ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Survey On Smart Greenhouse Monitoring And Controlling System

Akshata Chopade¹, Prof. Vina M. Lomte², Prathamesh Patil³, Abhishek Nikate⁴, Shreya Bhosale⁵

¹⁻⁵Department Of Computer Engineering, RMD Sinhgad School of Engineering, Warje, Pune - 411058, India.

Abstract – For most of the countries now-a-days the national agenda is the agricultural production because of rapid climatic changes that affects the crop growth like vegetables, fruits, grains and insect infestation. Because of rapid climatic changes it is becoming hard to achieve maximum yield of the crops, because of this many countries are seeing greenhouse as a very good option to guarantee their agricultural results. In this paper we have proposed a smart greenhouse monitoring system that consists of different sensors which monitor the total area of the greenhouse and these sensors mainly include temperature and humidity sensor, light controlling (LED) sensor, soil moisture and PH controlling sensor. The system consists a facility of fire alert system and SMS alert system which will be displayed on the user's phone. Dataset used for this system has different kinds of pictures of numerous plants which are taken from different angles and the plants captured are both healthy and affected. This system has the ability to capture images and store in the database and predict results based on that data. The system uses Convolution Neural Network (CNN) which helps in training the model and detecting the disease. This survey paper gives information about the system which is equipped with numerous IoT-based applications to control and monitor greenhouse and help in building a suitable agriculture environment.

Key Words: Internet of Things (IoT), smart greenhouse, Convolution Neural Network (CNN), image processing, IOT sensors, Machine learning.

I. INTRODUCTION

Agricultural productions are the important part in the welfare of society and economic exchange between countries. Therefore, food demand is continuously increasing. The agriculture sector can produce only 3% more than required because farmers have postponed seeding different crops on their lands because of climatic changes. Therefore, to counteract undesirable environmental conditions and crops damages because of infestations of insects, in some cases, farmers use fertilizers and pesticides to speed up the planting and harvesting of crops. In some cases farmers use seeds and fertilizers without the knowledge to manage them on a huge scale. As a result of the wrong use of fertilizers and pesticides, the quality of the land decreases as well as the crops grown on it lose essential nutrition also.

A Greenhouse, which is a exceptionally outlined home like structure. This gives a more controllable and monitorable environment to a better crop growth, transplantation, harvest generation and product yields. In today's world, for developing yields, more space of land which has been utilized for commercial purpose, housing area space is accessible. The cost-effective farming such as new blossoms, organic products and vegetables generation is the utilization of Greenhouse development in many tropical nations. The surety of ideal atmosphere development conditions which is to attain to the high return at great quality, low natural dependency and low cost is the effectiveness of plant creation inside Greenhouse which depends

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

fundamentally. Parameters like light, humidity, temperature, soil moisture, pH must be controlled ideally where the given certain criteria through water pump, warming, ventilation and lighting are used to attain certain objectives. By regular monitoring and controlling of these geographical parameters which gives a significant data that is related to individual impacts of the elements differently towards acquiring the most extreme creation of harvest. The present difficulty in Greenhouses is to control environment factors. Temperature changes quickly, In Greenhouse as a result, fluctuations relying upon sun powered UV light level, soil moisture levels and outside temperatures. Poor natural quality frequently bought by the high humidness and poor light intensity. Improving the efficiency of labours by entitle them for the more important tasks, electricity charges, empowering producers and directors to settle on better administration choices and to invest more on the energy dealing with procedures can be decreased by practicing exact control over the system.

We have proposed a system which can read the parameters from the environment which is identified within the Greenhouse and will be controlled manually or by Android app which we will developed. The cloud will store data for future use. If any climate values fluctuate the precautionary measures will be taken by the user. Image processing is widely used in agriculture for the images taken by remote sensing devices such as cameras and other devices. Only original images are taken for training the plant disease identification model. The training and testing of the models are implemented in Google colab by importing necessary packages using TensorFlow. The proportion of dataset used for training and testing is 80:20. An accuracy of 95% was obtained as the maximum and 72% was obtained as the minimum, with the average accuracy of prediction being 85%. By the usage of the previous technologies we were able to recognize different kinds of diseases. The usage of a huge dataset which was a combination of images for a healthy and unhealthy leaves and the fruit or vegetables was also beneficial.

