IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

SURVEY ON ADVANCEMENT IN OCR-BASED TECHNOLOGY FOR SEAMLESS MULTILINGUAL COMMUNICATION

Ronit Keshave¹, Prof. Vina M. Lomte², Aditi Mooley³, Chaitanyya Sawant⁴, Shivani Kanojia⁵ ¹⁻⁵Department Of Computer Engineering, RMD Sinhgad School of Engineering, Warje, Pune - 411058, India.

Abstract: In our increasingly globalized world, effective communication is vital, yet language barriers often hinder smooth interaction between people from different linguistic backgrounds. To address this issue, technological advancements have led to the development of special sunglasses embedded with [5]Optical Character Recognition (OCR) technology, enabling real-time language recognition and translation. These special sunglasses are designed to help people communicate more easily, especially when they encounter languages they don't understand. We discuss the significance of machine learning and artificial intelligence (AI) techniques in enhancing the accuracy and efficiency of language recognition, while also addressing the complexities and limitations associated with the recognition of various fonts, styles, and handwriting. We take a close look at different methods and techniques that have been used in this field and we discussed the good things and the challenges that come with using OCR-based technology for language recognition and translation. Furthermore, we highlight the challenges associated with the integration of OCR technology into wearable sunglasses, such as ensuring real-time processing, minimizing hardware constraints, and optimizing energy consumption for prolonged usage. we provide a detailed overview of the latest and most advanced approaches being used, how they are applied in real life, and what we can expect in the future. Our goal is to help readers understand the full potential of these OCR-based sunglasses in breaking down language barriers and fostering better communication between people from different cultures.

Index Terms - OCR Technology, Effective Communication, Language Barriers, Real-time language Recognition, Translation, Accuracy, Artificial Intelligence.

I. INTRODUCTION

In the fast-paced landscape of technological innovation, the convergence of artificial intelligence and wearable devices has given rise to ground breaking solutions that redefine the way we interact with the world around us. Among these cutting-edge advancements, the integration of [5]Optical Character Recognition (OCR) technology into smart sunglasses stands out as a transformative breakthrough, promising to revolutionize the realm of language recognition and translation.

This synergy empowers users with the ability to capture and interpret textual information from their immediate surroundings, transcending language barriers in a manner that is both intuitive and unobtrusive. These smart glasses harness the power of technology to break down language barriers and enable the blind to engage in a world of diverse languages with confidence and ease.

These wearable devices represent a remarkable convergence of technology and fashion, with the potential to revolutionize the way we perceive and interact with languages. Our mission is to offer a comprehensive analysis of the present state of this technology, from the underlying technical workings to the real-world applications and the challenges that still need to be overcome.

OCR, is a technology that has been quietly making our lives easier for years. It enables machines to recognize printed or handwritten text, a task that's second nature to humans but requires sophisticated algorithms for computers. OCR has found applications in document scanning, digitization, and text extraction from images, which means it can read text from pictures OCR technology is the cornerstone of OCR-based sunglasses. These smart shades come equipped with tiny cameras and powerful processors. They can "see" the world through their lenses, capturing text from a variety of sources, such as signs, books, menus, or any printed material. The text is then processed in real-time, recognized by the OCR technology, and translated into the language of your choice.

By providing real-time assistance in reading and comprehending text, the sunglasses can support visually impaired individuals in performing daily activities independently. Whether it is reading product labels while shopping, identifying bus schedules at public transportation stops, or understanding instructions on household items, these sunglasses can enhance autonomy and self-reliance in various aspects of daily life.

The language recognition and translation capabilities of the sunglasses can aid visually impaired individuals in learning new languages. By providing instant audio translations of foreign text, the sunglasses can assist in language comprehension, pronunciation, and vocabulary building, thereby facilitating an inclusive and accessible learning experience for language learners with visual impairments.

This technological synthesis holds the promise of transforming the way we perceive and engage with languages, forging connections that transcend linguistic boundaries. As we delve deeper into the intricacies of this groundbreaking innovation, we unravel a tapestry of possibilities that may redefine the very fabric of global communication in the years to come.

II. LITERATURE SURVEY

Ref.	Paper Title	Pub licati	Pre-	Featur <mark>e</mark>	Accura	Post	Research
No.	1	on Details	Processing	Extraction	cy	Processing	Gap
		~	Feature	and	/		Identified
				Classificati on			
[1]	Optical Character Recognition with Word Prediction Feature using First Order Hidden Markow For	Chew H. Wen, Lim L. Tze, 2021	HMM for Misspelling Correction	pytesseract for OCR	94.05%	pyttsx3 for Text-to- Speech	Implementati on of OCR on glasses with a small camera for scanning and Bluetooth earphone for speech
	the Blind						output
[2]	Recognition and Speech Conversion of Devnagari Script using CNN	Sameer Agrawal, Neelam Agrawal, 2023	Image Preprocessi ng, Data Augmentati on	Convolutio nal and Pooling Layers, Activation Functions	90%	Thresholdin g, Binarization , Noise Removal, Punctuation and Grammar Correction, Text	Improvement in quality of image segmentation , image classification , recognition, and speech conversion

www.ijcrt.org	© 2023 IJCRT Volume 11, Issue 11 November 2023 ISSN: 2320-28	82
	Cleaning	
	and	
	Normalizati	
	on,	
	Contextual	
	Analysis and	
	Correction	

