,User Interaction and Usability,Evaluation Metri cs

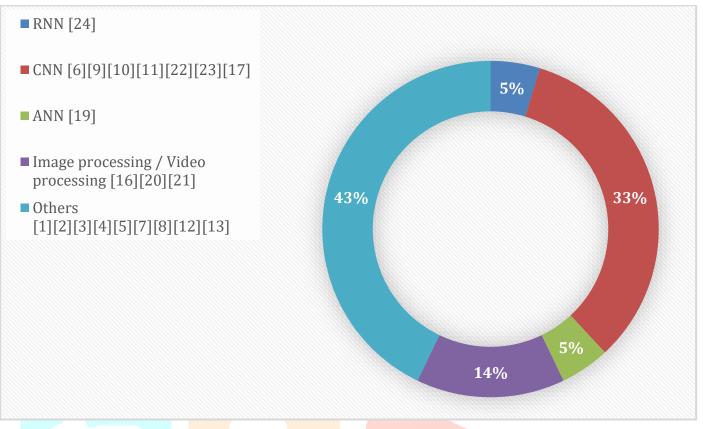
	International Conference on Computer and Information Technology (ICCIT) journal				
[17] Frances co Pezzuol i Dario Coron Maria Letizia Corradi ni	Title: Recognition and Classificat ion of Dynamic Hand Gestures by a Wearable Data-Glove Jornal: Springer Nature 2020	Random Forest and Neural Network. Position tracker.	Publicly available dataset.	97.4%	Scope: Further studies will be carried out on compressing data, trying to maintain the BLE antenna or upgrade it to the next BLE generation standard.
[18] Ajay Suri, Dr. Sanjay Kumar Singh, Rashi Sharma , Pragati Sharma , Naman Garg, Riya Upadhy	Title: Development of Sign Language using Flex Sensors. Journal: IEEE- 2020	Flex Resistors, Pressure Sensor, Touch Sensor, Spinners, Accelerometers	Couldn't find any specific information about the dataset us ed	92%	Communication between individuals with hearing impairments or speech disabilities and the general population. The context mentions that the goal is to develop a cost- effective system that can provide a voice to those who are unable to verbalize their thoughts and communicate effectively.
aya [19] José nrique Mejía Gamarr aMartín ,Alonso Salazar CubasJ unior David Sosa Silupú Carlos Enrique Córdov a	Title: Prototype for Peruvian Sign Language translation based on an artificial neural network approach. Journal : IEEE 2020	Artificial neural network approach, Arduino – Excel interface, a database of a test user was compiled for training and validation, an artificial voice algorithm developed in the MATLAB software was used to reproduce the recognized lyrics, 6 flex sensors.	Peruvian Sign dataset	The prototyp e develop ed has an accurac y of 94.60% for the training set and 94.32% for the validatio n set	since the anatomy of the hand differs in each person, causing the sensors are out of adjustment or do not adapt to the movement of the signal, in addition to this, it is proposed to include a portable artificial voice in the prototype.

Chirino					
s					
[20] M. Arun Kumar, S.Jayac hithra , G. Aravin d, M.Bhu vanesw ari	Title: An Efficient Finger Gesture Recognition System Using Image. Journal: IEEE 2020	Computational Finance, Computational Biology, Control Systems, Image and Video Processing, Signal Processing and Communications.	Marcel Triesch dataset. It consists of hand gestures with a low resolution of pixels.	94%	The research gap identified in the paper is that previously proposed methods for hand gesture recognition either require the reconstruction of low- resolution images to higher resolutions or involve the use of classifiers that require training, which can slow down the system's performance.
[21] Soma Shrenik a , Myneni , Madhu Bala.	Title: Sign language recognition using template matching technique. Journal : 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA)	image- processing techniques Edge detection algorithm template matching technique	American Sign Language (ASL) data s et	95.5%	Based on the information provided in the context, it is not explicitly mentioned what specific research gap has been identified in the paper
[22] Rahib Abiyev, John Bush Idoko, Murat Arslan	Title: Reconstruction of Convolutional Neural Network for Sign Language Recognition Journal: Proc. of the 2nd International Conference on Electrical, Communication and Computer Engineering (ICECCE) 12-13 June 2020, Istanbul, Turkey	First module of single shot multi- box detector (SSD) used for hand detection. The second module constitutes CNN plus a fully connected network utilized to classify the signs into text.	American sign language fingerspelling dataset.	92.21%	It lacks exploration of the broader ASL vocabulary and expression s
[23] Karma Wangc	Tile: Bhutanese Sign Language Alphabets	Theproposedmodel was designedwith6	Shaped Dzongkha alphabets	Highest training and	Misclassifications were obtained because of varying angles &