II. LITERATURE SURVEY

Ref. No.	Paper Title and Publication Details	Methodology Used	Dataset Used	Accuracy	Research Gap Identified
[1]	Title: Smart Farming	To efficiently manage	40 data	92%	Conclusion :
Paul	Robot for Detecting	agricultural fields and	collection		Reached the
D.	Environmental	greenhouses today,	points		objective of
Rose	Conditions in a	farmers have to apply	Central node		acquiring
ro-	Greenhouse	technologies in line with	receives 120		valuable data
Mon	S	Industry 4.0, such as:	samples		from the
talvo	Journal: IEEE Access	robots, Internet of Things	Data collected		greenhouse
And	(DOI :	devices, machine learning	on the basis of		The proposed
et al.	10.1109/ACCESS.202	applications, and so on. An	parameters		data analysis
	3.3283986 Date :	unsupervised learning	sensed by		effectively
	8 June 2023)	algorithm is implemented	Temprature		determined the
		to cluster the optimal,	sensor,		zones of the
		standard, and deficient	Humidity		greenhouse
		sectors of a greenhouse to	sensor, and		where the
		determine	CO2 emission		environmental
		inappropriate growth			conditions
		patterns in crops .			affected the
					crops.
					Future Scope :
					To build an
					autonomous
					robot with
					computer
					vision to give
					the farmer
					more
					information
					about his crops
					and the

Table 1 : literature survey

$\textcircled{\sc c}$ 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

www.ijc	i tiong				
					possibility of
					activating
					water pumps.
[2]	Title: Internet of	A rigorous discussion on	Data collected	80%	Conclusion :
Muh	Things in Greenhouse	greenhouse farming	on Cloud		The current
amm	Agriculture: A Survey	techniques, IoT-based	Computing		status of the
ad	on Enabling	greenhouse categories,	Server . The		research has
Shoa	Technologies,	network technologies, the	data collected		indicated that
ib	0	•			it
Faro	Applications, and	success	is of		
	Protocols	stories and statistical	parameters		was feasible to
oq, And		analysis of some	like		remotely
	Journal: IEEE Access	agricultural countries have	temperature,		monitor the
et al.	(DOI :	been presented to	humidity, the		greenhouse
	10.1109/ACCESS.202	standardize IoT-based	intensity		parameters
	2.3166634 Date : 11	greenhouse farming	of light, and		such as CO2,
	April 2022)		soil moistness.		PH, moisture
	_				content,
					humidity,
					temperature,
					and irrigation
					by using IoT
					sensors and
					devices .
					Future Scope :
					A generic
					platform is
					-
					necessary to
)	build for all
					kinds
					of crops and
					plants, quality
					of service
				CANS !	(QoS),
				N 3 2 1	integration
					of explainable
					artificial
					intelligence for
					pest control,
					and
					crop growth.
[3]	Title: Development of	To develop an intelligent	Dataset on	85%	Conclusion :
Jun	an Intelligent LED	control system for mixing	different types		The study in
Jiang	Lighting Control	color ratios using LED	of images of		this paper
Jung	Testbed for IoT-based	lights in a greenhouse	plants from		addresses the
, Meh	Smart Greenhouses	environment. To this end,	different views		applicability of
rdad	Smart Orcennouses	different components of an			a testbed with
	Iournal IEEE Access				
Moal	Journal: IEEE Access	experimental testbed is			a intelligent
lem	(DOI:	presented for achieving the			LED lighting
	10.1109/IECON43393	desired light requirements			control system.
	.2020.9254993	for plant growth in a			The design
	Date : 20 June 2021)	greenhouse environment.			concept has
		The proposed testbed			been depicted
		provides a easy-to-use			and different
		plant growth system with			stages of the
		IoT-enabled control and			forming
		monitoring features. To			process has
		testify the features			been
	•		•		

