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ABSTRACT: 

We study the Oscillatory Criteria for second order ordinary differential equation with delay of the form x″(t) 

+ q(t) x (τ(t)) = 0, on the half line R = [0,∞). where τ is a constant delay, it is also a continuous functions, and 

q : R → R is an integrable function. So that τ(t) ≤ t for every t ≥ 0 and  lim
𝑡→∞

𝜏(𝑡) = +∞. The linear second-order 

ordinary differential equation of oscillatory theory is a well-established and widely studied branch of the 

general theory of the differential equations. The well-known Leighton- Nehari and Wintner type oscillatory 

solutions for ordinary differential equations also hold for delay differential equation (1). The differential 

equations with argumental deviations and related systems, may derive a similar set of oscillation conditions. 

The well-known Riccati approach for ordinary differential equations is used in this paper to provide oscillation 

criteria. We can infer from the equality (1) applied for the formula h(t) = x′(t)/x(t) for sufficiently large t, the 

non-oscillatory solution x is accurate. h′(t) = – (q(t) 
𝑥(𝜏(𝑡))

𝑥(𝑡)
 + ℎ2(t)) for large t. And applying the Riccati 

technique to differential equations with argument deviations requires to find suitable lower and upper bounds 

for the quantity 
𝑥(𝜏(𝑡))

𝑥(𝑡)
, which is in the case of ordinary differential equations is equal to 1. 

Keywords: Second order linear delay differential equations, Oscillation Criteria, Riccati technique. 

1. INTRODUCTION 

The second-order linear delay differential equation on half-line R+ = [0, +∞) is  

                               x″(t) + q(t) x (τ(t)) = 0                                                                                            (1) 

where τ is a constant delay and it is also a continuous functions and q : R → R is an integrable function, so, 

that 

                     τ(t) ≤ t   for every t ≥ 0 and  lim
𝑡→∞

𝜏(𝑡) = +∞.                                                                    (2)       

The linear second-order ordinary differential equation of oscillatory theory is a well-established and widely 

studied branch of the general theory of the differential equations. We should explicitly mention the works of 
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Zdenek Oplustil as they pertain to the discoveries that are sealed in regard to the results of this, see [1]. The 

classical conclusions have been successfully extended by Q. Yang for general equations, such as p-Laplacian, 

difference equations, or time scale equations; see [2]. The well-known Leighton-Wintner and Nehari type 

oscillations for ordinary difference equations and also hold for  equation (1). The differential equations with 

argumental deviations and related systems, may derive a similar set of oscillation conditions for more 

information, see [3 - 13]. 

The below definations are introducing the proper solutions of equation (1). i..e oscillatory and non-oscillatory 

solutions.  

Definition - 1: ‶ Let t0 ∈ R and u0 = inf{ τ(t): t0 ≤ t }. A continuous function x: [u0, +∞) → R is referred to as 

a proper solution of the equation (1) on the interval [t0, +∞),  if it is absolutely continuous along with its first 

derivative on every compact interval in [t0, +∞), satisfies the equality (1) almost everywhere in [t0, +∞), and 

has the property that sup{|𝑥(𝑠)|: 𝑠 ≥  𝑡} > 0 for all t ≥ t0″. 

Definition – 2: ‶If a nontrivial solution to (1) has arbitrarily large zeros, it is said to be oscillatory; otherwise, 

it is non-oscillatory. If all of the solutions to equation (1) are non-oscillatory, then the equation is non-

oscillatory″. 

The well-known Riccati approach for ordinary differential equations is used in this paper to provide oscillation 

criteria. We can infer from the equality (1) that when we apply the formula h(t) = x′(t)/x(t) for sufficiently 

large t, the non-oscillatory solution x is accurate.         

                                      h′(t) = – (q(t) 
𝑥(𝜏(𝑡))

𝑥(𝑡)
 +  ℎ2(t))   for all t. 

Applying the Riccati technique to the differential equation with argumental deviations and requires to find 

suitable upper and lower bounds for the quantity 
𝑥(𝜏(𝑡))

𝑥(𝑡)
.  which is in the case, the ordinary differential 

equations is equal to 1 and shown in Lemma-1.     

2. Main Results: 

“If ∫ 𝜏(𝑠)𝑞(𝑠)
+∞

0
 ds is convergent, then the equation (1) has non-oscillatory solution”, see [7]. Consequently, 

we'll assume in the sequel that is 

                                   ∫ 𝜏(𝑠)𝑞(𝑠) 
+∞

0
ds = +∞.                                                                                       (3) 

Theorem -1: Assume that the condition (3) satisfies, and  

                          H* = lim
𝑡→∞

𝑠𝑢𝑝 {
1

𝑡
 ∫ 𝑠𝜏(𝑠) 𝑞(𝑠)𝑑𝑠

𝑡

0
} > 1.                                                                       (4) 

Consequently, all the solutions of equation (1) is oscillatory. 

