ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Survey On Human Action Pattern Recognition For Physical Training Using Machine Learning

Atharv Sonawane¹, Prof. Vanita Babanne², Piyusha Vispute³,Sakshi Nawale⁴,Yashasvi Sonawane⁵ ¹⁻⁵Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, India

Abstract: Understanding human action patterns is essential for many things, like keeping an eye on your health or figuring out how to get better at sports. This paper presents a novel approach to human action pattern recognition system using physical training for children activities. In this approach, children do exercises. The recognition system is developed by using a varied dataset of physical training attendees performing different exercises. With the use of computer vision and machine learning to implement logistic regression to track and categorize these actions, with consideration given to both spatial and temporal aspects. This real-time recognition system doesn't just accurately identify actions; it also provides physical training for children with personalized feedback and recommendations enhances the fitness experience and promotes proper exercise form to prevent injury. Through this approach, the aim is to broaden the accessibility of action pattern recognition, making it available to a larger group of individuals. The impact is felt in fitness, healthcare, and sports performance analysis, nurturing improved exercise habits and overall well-being

Key Words: Logistic Regression(LR), Machine Learning, Computer Vision, Human action recognition

I. INTRODUCTION

Human action pattern recognition using physical training for children is a cutting-edge field at the intersection of technology and exercise, aiming to transform the way we approach fitness. It involves the development and application of intelligent systems that can see and analyze human movements and actions during workouts in a physical training environment. Picture a physical training where, in addition to human trainers, advanced technology plays a pivotal role in guiding, monitoring, and optimizing your fitness routines. These systems utilize computer vision, sensors, and machine learning algorithms to track your exercises, assess your form, and provide real-time feedback, essentially acting as virtual fitness assistants. This innovative integration of technology into fitness holds the potential to enhance safety, effectiveness, and motivation in our exercise regimens. In this discussion, we will explore the key elements, applications, benefits, challenges, and future prospects of human action pattern recognition using physical training for children technology.

The fusion of human action recognition and fitness technology represents a remarkable advancement in our quest for healthier and more effective workout routines. This technology harnesses the power of computer vision, which allows machines to understand and interpret visual data, much like the human eye. It accomplishes this by deploying cameras and sensors within the physical training environment, enabling the real-time tracking of individuals' movements and actions. These systems, underpinned by sophisticated algorithms and machine learning techniques, can identify various exercises and gauge the correctness of each movement.

The applications of this technology in physical training for children are vast and versatile. Primarily, it offers invaluable guidance on exercise form and technique, ensuring that physical training children perform their workouts correctly, thereby reducing the risk of injuries. It can also tailor workouts to individual goals, monitoring progress and dynamically adjusting routines as users grow stronger. Beyond this, it collects and analyzes data to provide insights into exercise habits, promotes motivation through gamification, and

proactively alerts users to potential injury risks. In group fitness settings, it facilitates the simultaneous monitoring and correction of multiple participants.

The potential benefits of integrating human action pattern recognition into physical training for children are numerous. Safety is significantly enhanced as users receive real-time guidance on proper exercise form. Improved results are another advantage, as users benefit from tailored, data-driven workouts that can optimize their progress. Motivation and consistency are fostered through gamification and rewards, promoting long-term engagement. Furthermore, the data collected provides users with the means to make informed decisions about their fitness journeys, making their physical training experiences more efficient and effective.

However, the implementation of this technology is not without its challenges. Privacy concerns arise due to the use of cameras in physical training settings, necessitating clear policies and consent mechanisms for data collection. The cost of implementing such systems can be a barrier for some physical trainings. It is also vital to ensure that the technology augments the user experience without feeling intrusive or overwhelming. The accuracy of the recognition algorithms is paramount, as misinterpretations could lead to incorrect feedback or advice, potentially causing harm. Data security and user education on how to interact with the technology effectively are also crucial considerations.