www.ijcrt.org	© 2023 IJCRT Volum	ne 11, Issue 11 Nov	/ember 2023	ISSN: 2320-2882
[4] Title: Detecting plant's diseases in Greenhouse using Deep Learning a Journal: IEEE Access (DOI: 10.1109/NILES50944 .2020.9257974 Date : 16 June 2021) Hud a et al. Image: State of the s	mentioned above, a feedback lighting control method to achieve a desired photosynthetic photon flux desnity (PPFD) set point is implemented The proposed system is used to speed up the plant growth and detect the plant's diseases. We used tomatoes to test our proposed system. The detected diseases are early blight, late blight, leaf mold, spider mites, target spot, mosaic virus, septoria, bacterial spot, and yellow leaf curl virus	Dataset consists of 9 classes of different diseased tomatoes leaves images and 1 class for healthy tomatoes leaves images. These images are imported from plant village dataset which contain 54,309 images of tomato leaves including healthy and unhealthy tomatoes leaves.	81.8% in plants stages 98.4% in detecting tomato diseases	illustrated. With the implementatio n of the testbed, a intelligent LED control strategy has been testified with the growth of real plant in a real daylight environment. Future Scope : Increase in Crop Productivity. Conclusion : In the proposed approach, an automated intelligent system for the greenhouse crop agriculture was developed to make the plant grow faster in a suitable environment. The proposed approach detects certain diseases that could effect plant's growth. Future Scope : Increasing the accuracy of the result and gettin a clear images of the plant with highest resolution of
[5]Title: MyGreen: AnPradIoT Enabled SmartyumGreenhouse fornaSustainableK.AgricultureTripathyJournal : IEEE Access, and(DOI :et al.10.1109/MCE.2021.3	This work also accounts for the different challenges of greenhouse rose farming and highlights a new IoT-based solution, which is smart and sustainable	N/A	85%	camera Conclusion : can increase productivity while reducing cost. The investment needed in the IoT-devices is low as

www.ijc	3		. ,		
	055930 Date :				compared to
	February 2021)				the
					expenditure
					involved in the
					manual
					process. The
					IoT-enabled
					process not
					only gives
					accurate pieces
					of information
					but also lowers
					the burden of
					manual work
					by automation
					Future Scope :
					With
					technology in
					hand, the new
					methods of
					making
					greenhouse
					sustainable is
()					higher with
					more
[6]				85%	accessibility
[6] Radh	Title: MyGreen: An	The preliminary goal is to	The leaf	83%	The proposed
a N	IoT Enabled Smart	identify the type of plant	images of		plant
,Swa	Greenhouse for	disease. The proposed	healthy and		monitoring
thika	Sustainable	plant model is used to detect the diseased	diseased plants		system enables
R	Agriculture		are obtained		the early
	Journal: IEEE Access	portions of a plant and also	from the plant village dataset	0	identification of disease in
	Journal. IEEE Access	monitors the parameters related to crop production.	village dataset	0	Poly-house.
		related to crop production.			Dataset can
					also be
					enlarged and
					refined with
					better images
					to increase the
					accuracy of the
					model. This
					system can be
					experimented
					for other set of
					plants as future
					work.
[7]	Title: Smart	Introduced the	Sensor	81%	By testing the
Ding	Agriculture Wireless	classification of	Network		algorithm
zhu	Sensor Routing	positioning algorithm, and	Dataset, Crop-		proposed in
Xue	Protocol and Node	then analyzed	Specific		this paper, the
1,	Location Algorithm	the DV-HOP positioning	Dataset		improved DV-
and	Based on Internet of	algorithm. Aiming at the			HOP algorithm
Wei	Things	problem of low positioning			reduces the
Hua		accuracy and large error of			positioning
ng	Journal: IEEE Xplore	DV-HOP algorithm, an			error by 30%
	I.	improved method of DV-			compared with
					· · · · · · · · · · · · · · · · · · ·