The condition (4) is a specific application of the oscillation criterion see in [1], 

Now let us take 

                          𝐻∗ = lim
𝑡→+∞

𝑖𝑛𝑓 {
1

𝑡
∫ 𝑠𝜏(𝑠) 𝑞(𝑠)𝑑𝑠

𝑡

0
} ≤ 1.                                                                     (5) 

The following theorem presents a Wintner type criteria. 

Theorem - 2: Assume that the conditions (3) and (5) be satisfied,   

Let   

                    lim
𝑡→+∞

𝜏(𝑡)

𝑡
 >  0.     for t ≥ 0                                                                                               (6) 

Here we have an ordinaty delay τ(t) ≡ t for every t ≥ 0. Let us assume that  μ < 1(μ is a lowest value), such 

that 
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                         ∫ 𝑠μ (
𝜏(𝑠)

𝑠
)

1 − 𝐻∗+∞

0
 q(s) ds = +∞.                                                                                 (7) 

All solutions of equation (1) is oscillatory. 

Remark - 2: It is clear that the condition (6) is fulfilled and condition (7) coincide with the well-established 

conclusions. (For μ = 0, see [3 - 5]). Finally, we provide an oscillatory critetia to generalize a result of E. 

Muller-Pfeiffer to demonstrate for ordinary differential equations in the publication [6].  

Theorem-3:  Assume that the conditions (3), (5), and (6) hold, and let  

                     lim
𝑡→+∞

𝑠𝑢𝑝 {
1

𝐼𝑛 𝑡
 ∫ 𝑠

𝑡

0
(

𝜏(𝑠)

𝑠
)

1 − 𝐻∗

q(s) ds}  >  
1

4
                                                                   (8) 

Where In t denotes the natural logarithm of t (> 0). Then every proper solution is oscillatory  for equation (1). 

Example -: In particular, if τ is a proportional delay, then the equation (1) has in the form 

 x′′(t) + q(t) x (αt) = 0 with 0 < α ≤ 1, and the theorems 2 and 3 is satisfied for condition (6). 

  

3.  Auxilliary Statements for equation (1): 

The lemma provides that certain priori estimations of non-oscillatory solutions of equation (1) and  essential 

in the proof of main theorems. 

Lemma -1: Assuming that (3) holds and let x be the solution to equation (1) then 

                    there exists  tx > 0 such that x(t) > 0 for some t ≥ tx                                                          (9) 

Then   

                      lim
𝑡→+∞

𝑠𝑢𝑝 {
1

𝑡
 ∫ 𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

0
}  ≤ 1.                                                                               (10) 

In addition, if the inequatlity (6) holds then  

                      lim
𝑡→+∞

𝑖𝑛𝑓 {(
𝑡

𝜏(𝑡)
)

1 − 𝐻∗

 
𝑥(𝜏(𝑡))

𝑥(𝑡)
}  ≥  1                                                                              (11) 

where the relation τ(t) = t for all t ≥ 0. 

Proof: For the sufficient large t, it is simple to prove that the inequality x′(t) ≥ 0 holds. Since equation (1) is 

homogeneous second order delay differential equation and we can assume that x(t) ≥ 1 for sufficient large t 

and without losing generality to show the result, In view, the assumption (2), also exists t0 (≥ tx). Therefore 

                   x′(t) ≥ 0,     x(τ(t)) ≥ 1 , τ(t) = t   for all t ≥ t0.                                                                   (12) 

and  

                  (t x′(t) – x(t))′ = – t q(t) x (τ(t))  for all t ≥ 0.                                                                     (13) 

By integrating the inequality from t0 to t we get, 

              t x′(t) – x(t) = Δ – ∫ 𝑠 𝑞(𝑠)𝑥(𝜏(𝑠)) 𝑑𝑠
𝑡

𝑡0
  for all  t ≥ t0.                                                          (14)  

here Δ = t0 x′(t0) – x(t0).   