IJCRT2311497 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e264

www.ijcrt.org

$\textcircled{\sc c}$ 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882


huk, Panom khawn Riyamo ngkol, Rattapo om Waranu sast	Recognition Using Convolutional Neural Network Journal: 2020 IEEE- 5th International Conference on Information Technology (InCIT)	convolutional layers stacked similar to VGG architecture followed by ReLU and max-pooling layers.	dataset created from 1200 videos recorded from 40 people from 5 countries	validatio n accuracy of 98.27% and 99.72% respectiv ely.	perspective transformation at the time of recording the videos and capturing the images.
[24] Ammar Abdull ah, Nurul Ashikin Abdul- Kadir, Fauzan Khairi Che Harun	Title:AnOptimizationofIMUSensors-BasedApproachApproachforMalaysianSign LanguageRecognitionJournal:20206th InternationalConferenceonComputingEngineeringandDesign(ICCED)	Inertial measurement unit (IMU) sensors required to perform an accurate conversion. and output of each RNN stage is combined inside the fully- connected layer to produce a prediction	Malaysian Sign Language dataset	98%	Potential to simplify the hand glove design by reducing the number of deployed sensors while maintaining accuracy
[25] YuFei Zhang ,Bin Liu, Zhiqia ng Liu	Title: Recognizing Hand Gestures with Pressure Sensor based Motion Sensing Journal : IEEE Transactions on Biomedical Circuits and Systems (Volume: 13, Issue: 6, December 2019)	Pressure- parameter adaptive updating strategy is designed to improve the robustness of the system to cope with different hand positions, different users and re- wear scenarios	Define a typical set of gestures which consists of the gestures for different motion amplitudes and different states	95.28%	It is difficult to determine the specific research gap identified in the paper, it does mention several contributions of the paper, such as designing a real- time recognition framework for static and dynamic gestures, proposing a pressure parameter adaptive updating strategy, exploring the robustness of different sensors

II.ALGORITHMIC SURVEY

Ref No.	Paper Title	Algorithm Name	Time Complexity	Space Complexity	Accura cy
[2]	Real-Time Bangla Sign Language Detection with Sentence and Speech Generation.	(YOLOv4) You Only Look Once version 4	O(L * N^2), where L is the number of layers and N is the size of the input image (width or height).	The space complexity is influenced by the size of the activation maps.	97.95%
[4]	Automated Sign Language Interpreter Using Data Gloves	KNN- K-Nearest Neighbor.	$O(N * D + N \log N)$, where N is the number of data points, and D is the dimensionality of the data.	O(N * D), where N is the number of data points, and D is the dimensionality of the data.	93%
[6]	Sign Language Detection from Hand Gesture Images using Deep Multi- layered Convolution Neural Network.	CNN- Convolution Neural Network	O(L * W * H * K), where K is the average number of filters or neurons in a layer.	O(P), where P is the total number of parameters in the CNN.	99%
[12]	Hand Gesture Recognition using Flex Sensor and Machine Learning Algorithms.	ANN- Artificial Neural Network	O(E * L * N^2)	O(P + N * D)	88.32%
[16]	A Wearable Smart Glove and Its	LSTM Neural Network	O(E * T * H * D), where E is the	O(H * D + H^2 + 4 * H)	963%