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

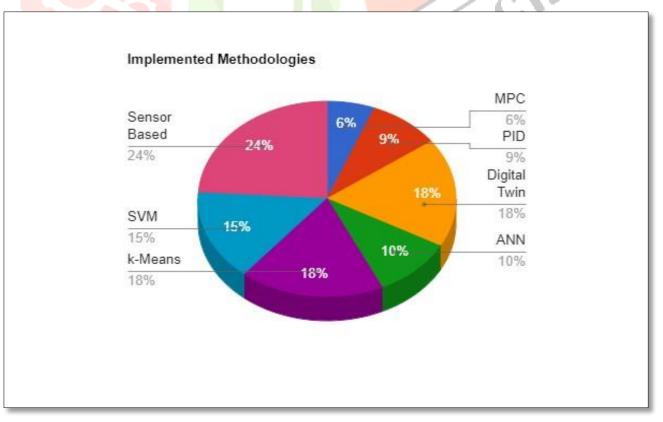
www.ijc	it.org	© 2023 IJCRT Volum			133N. 2320-2002
		HOP algorithm based on average HOP distance was			the original DV-HOP
		proposed to make			algorithm.
		positioning more precise.			argorrunn.
[8]	Title: Intelligent	This research is focused on	Greenhouse	99%	This project is
Sand	Disease Detection	diseases that cause	Captured	2270	mainly
unik	System for	yellowish the tomato	plants Dataset		focusing on
a	Greenhouse with a	plants inside greenhouses.	plains Dataset		greenhouse plants disease
Fern	Robotic Monitoring	There are several reasons			detection. The
ando	System	for the yellowness in the			system is
Ranu	System	tomato plant leaves. The			applied inside a robotic
sha	Journal:	system identifies leaf			system. So that
Neth	IEEE Xplore	mold, tomato yellow leaf			system can
mi,	IEEE Aplote	curl, diseases, and healthy			diagnose diseases that
and		leaves.			have harmed
et al		leaves.			the plant
					leaves. Several leaves from the
					same plant can
					be taken and
					process in order to find
					the symptoms.
[9]	Title : An Intelligent	In Deep Neural network	Rice leaf	97.66%	The proposed
Ahm	IoT-Based System	makes accurate predictions	dataset with		deep learning
ad F.	Design for	by extracting useful	5932 images		CNN model
Suba	Controlling and	features of the input	and 1500		demonstrated
hi	Monitoring	image. Activation maps or	potato leaf		high accuracy.
And	Greenhouse	feature maps are obtained	images are		Performance
Khei	Temperature	by applying filters to the	used in the		measures like
r Eddi		input image by each layer	study		accuracy,
ne	Journal: IEEE Access	of the CNN model.			precision, F1
Boua					score, recall
zza					etc. were used for
					comparative
					study.
					Optimized
					selection of
					these hyper-
					parameters can
					further
					increase the
					performance of
					the model.
[10]	Title: A Fungus	The Image processing	Greenhouse	98.6%	The research
Asm	Detection System for Greenhouses Using	steps are such as image acquisition, image filtering	Fungus		gap in this paper is in
aa	Greenhouses Using Wireless Visual	then segmentation and	Detection		need for
Ali,	Sensor Networks and Machine Learning	identify and classify vegetable plant and fruit	Dataset		automated and accurate plant
Hoss	-	diseases and measure			disease
am	Journal: IEEE Xplore	different leaf parameters.			detection system which
S.					is specifically
Hass					trained for the challenges of a
anei					greenhouse.
n [11]	Image processing	Grav Loval Co Occurrence	Local tomato	accuracy	One direction
Sami	Image processing based system for the	Gray Level Co Occurrence Matrix (GLCM)	crop dataset.	of 100%	is to find a way
Ur	detection,	algorithm,	crop ualasel.	for healthy	to solve the
Rah	identification and	Support Vector Machine		leaf, 95% for early	problem of
man,		(SVM).		blight,	detection
Ĺ		(5,111).			actornom