   Let δ ∈ (0,1) be an integral and has arbitrary constant values. The view of assumption (3) exists that t0 ≤ 

t1(δ) is 

                     Δ ≤ 
𝛿

2
 ∫  𝑠 𝑞(𝑠)𝑥(𝜏(𝑠)) 𝑑𝑠

𝑡

𝑡𝑜
         for every  t ≥ t1(δ).                                                     (15)          
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Thus, the relation (14) implies 

        tx′(t) – x(t) ≤ ( 
𝛿

2
 –  1) ∫  𝑠 𝑞(𝑠)𝑥(𝜏(𝑠)) 𝑑𝑠

𝑡

𝑡𝑜
 ≤ 0   for every t ≥ t1(δ).                                        (16) 

Therefore,    

                      (
𝑥(𝑡)

𝑡
)

′

= 
1

𝑡2 (tx′(t) – x(t)) ≤ 0       for  all t ≥ t1(δ).                                                          (17) 

We can determine that the existence of t1(δ ) ≤ t2(δ) sby applying this inequality and assumption (2) in the 

formula (16). 

              tx′(t) – x(t)  ≤   (
𝛿

2
 –  1) ∫  𝑠𝜏(𝑠)𝑞(𝑠) 

𝑥(𝜏(𝑠))

𝑥(𝑠)
 𝑑𝑠

𝑡

𝑡2(𝛿)
 

                                 ≤   (
𝛿

2
 –  1) 

𝑥(𝑡)

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
     for all t ≥ t2(𝛿).                                      (18) 

According to the above statements, we can conclude that the inequality is   

               tx′(t) ≤ x(t) + [(
𝛿

2
 –  1)

𝑥(𝑡)

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
 ]     

                        ≤ x(t) [1 +  (
𝛿

2
 –  1)

1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
 ]    for all t ≥ t2(𝛿)                                    (19) 

Hence, we obtain by  (9) and (12),   

                       0 ≤ 1 +  (
𝛿

2
 –  1)

1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
      

                                   – (
𝛿

2
 –  1)

1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
  ≤ 1 

                                   (1 – 
𝛿

2
)

1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
 ≤ 1 

That is 

                            
1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡2(𝛿)
 ≤ 

2

2–𝛿
        for all t ≥ t2(𝛿) 

and therefore     

                             lim
𝑡→+∞

𝑠𝑢𝑝 {
1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

0
} ≤ 

2

2–𝛿
                

Since 𝛿 ∈  [0,1] was arbitraty, Inequality (10) as expected, is valid.  

The inequality (11) follows from equation (6) and exists that t2(𝛿) ≤ t3(δ), such that 

                       
1

𝑡
 ∫  𝑠𝜏(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑡3(𝛿)
  ≥  (1 – 

𝛿

2
   ) 𝐻∗    for all t ≥ t3(𝛿). 

Multiplying both sides of the above inequality by  ( 
𝛿

2
–  1 ) 𝑥(𝑡)(< 0)  and using (18), we obtain 

              tx′(t) – x(t)  ≤   (
𝛿

2
–  1 )x(t)(1– 

𝛿

2
  ) 𝐻∗  ≤  (1 – δ)x(t) 𝐻∗  for t ≥ t3(𝛿), 

and hence we have 

                (
𝑥(𝑡)

𝑡
)

′

= 
1

𝑡2 (𝑡𝑥′(𝑡) – x(t)) ≤ 
(1 – δ)H∗

𝑡
 
𝑥(𝑡)

𝑡
   for t ≥ t3(𝛿).                                                       (20) 

Observe that, in view of (2), there exists t3(𝛿) ≤ t4(𝛿)  such that τ(t) ≥ t3(𝛿) for all t ≥ t4(𝛿). Consequently, 

from the inequality (20) we get 

                       In  
𝑥(𝑡)/𝑡

𝑥(𝜏(𝑡))/𝜏(𝑡)
  ≤  (1 – 𝛿) 𝐻∗ In 

𝑡

𝜏(𝑡)
    for t ≥ t4(𝛿). 
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Conversely, based on the assumption (6), there is t4(𝛿) ≤ t5(𝛿) such that  0 < β ≤ τ(t)/t  for all t5(𝛿) ≤ t. 

Thus,   

                         (
𝑡

𝜏(𝑡)
)

1 – 𝐻∗ 

 
𝑥(𝜏(𝑡))

𝑥(𝑡)
   ≥  𝛽𝛿𝐻∗        for all t ≥ t5(𝛿). 

Consequently, we have 

                         lim
𝑡→+∞

𝑖𝑛𝑓 {(
𝑡

𝜏(𝑡)
)

1 – 𝐻∗ 𝑥(𝜏(𝑡))

𝑥(𝑡)
}  ≥  𝛽𝛿𝐻∗,                                                                     (21) 

The arbitrariness of δ ∈ (0,1) gives the desired equality (11).  