As the field of human action pattern recognition using physical training for children technology continues to evolve, it holds the promise of even more exciting developments. The integration of health monitoring features is a possibility, further enhancing the user's fitness journey. With the rise of home workouts, this technology may find applications in remote fitness training and monitoring.

II. LITERATURE SURVEY

Ref.no	Paper Title and	Year	Methodology Used	Accuracy	Research gap
	Paper publication				Identified / Future
1 2 m					Scope
[1] P. William, Govinda Rajul Lanke, Dibyhash Bordoloi, Anurag Shrivastava, Arun Pratap Srivastavaa, Sheetal Vishal Deshmukh	Title: Assessment of Human Activity Recognition based on Impact of Feature Extraction Prediction Accuracy Journal: IEEE	2023	It introduces accelerometers and gyroscopic sensors which are used in human activity recognition	94%	Feature extraction techniques should be improved
[2]	Title: An	2023	It provides human	89%	Real time applications
Shamsa	Automated Human		activity recognition by		and performance
Waheed, Dr.	Action Recognition		using different types of		must be increased.
Rashid Amin,	and Classification		sensors		
Dr. Javed Iqba	, Framework Using				
Dr. Mudassar	Deep Learning				
Hussain,					
Muhammad	Journal: IEEE				
Adeel Bashir					

Table 1 : literature survey

$\textcircled{\sc c}$ 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

Isha Yoga Pose which includes human intera	1
	action must be
Chaudhary, Detection Using posture detection by in	improved.
Nongmeikapam OpenCV and using deep learning and	1
Thoiba Singh, MediaPipe computer vision.	
Mahak	
Chaudhary Journal-	
International	
Conference for	
Emerging	
Technology	
(INCET)	
[4] Title: Classifying 2023 It is based on computer 85% Securi	ity and privacy
R. Gera, K. R. Human Activities vision and deep learning must	t be improved.
Ambati, P. using CNN and technologies. The	1
Chakole, N. ConvLSTM in cameras are required for	
Cheggoju, V. Video Sequences the capturing the video.	
Kamble and V. Journal: It uses CNN and	
R. Satpute International ConvLSTM	
Conference on	
Paradigm Shifts in	
Communications	
Embedded Systems	
Machine Learning	
and Signal	
Processing	
(PCEMS)	
[5] Title: Title: 2023 It describes about novel 90.42% The p	paper does not
S. B. Prakash, Efficient Human logistic regression exp	plain about
V. Amudha, M. Action Recognition algorithm. It takes op	ptimization
N using Novel samples among that it	•
Logistic Regression divides in 2 groups.	
Compared over Accuracy of novel	
Linear Regression logistic regression	
with Improved algorithm is more than	
Accuracy linear regression	
algorithm	
Journal:	
International	
Conference on	
Science Technology	
Engineering and	
Mathematics	
(ICONSTEM)	

$\textcircled{\sc c}$ 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

[6]	Title: A secure	2022	It uses temporal relation	91%	Security and intuitive
Vachirapon	approach for human		network (TRN) for		interaction should be
Ketsoi,	computer		action recognition and a		there
Muhammad	interaction using		face recognition-based		
Raza, Haopeng	human hand action		security network (FRB-		
Chen, Xubo			SN) for user		
Yang	Journal: IEEE		identification		
	International				
	Conference on				
	Systems, Man, and				
	Cybernetics (SMC)				
[7]	Title: Surya	2022	It proposes a model for	93%	Performance should
Bardia	Namaskar: Real-		human body posture		be improved
Esmaeili,	time advanced pose		recognition. This model		
Alireza	recognition and		is used to recognize		
AkhavanPour,	correction for smart		human posture correctly.		
Alireza	healthcare		It uses deep convnets		
Bosaghzadeh			which are used to		
	Journal:		classify postures of		
	International		RGB images		
	Conference on				
	Machine Visio <mark>n and</mark>				
	Image Processing			1	
	(MVIP)				
[8]	Title: Sensor-Based	2022	Concept of human	75 <mark>%</mark>	Accuracy and
Minjung Lee,	Open-Set Human		activity recognition		performace must be
Seoung Bum	Activity		which is based on		improved
Kim	Recognition Using		sensors. M <mark>ahalanobis</mark>		2
	Representation		distance (MTMD) which	1.6	
	Learning With		is mixup of triplets is	211	7
	Mixup Triplets		used	10	
	Journal: IEEE				
[0]	Access	2022	It may also a surger of the	020/	
[9] Vasion Zhang		2022	It uses the concept of	93%	Virtuals training
Yaqian Zhang,	Title: Efficient		data augmentation. 10		environment must be
Jizhuang Hui,	skeleton-based		the skeleton of human		mproved
Tao Zhong Kaiyang Zhang	Human Assembly		graph convolution		
Kai Ding	Action		graph convolution		
Weiwei Wong	Lournal: IEEE				
werwer wang	Journal: IEEE				