www.ijc	liong				100111 2020 2002
et al.	treatment of tomato leaf diseases. : 24 August 2022			90% for septoria leaf spot and 85% late blight	failures caused by lighting environment and acquisition at different angles. Another future work is to find a way to solve the problem of detection failures caused by low image resolutions. One more direction is to extend this method from tomatoes to other crops.
Chia ra	Internet of Things Approaches for Monitoring and	Fuzzy Logic, ANN, MPC and PID.	Local data from sensors.	1 1 1 2	A further required research
Bers ani,	Control of Smart Greenhouses in				activity is the one related to
et al.	Industry 4.0 : 23 May 2022		. 13		considering a greenhouse not
		_			as an isolated system but as a
					system interacting
				1	with other similar
5107		a la		97.8%	systems
[13] Amj	A Revisit of Internet of Things	Several sensors, including distributed WSNs, DCNN	Real time Data.	97.8%	This research will be
ad Reh man,	Technologies for	model, CNN.			expanded in the future to
et al.	Monitoring and Control Strategies in				include
	Smart Agriculture				security and
	: 5 January 2022				privacy issues in smart
					agriculture
					using IoT methods.
[14] Eme	A Systematic Review of IoT Solutions for	IoT technologies; big data; artificial intelligence; cloud computing	Real time Data.	NA	Another
rson	Smart Farming:	cioud computing			important future research
Nava	:29 july 2020				direction could
rro, et al.					be the analysis of the edge and
					fog computing
					usage in smart
					agriculture as a
					way to deal with
L					

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

	5		-		
[15] R Ame lia, M Mar diya h, and et al.	Title-Automated diseases detection of plant diseases in space greenhouses Journal- IOP Conference(Issue-28 October 2023)	To implement the diagnosis of plant diseases in the form of an application to a smartphone, computer vision methods are promising by counting image pixels in the space of color channels of red, green and blue (R, G, B) [5-10]. A commonly used indicator of plant health is leaf color, which is related to their chlorophyll content.	Proposed method of computer vision was originally implemented on a personal computer using previously obtained color images of leaves of garden strawberry	80%	challengesConclusion-a programhave beendeveloped forthe automateddeterminationof the degreeof damage toplant leaves byfungaldiseases.Future scope-The researchresults can beimplementedin the form ofa softwareapplicationthat can beautonomouslyinstalled on theresearcher'sSmartphone
[16] Suni dhi Shri vasta va*, Pank aj Gug nani, Neha Garg	Title- Deep Learning Models for Leaf Disease Detection for Crops in Agriculture Field : A Survey Journal –International Journal of Scientific Research(Issue- 01 May 2020)	A machine learning technique was traditionally used to detect and identify the leaf diseases. 1) Image Acquisition 2) Image Pre-processing 3) Image Segmentation 4) Feature Extraction 5) Classification	GoogLeNet Cifar10 with hyperparamete r changing model on the 500 images of Maize.	98.9% and 98.8%	Conclusion- In this paper plant and crop disease issue has been discussed. how many kind of diereses area there in the plants are present and how many techniques can be utilized for them to identified the specific disease. Future scope- comparison study can be done and more advance scopes in this area
[17] Tari ku Birh anu Wud neh and V.V	Title- Implementation of IoT With Image Processing in Greenhouse Monitoring System Journal - International Journal of Innovative Technology and	The various sensing devices that are to be deployed to gather information about greenhouse such as leaf image, temperature and soil humidity. These sensors are interconnected, as demonstrated through WSN. They interact with a	The NDVI (Normalized Difference Vegetation Index) to identifying healthy and non-healthy plants	84%	Conclusion- Various I/O devices and algorithms to identify and classify infected greenhouse plant leaves have been

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882


www.ijc	i tiong				
anith	Exploring	processing unit and the			implemented.
a	Engineering	network so that the data			The system is
	(IJITEE)(Issue- 9 July	can be processed, analyzed			efficient in
	2019)	and stored.			terms of
					monitoring and
					controlling the
					greenhouse
					environment.
					Future scope-
					Instead of
					fixing the
					camera module
					in one place it
					can be made
					move from one
					place to
					another by
					placing it on a
					custom camera
					slider
[18]	Title- Plant Disease	In Deep Neural network	Rice leaf	97.66%	Conclusion-
Rahu	Diagnosis and Image	makes accurate predictions	dataset with		The proposed
1	Classification Using	by extracting useful	5932 images		deep learning
Shar	Deep Learning	features of the input	and 1500		CNN model
ma,	Publication-	image. Activation maps or	potato leaf		demonstrated
Ama	Computers, Materials	feature maps are obtained	images are		high accuracy.
r	& Continua(Issue-9	by applying filters to the	used in the		Performance
Sing	July 2021)	input image by each layer	study		measures like
h,		of the CNN model.			accuracy,
and					precision, F1
et al.					score, recall
					etc. were used
					for
				(', V')	comparative
			-/.\		study.
					Future scope-
					Optimized selection of
					these hyper-
					parameters can
					further
					increase the performance of
					the model.
	1	1	I		