	Application of Pose and Gesture Detection to Sign Language Classification		number of training epochs		
[17]	Recognition and Classification of Dynamic Hand Gestures by a Wearable Data Glove.	Random Forest	O(n_samples * n_features * log(n_samples))	<i>O</i> (<i>K</i> ·number of node s)	97.4%
[20]	An Efficient Finger Gesture Recognition System Using Image	K-Means Cluster	O(I * N * K * D), where I is the number of iterations.	O(N * D + K * D)	94%
[22]	Reconstructio n of Convolutional Neural Network for Sign Language Recognition.	CNN- Computationa 1 Neural Network	O(L * W * H * K), where K is the average number of filters or neurons in a layer.	O(P), where P is the total number of parameters in the CNN.	92.21%
[24]	An Optimization of IMU Sensors-Based Approach for Malaysian Sign Language Recognition	RNN- Recurrent Neural Network	$O(T * N^2)$, where T is the sequence length and N is the hidden state size.	O(N^2) for the weight matrices, where N is the hidden state size.	98%
[25]	Recognizing Hand Gestures with Pressure Sensor based Motion Sensing	Support Vector Machine	O(N^2) to O(N^3)	O(K * D + N * D + N^2)	95.28%

III.METHODOLOGICAL SURVEY

1. Neural Networks (ANN, CNN, RNN):

- Artificial Neural Networks (ANN): General-purpose and flexible, they can be used for basic conversion tasks but might lack efficiency in handling complex spatial data like sign language gestures due to limited pattern recognition abilities.
- **Convolutional Neural Networks** (CNN): Ideal for image-based tasks, such as recognizing hand gestures in images. They excel in capturing spatial features, making them suitable for static sign language recognition.
- **Recurrent Neural Networks (RNN):** Best suited for sequential data. RNNs can capture the sequential nature of sign language, enabling interpretation of gestures that form words or sentences.

2. Image and Video Processing Algorithms:

- **Image Processing Algorithms:** Utilized to analyze static images of hand gestures. These algorithms focus on recognizing patterns and shapes, which is crucial in sign language interpretation.
- Video Processing Algorithms: For dynamic hand gestures, video processing can be more effective. These algorithms handle temporal information, providing a continuous interpretation of sign language movements.

3. Sensor-Based Approach:

- Flex Sensors and Gyroscopes: Physical sensors capturing hand movements and orientation. These can detect the intricacies of sign language gestures.
- Algorithmic Interpretation: Once sensor data is collected, specific algorithms process this data to recognize and interpret the hand gestures into meaningful text and audio representations.

IV.CONCLUSION

The analysis of three different approaches to converting sign language into text and audio reveals a spectrum of methodologies, each with its strengths and considerations. Neural networks, including CNNs for image-based recognition and RNNs for sequential understanding, offer effective solutions in the domain of pattern recognition and sequential data processing. Image and video processing algorithms provide an alternative route, catering to the static and dynamic aspects of sign language interpretation, making them suitable for image or video-based inputs. Additionally, the sensor-based approach employing flex sensors and gyroscopes grants a more hands-on, real-time interpretation of gestures, potentially capturing fine details that might not be easily attainable through visual analysis alone.

The ideal approach would likely involve a combination of methods, leveraging the strengths of neural networks for high-level pattern recognition, image or video processing for visual interpretation, and sensorbased systems for real-time input. Combining these approaches could provide a comprehensive and accurate conversion of sign language into text and audio, addressing various nuances of gestures and movements. The specific application and context would determine the most suitable approach or a fusion of multiple methods for optimal accuracy and usability in facilitating communication for mute individuals. Further advancements in smart glove technology can lead to more accurate and robust sign language detection. It can be integrated into educational tools and platforms. Smart gloves can empower deaf or hearing-impaired individuals to live more independently. This technology can also facilitate communication in different settings, such as schools, workplaces, hospitals, and public spaces.