Lemma - 2: Let x be a non-oscillatory solution to equation (1). Then the following limit is finite. 

                       lim
𝑡→+∞

∫ 𝑠𝜇𝑡

𝑡𝑥
   

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds < ∞ 

for any μ (< 1). Futhermore,  

                      lim
𝑡→+∞

 sup {
1

𝐼𝑛 𝑡
 ∫ 𝑠

𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds }  ≤  

1

4
.                                                                  (22) 

Proof:  For t ≥ tx, let's put μ < 1 and enter h(t) = x′(t)/x(t), therefore (1) yields the result that,  

                    h′(t) = – q(t)  
𝑥(𝜏(𝑠))

𝑥(𝑠)
 – h2(t)    for all t ≥ tx .  

The result is obtained by integrating it from tx to t and multiplying tμ on both sides of this equality. 

     tμ – 1 [𝑡 ℎ(𝑡) – 
𝜇

2
  ] = Δ1 – [

𝜇 (2 – μ)

4(1 – μ)
  

1

𝑡1 – μ  + ∫ 𝑠𝜇𝑡

𝑡𝑥
   

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds + ∫ 𝑠𝜇 – 2   [𝑠ℎ(𝑠) – 

𝜇

2
 ]

2

 𝑑𝑠
𝑡

𝑡𝑥
] 

                                                                 for  all t ≥ tx                                                                        (23) 

Where Δ1 = 𝑡𝑥
𝜇

 h(tx) + 
1

4
 𝜇2(1 –  μ)–1𝑡𝑥

𝜇  ̵ 1
. 

We first show that 

                    ∫ 𝑠𝜇 − 2+∞

𝑡𝑥
 [𝑠ℎ(𝑠) – 

𝜇

2
 ]

2

 𝑑𝑠 < +∞.                                                                                (24) 

Alternatively, suppose that the integral in (24) is divergent. The inequality exists for some t1 ≥ tx due to relation 

(23). 

          t h(t) – 
𝜇

2
 ≤ – 

1

2
 t1 – μ   ∫ 𝑠𝜇 – 2𝑡

𝑡𝑥
 [𝑠 ℎ(𝑠) – 

𝜇

2
 ]

2

 𝑑𝑠 < 0    for all t1 ≤ t.                                           (25) 

Satisfies. 

Let us denote that 

                     u(t) = ∫ 𝑠𝜇 – 2𝑡

𝑡𝑥
 [𝑠 ℎ(𝑠) – 

𝜇

2
 ]

2

 𝑑𝑠     for all  t1 ≤ t . 

Using the relation (24), we obtain 

                    u′(t) =  tμ - 2   [𝑡 ℎ(𝑡) – 
𝜇

2
 ]

2

 ≥ 
1

4𝑡𝜇 u2(t)      for all t1 ≤ t. 

Therefore , by integrating the final inequality from t1 to t, i..e  

                    4(1 – μ)/u(t1) + 𝑡1
1 − 𝜇

 ≥ t1 – μ  satisfies for all  t1 ≤ t . 

which contradicts itself. The resultant contradiction establishes the equality's validity (24). The equality (23) 

may now be rewritten as follows: 
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             ∫ 𝑠𝜇𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds = Δ2 – tμ h(t) – [

𝜇2

4(1 – μ)
  

1

𝑡1 –μ  – ∫ 𝑠𝜇 − 2+∞

𝑡
 [𝑠 ℎ(𝑠) – 

𝜇

2
 ]

2

𝑑𝑠] 

                                                                                            For all t ≥ tx,                                             (26) 

where Δ2 = Δ1 – ∫ 𝑠𝜇 − 2+∞

𝑡𝑥
 [𝑠 ℎ(𝑠) – 

𝜇

2
 ]

2

 ds. Consequently, we obtain that 

                 – ∞ < lim
𝑡→+∞

∫ 𝑠𝜇𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds = Δ2 < +∞                                                                   (27) 

Since, the inequality h(t) ≤ 1/t satisfies for large t in view of condition (15). 