III. ALGORITHMIC SURVEY

Sr No.	Paper Title	AlgorithmName	Accuracy	Time Complexity	Space Complexity
1	Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse	k-Means Algorithm	92%	O(NDKI)	O(N(D + K))
2	MyGreen: An IoT Enabled Smart Greenhouse for Sustainable Agriculture	SVM	81.80%	O(N3)	O(N2)
3	MyGreen: An IoT Enabled Smart Greenhouse for Sustainable Agriculture	Fast.ai	98.40%	N/A	N/A

Table 2 : Algorithmic Survey

IV. METHODOLOGY

1) MPC (Model Prediction Control) and PID(Proportional Integral Derivative) :

MPC is the Mathematical Optimization Algorithm used to predict the future behavior of the system. It is also used to control the actions performed by the actuators known as process control.

PID is used to regulate the output of the system taken from the feedback of sensors .

2) Digital Twin and ANN :

Digital Twin is used for predicting real time entities in a digital form . Also it is used to process large amount of sensor data .

ANN is used for analyzing the data from remote sensors . It increases the accuracy and effectiveness of the product

3) Sensor-Based Approach:

This system uses multiple sensors to sense the data. On the data sensed all the parameters are dependent. Thereforesning the accurate value is the most critical part of the system.

4) SVM and k-Means:

This are the supervised machine learning algorithm used for classifying the images as healthy or unhealthy and also grouping them into different categories of diseases.

v. CONCLUSION

The green house monitoring and controlling system is proposed to address the modern problems of greenhouse systems. Proposed system does monitoring of various parameters such as temperature, humidity, soil moisture and etc.

The systems helps to find out abnormal conditions using above parameters. The system controls the greenhouse by taking remedial actions on the abnormal results of parameters. This data insights are useful for the quality production of crop and is used to predict the health of crop. CNN model is used to identified the plant leaf disease. Where the dataset of plant leaf trained which has leaf images.

The proposed systems also reduces the labor cost which is used for manual controlling and monitoring of green house. Proposed system can be integrated in future. System can extend to use it to outside of the greenhouse system on a wider range. Efficient camera can be introduced for clearer images for better accuracy. Data storage limitations can be overcome by using new age technology such as fog computing. Using fog computing data access will be easier. Security features can be added.

Further advancements in smart glove technology can lead to more accurate and robust sign language detection. It can be integrated into educational tools and platforms. Smart gloves can empower deaf or hearing-impaired individuals to live more independently. This technology can also facilitate communication in different settings, such as schools, workplaces, hospitals, and public spaces.

In many countries and regions, various sign languages and dialects exist alongside the standard national sign language. Smart gloves could adapt to these regional variations, enhancing communication for deaf individuals in different local communities. During emergency situations or disasters, it's crucial for first responders to communicate effectively with all members of the community, including those who use local sign languages. Smart gloves can be adapted to assist in such scenarios.

VI. REFERENCES

[1] P. D. Rosero-Montalvo, C. A. Gordillo-Gordillo and W. Hernandez, "Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse," in IEEE Access, vol. 11, pp. 57843-57853, 2023, doi: 10.1109/ACCESS.2023.3283986.