REFERENCES

- [1] Shingirirai Chakoma, Philip Baron, Saiee Africa Research Journal (Volume: 114, Issue: 2, June 2023)
- [2] Joseph DelPreto, Josie Hughes, Matteo D'Aria, Marco de Fazio, and Daniela Rus., IEEE Robotics And Automation Letters, Vol. 7, No. 4, October 2022
- [3] M. Teja Sai Chand1, D. Dilip Kumar2, E. Sai Koushik3, L.V.R Chaitanya Prasad4, IRJET 2022.
- [4] Dr. Anupama H S, Dr. Usha B A, Spoorthy Madhushankar, Varsha Vivek, Yashaswini Kulkarni, 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS)
- [5] R. Senthil Kumar, P. Leninpugalhanthi, S. Rathika, G. Rithika, S. Sandhya, 7th International Conference on Advanced Computing & Communication Systems (ICACCS),2021
- [6] Rajarshi Bhadra, Subhajit Kar, IEEE Second International Conference on Control, Measurement and Instrumentation (CMI), India,2021
- [7] Zhexiang Zou, Qinyu Wu, Yuhang Zhang and Kaiyuan Wen., IEEE 2021
- [8] Hrishikesh P Athreya, G. Mamatha, R. Manasa, Subhash Raj and R. Yashwanth. CiiT International Journal of Programmable Device Circuits and Systems, in the journal's Vol. 13, No. 2 issue in February 2021
- [9] Zaw Hein, Thet Paing Htoo, Bawin Aye, Sai Myo Htet, Kyaw Zaw Ye, 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering
- [10] Dushyant Kumar Singh, Anshu Kumar, Mohd. Aquib Ansari, 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)
- [11] Thanekar Aadit, Jha Deepak, Patil Janhavi, Deone Jyoti, 2021 International Conference on Emerging Smart Computing and Informatics (ESCI)
- [12] Akash Kumar Panda, Rommel Chakravarty, Soumen Moulik. 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)

- [13] Pavan Telluri, Saradeep Manam, Sathwic Somarouthu, Jayashree M Oli, Chinthala Ramesh, 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA)
- [14] Jieming Pan , Yuxuan Luo, Yida Li, Chen-Khong Tham, Chun-Huat Heng, Aaron Voon-Yew Thean, IEEE Transactions on Circuits and Systems II: Express Briefs (Volume: 67, Issue: 9, September 2020)
- [15] Wentao Dong, Lin Yang, Giancarlo Fortino, IEEE Sensors Journal, Vol. 20, No. 14, July 15, 2020
- [16] Dipon Talukder, Fatima Jahara. 2020 23rd International Conference on Computer and Information Technology (ICCIT) journal.
- [17] Francesco Pezzuoli , Dario Coron Maria Letizia Corradini, Springer Nature 2020.
- [18] Ajay Suri, Dr. Sanjay Kumar Singh, Rashi Sharma, Pragati Sharma, Naman Garg, Riya Upadhyaya, IEEE-2020.
- [19] José nrique Mejía GamarraMartín ,Alonso Salazar CubasJunior David Sosa SilupúCarlos Enrique Córdova Chirinos, IEEE 2020
- [20] M. Arun Kumar, S.Jayachithra, G. Aravind, M.Bhuvaneswari, IEEE 2020
- [21] Soma Shrenika , Myneni, Madhu Bala., 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA)
- [22] Rahib Abiyev, John Bush Idoko, Murat Arslan, Proc. of the 2nd International Conference on Electrical, Communication and Computer Engineering (ICECCE)12-13 June 2020, Istanbul, Turkey
- [23]Karma Wangchuk, Panomkhawn Riyamongkol, Rattapoom Waranusast, 2020 IEEE- 5th International Conference on Information Technology (InCIT)
- [24] Ammar Abdullah, Nurul Ashikin Abdul-Kadir, Fauzan Khairi Che Harun, 2020 6th International Conference on Computing Engineering and Design (ICCED)
- [25] YuFei Zhang ,Bin Liu, Zhiqiang Liu, IEEE Transactions on Biomedical Circuits and Systems (Volume: 13, Issue: 6, December 2019)