www.ijcrt.org

$\textcircled{\sc c}$ 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

[10]	Title: Angular	2022	It tried three	82%	Gap between training
Jaeyeong Ryu,	Features-Based		experiments. This paper		the data
Ashok Kumar	Human Action		has trained the system		
Patil,	Recognition System		which recognizes each		
Bharatesh	for a Real		pose of human. It is also		
Chakravarthi,	Application With		helpful in the		
Adithya	Subtle Unit Actions		transformation of		
Balasubramany			variations of different		
am, Soungsill	Journal – IEEE		actions into consistent		
Park, Youngho	Access		patterns		
Chai			Ĩ		
[11]	Title:Action	2021	Deep learning in human	80%	3D pose should be
J. Ji	Recognition based		pose recognition is		estimated
	on Human Pose		improved		
	Estimation		1		
	Journal-				
	International				
	Conference on				
	Computing and				
	Data Science (CDS)				
[12]	Title: Spatial	2021	It uses emotional	80%	Emotional
Ming-Fong	Temporal Variation	2021	features and Graph	0070	recognition accuracy
Tsai Chiung-	Graph		Convolutional Network	2	must be enhanced
Hung Chen	Convolutional		Convolutional Pretwork		indst de clinalieed
Trang Chen	Networks (STV-				
	GCN) for Skeleton-				
	Based Emotional				
	Action Recognition				
	rection recognition				
	Iournal-			13	1
	IFFE Access				
[13]	Title: Yog-guru:	2021	This system uses	95%	Gan between
[15] Aiay Chaudhari	real-time yoga pose	2021	convolutional neural	JJ /0	accessible voga
Ajay Chaudhan Omkar Dalvi	correction system		networks (CNN)		practice
, Olikar Daivi	using deep learning		networks (CIVIV)		Ĩ
, Olikai Ramada Prof	methods				
Davanand	methods				
Ambawade	Iournal_ IEEE				
Ambawade	Journal- IEEE				
	Title: Human	2021	It describes about action	81%	
[1/]	Action Recognition	2021	recognition and image	0470	Security must be
	in Dark Videos		processing. It takes one		improved
Tejaskumar			dataset and examine the		-
Dochi	Iournal		nerformance and		
DO200	Juliai- International		accuracy. The dark		
	Conference on		videos are divided into		
	Aiuiiciai Intelligenee and		mages		
	intelligence and				

	Machine Vision (AIMV)				
[15] H. Bai	Title: A Training Method For VideoPose3D with Ideology of Action Recognition Journal- International Conference on Signal Processing and Machine Learning (CONF- SPML)	2021	It gives training for videopose3D. It requires less amount of data for human activity. Action based and post estimation problems can be worked	80%	Real time action recognition and accuracy must be improved.

III.PROPOSED WORK

3.1 Data Collection:

Prepare a dataset of physical training for children activities, recorded using cameras. Annotate the data with labels for different actions.

3.2 Data Pre-processing:

The process of collecting fitness-related data, including motion data, biometric measurements, and environmental variables. Emphasize the significance of data quality and its role in accurate action recognition.