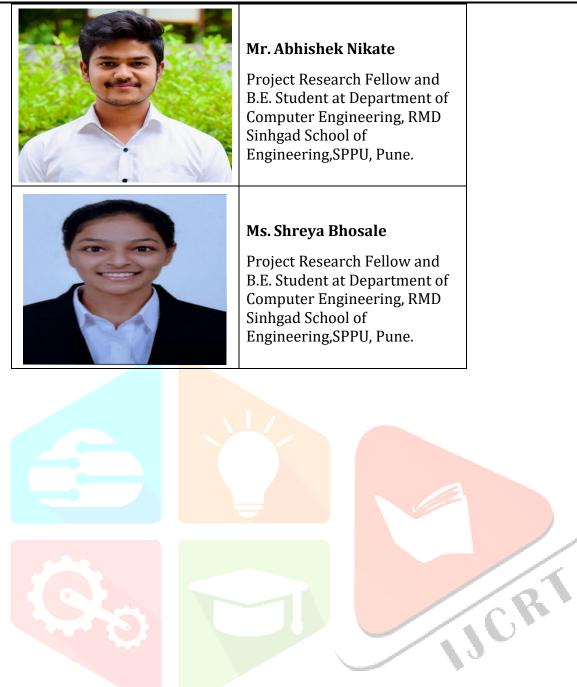
[2] M. S. Farooq, S. Riaz, M. A. Helou, F. S. Khan, A. Abid and A. Alvi, "Internet of Things in Greenhouse Agriculture: A Survey on Enabling Technologies, Applications, and Protocols," in IEEE Access, vol. 10, pp. 53374-53397, 2022, doi: 10.1109/ACCESS.2022.3166634.

- [3] J. Jiang and M. Moallem, "Development of an Intelligent LED Lighting Control Testbed for IoT-based Smart Greenhouses," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020, pp. 5226-5231, doi: 10.1109/IECON43393.2020.9254993.
- [4] R. Osama, N. E. -H. Ashraf, A. Yasser, S. AbdelFatah, N. El Masry and A. AbdelRaouf, "Detecting plant's diseases in Greenhouse using Deep Learning," 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 2020, pp. 75-80, doi: 10.1109/NILES50944.2020.9257974.
- [5] P. K. Tripathy, A. K. Tripathy, A. Agarwal and S. P. Mohanty, "MyGreen: An IoT-Enabled Smart Greenhouse for Sustainable Agriculture," in IEEE Consumer Electronics Magazine, vol. 10, no. 4, pp. 57-62, 1 July 2021, doi: 10.1109/MCE.2021.3055930.

[6] N. Radha and R. Swathika, "A Polyhouse: Plant Monitoring and Diseases Detection using CNN," 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 2021, pp. 966-971, doi: 10.1109/ICAIS50930.2021.9395847.

[7] D. Xue and W. Huang, "Smart Agriculture Wireless Sensor Routing Protocol and Node Location Algorithm Based on Internet of Things Technology," in IEEE Sensors Journal, vol. 21, no. 22, pp. 24967-24973, 15 Nov.15, 2021, doi: 10.1109/JSEN.2020.3035651.

[8] S. Fernando, R. Nethmi, A. Silva, A. Perera, R. De Silva and P. K. W. Abeygunawardhana, "Intelligent Disease Detection System for Greenhouse with a Robotic Monitoring System," 2020 2nd International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 2020, pp. 204-209, doi: 10.1109/ICAC51239.2020.9357143.


[9] A. Ali and H. S. Hassanein, "A Fungus Detection System for Greenhouses Using Wireless Visual Sensor Networks and Machine Learning," 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI,

USA, 2019, pp. 1-6, doi: 10.1109/GCWkshps45667.2019.9024412.

- [10] A. F. Subahi and K. E. Bouazza, "An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature," in IEEE Access, vol. 8, pp. 125488-125500, 2020, doi: 10.1109/ACCESS.2020.3007955..
- [11] M. Aghaseyedabdollah, Y. Alaviyan and A. Yazdizadeh, "IoT Based Smart Greenhouse Design with an Intelligent Supervisory Fuzzy Optimized Controller," 2021 7th International Conference on Web Research (ICWR), Tehran, Iran, 2021, pp. 311-317, doi: 10.1109/ICWR51868.2021.9443022.

VII.BIOGRAPHIES

Ms. Akshata Chopade
Project Research Fellow and B.E. Student at Department of Computer Engineering, RMD Sinhgad School of Engineering,SPPU, Pune.
Prof. Vina M. Lomte Project Guide and Head of Computer Engineering Department at RMD Sinhgad School of Engineering, SPPU, Pune
Mr. Prathamesh Patil Project Research Fellow and B.E. Student at Department of Computer Engineering, RMD Sinhgad School of Engineering,SPPU, Pune.