The validity of the relationship needs to be demonstrated (20). Using the previously established relation (27), 

we may obtain by multiplying t -μ on both sides of the equality (26), integrating it from tx to t by parts,  

            ∫ 𝑠
𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds ≤ Δ3 + 

𝜇(2 − 𝜇)

4
 𝐼𝑛 𝑡   

                                     + ∫
1

𝑠

𝑡

𝑡𝑥
 (𝑠 ℎ(𝑠) – 

𝜇

2
 ) (1 –  μ – [𝑠 ℎ(𝑠) – 

𝜇

2
 ] ) 𝑑𝑠    for t ≥ tx,                        (28) 

where Δ3 is some appropriate constant. Let u = 𝑠 ℎ(𝑠) – 
𝜇

2
 (∈ R). Then using the fact that the function f(u) = 

4u(1–  μ – u)  takes the maximum value (1 –  𝜇) 2 when u = 
1 − 𝜇

2
for all  u ∈  𝑅, so the following holds: 

                      ∫ 𝑠
𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds ≤ Δ3 + 

1

4
 In t            for all t ≥ tx,                                                    (29) 

Consequently, the required condition (20) is satisfied. 

4.  THE PROOFS OF MAIN RESULTS: 

Proof of Theorem -1: Let us say the assertion of the theorem is not hold. There exist a solution  x of the 

equation (1) holds with the condition (9). Lemma -1 states that the relation (10), which defies the assumption 

(4), holds. 

Proof of Theorem-2: Consider a scenario in which the theorem's assertion is not hold. Then, the equation (1) 

has a solution x that satisfies (9). Define 𝛿 ∈  (0, 1) as arbitrarily fixed. There exists t0 (≥ tx) such that, 

according to Lemma -1, We find that 

                            (
𝑡

𝜏(𝑡)
)

1 – 𝐻∗ 𝑥(𝜏(𝑡))

𝑥(𝑡)
   ≥  (1 – δ)     for all t ≥ t0,                                                               (30) 

Thus we have from (28) that the following inequality 

                           (
𝜏(𝑡)

𝑡
)

1 – 𝐻∗ 

≤  
1

1− 𝛿 
 
𝑥(𝜏(𝑡))

𝑥(𝑡)
      for all t ≥ t0(δ),                                                             (31) 

Multiplying both sides of (31) by 𝑠𝜇 q(s) and integrating over the interval [tx , t], we obtain 

              ∫ 𝑠𝜇 (
𝜏(𝑠)

𝑠
)

1 − 𝐻∗𝑡

0
 q(s) ds 

                                 ≤  ∫ 𝑠𝜇 (
𝜏(𝑠)

𝑠
)

1 − 𝐻∗𝑡0

0
 q(s) ds + 

1

1− 𝛿 
∫ 𝑠𝜇𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
  q(s) ds    for t ≥ t0. 

Therefore, Lemma - 2 implies that 

                                ∫ 𝑠𝜇 (
𝜏(𝑠)

𝑠
)

1 − 𝐻∗+∞

0
 q(s) ds < +∞,                                                                        (32) 

Which differ the assumption (7). 

Proof of Theorem-3: Let's say that the theorem's assertion  not hold. Then, the equation (1) has a solution x 

that satisfies (9). Define 𝛿 ∈  (0, 1) as arbitrarily fixed. There exists t0 (≥ tx) such that the relation (31) holds, 
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according to Lemma-1. Multiplying both sides of (31) by sq(s), integrating over [tx, t], and dividing both sides 

by In t, we obtain 

         
1

𝐼𝑛 𝑡
 ∫ 𝑠

𝑡

0
 (

𝜏(𝑠)

𝑠
)

1 − 𝐻∗

 q(s) ds  

                    ≤  
1

𝐼𝑛 𝑡
 ∫ 𝑠

𝑡0

0
(

𝜏(𝑠)

𝑠
)

1 − 𝐻∗

 q(s) ds + 
1

(1− 𝛿) 𝐼𝑛 𝑡 
∫ 𝑠

𝑡

𝑡𝑥
  

𝑥(𝜏(𝑠))

𝑥(𝑠)
 q(s) ds      for all t ≥ t0. 

Using the condition (22) from Lemma - 2, we obtain 

                   lim
𝑡→+∞

𝑠𝑢𝑝 {
1

𝐼𝑛 𝑡
 ∫ 𝑠

𝑡

0
 (

𝜏(𝑠)

𝑠
)

1 − 𝐻∗

 q(s) ds }  ≤  
1

4(1−𝛿)
 ,                                                       (33) 

Which, given the arbitrary nature of 𝛿 ∈ [0, 1], contradicts the supposition (8). 

Conclusion: 

In this study, we have taken the second order ordinary linear delay differential equations into consideration to 

find oscillatory criteria. Applying the Riccati technique, which is a well-established one in the context of 

ordinary differential equations by computing lim sup and lim inf to determine the oscillation or non-oscillation 

solutions. The primary benefit of these oscillatory criteria is that they are significantly out form of all related 

oscillation conditions and time scale equations in the literature and half-line equations of second order linear 

delay differential equations is solved for delay. 
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