3.3 Feature Engineering:

Feature engineering involves selecting and transforming raw data into meaningful and informative features that machine learning models can use for accurate recognition of human actions. Engineer features that capture the relevant information for action recognition. Normalize or standardize the features to ensure they have similar scales.

3.4 Model Selection:

Logistic regression has been selected as the baseline model for its innate simplicity and interpretability, making it an ideal starting point for action recognition within a physical training setting. It is important to acknowledge that while logistic regression offers a straightforward approach, it may have inherent limitations in effectively capturing intricate and nuanced actions.

3.5 Model Training:

Train the logistic regression model on the training dataset, with a particular focus on optimizing hyperparameters, including the regularization strength, through the use of cross-validation techniques.

3.6 Model Evaluation:

Assess the logistic regression model's performance on the testing dataset, employing pertinent metrics such as accuracy, precision, recall and the construction of a confusion matrix.

Our proposed study introduces an innovative amalgamation of human action pattern recognition and the gamification of physical training for children. In contrast to conventional fitness regimens, our approach is designed to captivate users in a dynamic and interactive manner, thereby transmuting their workout sessions into captivating and engaging experiences. The fundamental constituents of our proposed work encompass:

Interactive Fitness System: We are in the process of developing an interactive fitness system that utilizes computer vision technology to identify and analyze users' movements during their physical training exercise routines. This intricately designed system is intended to provide real-time feedback and comprehensive guidance, incorporating a range of gamified elements with meticulous attention to detail. These elements are thoughtfully integrated to enhance user motivation and elevate the overall enjoyment of their workout sessions.

Information about training: System provides the basic information of training acticity which includes name of exercise, benefits of training.

Alert Message: If any training exercise goes wrong, it displays the alert message with sound.

This innovative approach serves fitness thereby rendering exercise more engaging and ultimately more efficacious. Children are expected to anticipate their workout sessions with enthusiasm, leading to enhanced adherence and overarching health advantages. Our proposed initiative exhibits substantial potential to transform the prevailing paradigm of how individuals perceive and engage with fitness, offering a solution to the challenge of exercise adherence while concurrently promoting sustained well-being.

IV. MATHEMATICAL MODELLING

Logistic regression is a statistical method used for binary classification problems . It takes the outcome variables in terms of 0 and 1. It uses the logistic function to produce probabilities in terms of 0 and 1.

The logistic regression hypothesis function is given by

$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T x}} \tag{1}$$

 $h_{\theta}(x)$ is the predicted probability, θ is a vector of parameters (weights) associated with each feature. x is the feature vector.

e is the base of the natural logarithm.

By finding the values of θ , the logistic regression model is trained.

The cost function for logistic regression is the log-likelihood cost function:

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$
(2)

V.CONCLUSION

We have surveyed the papers which includes linear regression algorithm. We will implement system for single user at a time by using logistic regression with MediaPipe Framework. We will also use the concept of computer vision. This system will become a fusion of technology-guided human movement, enhance its appeal and make it more enjoyable. By using logistic regression algorithm in machine learning, we will not only accurately recognize and monitor different physical actions but also provide tailored feedback. We will also work on unseen action. The system will be designed which will more precise, helpful and easy to use. This will help to encourage safer and more efficient workout routines for individuals

VI. REFERENCES

- P. William, Govinda Rajulu Lanke, Dibyhash Bordoloi, Anurag Shrivastava, Arun Pratap Srivastavaa, Sheetal Vishal Deshmukh (2023)"Assessment of Human Activity Recognition based on Impact of Feature Extraction Prediction Accuracy", 023 4th International Conference on Intelligent Engineering and Management (ICIEM) | 979-8-3503-4112-6/23/\$31.00 ©2023 IEEE | DOI: 10.1109/ICIEM59379.2023.10166247
- Shamsa Waheed, Dr. Rashid Amin, Dr. Javed Iqbal, Dr. Mudassar Hussain, Muhammad Adeel Bashir"An Automated Human Action Recognition and Classification Framework Using Deep Learning", 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) | 979-8-3503-3531-6/23/\$31.00 ©2023 IEEE | DOI: 10.1109/ICOMET57998.2023.10099190
- [3] Isha Chaudhary, Nongmeikapam Thoiba Singh, Mahak Chaudhary (2023)"Real-Time Yoga Pose Detection Using OpenCV and MediaPipe", 2023 4th International Conference for Emerging Technology (INCET) | 979-8-3503-3575-0/23/\$31.00 ©2023 IEEE | DOI: 10.1109/INCET57972.2023.10170485
- [4] R. Gera, K. R. Ambati, P. Chakole, N. Cheggoju, V. Kamble and V. R. Satpute, "Classifying Human Activities using CNN and ConvLSTM in Video Sequences," 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), Nagpur, India, 2023, pp. 1-6, doi: 10.1109/PCEMS58491.2023.10136043.
- [5] S. B. Prakash, V. Amudha, M. N, "Efficient Human Action Recognition using Novel Logistic Regression Compared over Linear Regression with Improved Accuracy," 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 2023, pp. 1-6, doi: 10.1109/ICONSTEM56934.2023.10142567
- ^[6] Vachiraporn Ketsoi, Muhammad Raza, Haopeng Chen, and Xubo Yang"A secure approach for human computer interaction using human hand action", 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) DOI: 10.1109/SMC53654.2022.9945405
- [7] Bardia Esmaeili, Alireza AkhavanPour, Alireza Bosaghzadeh."Surya Namaskar: Real-time advanced pose recognition and correction for smart healthcare", 2022 International Conference on Machine Vision and Image Processing (MVIP) Faculty of Engineering, College of Farabi, University of Tehran, Iran, 19 & 20 Feb. 2022.
- ^[8] Minjung Lee, Seoung Bum Kim (2022)"Sensor-Based Open-Set Human Activity Recognition Using Representation Learning With Mixup Triplets", Digital Object Identifier 10.1109/ACCESS.2022.3221425.
- Yaqian Zhang, Jizhuang Hui, Tao Zhou, Kaiyang Zhang, Kai Ding, Weiwei Wang (2022)"Efficient skeleton-based Human Assembly Action ", 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) | 978-1-6654-7369-9/22/\$31.00 ©2022 IEEE | DOI: 10.1109/WCMEIM56910.2022.10021380.
- [10] Jaeyeong Ryu, Ashok Kumar Patil, Bharatesh Chakravarthi, Adithya Balasubramanyam, Soungsill Park , Youngho Chai (2022)"Angular Features-Based Human Action Recognition System for a Real Application With Subtle Unit Actions", Digital Object Identifier 10.1109/ACCESS.2022.3144456

- [11] J. Ji, "Action Recognition based on Human Pose Estimation," 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 2021, pp. 73-78, doi: 10.1109/CDS52072.2021.00019.
- [12] Ming-Fong Tsai, Chiung-Hung Chen," Spatial Temporal Variation Graph Convolutional Networks (STV-GCN) for Skeleton-Based Emotional Action Recognition,"2021, Digital Object Identifier 10.1109/ACCESS.2021.3052246.
- [13] Ajay Chaudhari , Omkar Dalvi , Onkar Ramade , Prof. Dayanand Ambawade (2021)"Yog-guru: real-time yoga pose correction system using deep learning methods", 2021 International Conference on Communication information and Computing Technology (ICCICT) | 978-1-6654-0430-3/21/\$31.00
 ©2021 IEEE | DOI: 10.1109/ICCICT50803.2021.9509937
- [14] H. R. Patel and J. Tejaskumar Doshi, "Human Action Recognition in Dark Videos," 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 2021, pp. 1-5, doi: 10.1109/AIMV53313.2021.9670923
- [15] H. Bai, "A Training Method For VideoPose3D with Ideology of Action Recognition," 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML), Stanford, CA, USA, 2021, pp. 169-174, doi: 10.1109/CONF-SPML54095.2021.00041