	T	T	T	Γ_		Γ_	
[3]	Smart Reader		Image Quality	Feature	92.50%	Error	Image
	for Visually	1	Enhancement,	Extraction		Correction,	quality, to
	Impaired	Alla Amrutha	Noise	from		Language	placement,
		Vaishnavi, D	Reduction	Characters,		Model	and
		Rajeswara		TTS		Integration	orientation
		Rao,		Algorithms			
		Tirumalasetti					
F 47	, B 1	Teja Sri, 2023		G 1	0.507	T	-
[4]	A Peculiar	M. Raja, J.	Text Region	Spatial	95%	Interface	Incorporati
	Reading	Deny, Nagaraj	Localization	Layout, Font		Customization,	advanced
	System for			Size, Text		Context-	NLP
	Blind People			Style		Sensitive	techniques
	using OCR	V, 2023		Features		Correction	for
	Technology						synthesized
							speech
[5]	Multilings	Du Dharahan	Various Image	Clymb	02.500/	Convoc for	output Statistical
[5]	Multilingual Text &	Dr. Bhushan Vidhale, Prof.	Various Image Preprocessing	Glyph Summation	92.50%	Canvas for Text Drawing	Statistical and
	Handwritten	Ganesh	techniques	Sullillation		Text Drawing	
		Khekare,	techniques				geometric features
	Digit Paganition	Prof.Chetan					
	Recognition and	Dhule, Dr.					recognition
	Conversion of				/ 6	2 1	
	Regional	Chandankhede,					
	languages into	Prof. Abhijit					
	Universal	Titarmare,			3		
	Language	Prof. Meenal					
	Using Neural	Tayade, 2021					
	Networks	Tayade, 2021					
[6]	Text	Kyi Pyar Zaw,	Specific	Chain Code,	92.77%	Character	Robust
[~]	Extraction	Nu War, 2023	Preprocessing	Pixel		Layout	features
	and	, 2025	for Myanmar	Density,		Reconstruction	Myanmar
	Recognition		Language	Centroid			script, Mul
	System for			Distance			lingual
	Myanmar			Features			character
	Warning						recognition
	Signboard						
	Images						
[7]	RASPBERRY	Pratiksha	OCR, Text	Feature	93.20%	N/A	Advanced
[]	PI BASED	Kapgate,	Preprocessing	Extraction			features a
	BOOK	Sakshi Tidke,	1 1111111111111111111111111111111111111	and Machine			seamless
	READER	Rutwik Fender,		Learning			integration
	FOR VISUAL	Sarthak		Classification			55.300
	IMPAIRED	Rathore,					
	PEOPLE	Sumeet					
		Ghodmare,					
		onoundition,		<u> </u>	l		

ww.ijcrt.org	© 2023 IJCRT Volume 11, Issue 11 November 2023 ISSN: 2320-2882
	5 2020 10 01(1) 10 0000 11 110 10 110 10 10 10 10 10 10

www.ijc	crt.org	© 2023 IJCRT Volume 11, Issue 11 November 2023 ISSN: 2320-2882					2882
		Prof. Leela Bitla, 2023					
[8]	Portable Camera-based Identification System for Visually Impaired People	Ashveena A, Bala Deepika J, S. Prince Mary	Single Shot Detector (SSD) for Image Processing	Extraction of Visual Cues	95%	Object Refinement, Feedback to Users	Use healthcare, safety, a education
[9]	Optical Character Recognition for Medical Records Digitization with Deep Learning	Muhammad Ateeque Zaryab, Chuen Rue Ng, 2023	Normalization, Noise Handling	CNN for Feature Extraction	83%	Spell Checking, Grammar Correction, Context Validation	Handling complex handwritin styles
[10]	OCR Text Region Detection Based on Chinese	Li Chen, Yong Qiao, Shikan Fu, Jing Cao, Lei Wang,2023	Gabor Filters for Chinese Character Features	Stroke Patterns, Structural Elements	80.30%	Non- maximum Suppression	Deep learning Chinese character recognition

[11]	Multi- connected Tiny Object Detection for Color-Strip Recognition	Zhipeng Zhang, Xinya Peng, Xiaohang Yuan, Wenting Ma, Qingchen Liu, Yingteng He, Xingang Chai, Jie Wei, Jinman Lin, 2023	Adaptive Thresholding	Accurate Color-Strip Segmentatio n	96.80	Quality Assessment , Error Correction	Real-world application validation
[12]	Bangla and Nagri Language Detection and Classification Using Deep Learning Methods on Text Document Image	Md. Abu Naser Mojumder, Ashraful Islam, Tanzidul Islam, Showman Das, Zakaria Chowdhury, Ashfakur Rahman, 2023	Image Normalizatio n, Noise Removal	Feature Extraction for Language Detection	95.89	Data Labelling	Extraction of Nagri to Bangla word
[13]	An Enhanced Deep Learning Model for Handwritten Tamil Character Identification	Babitha Lincy R, Jency Rubia J, Sherin Shibi C, Kavitha M, 2023	Image Enhancement , Slant Removal	CNN for Handwritten Character Identificatio n	83%	Comparison to SVM	Overlapped characters and hybridizati on techniques
[14]	Text Extraction from Stone Inscriptions and Translating to Modern Language	Meher Pranav Kurapati, Hemanth Chowdary Vallabhanen i, Lohith Reddy Burramukku , Harshith Reddy Soda, Murali Mohan Vutukuru, Satish Thatavarthi, 2023	Image Restoration, Geometric Transformati on	Various Techniques Including OCR	90%	Character Segmentati on, Image Translation	Method improveme nt and use in other languages

[15]	A Nov Approach Assisting Blind Peop Using a Sm Wearable Device Analysing discrete s supervised	for Peraka, S Irfan A ple Reddy	Discrete Speech	Recognition , Feature Extraction from Camera and Motion Data Cosine Similarity	80%	Real-time Obstacle Detection ABX Evaluation	Advanced UI and interaction Further exploration of discrete
	speech Representati n for spok language modelling	Adi, 2023	on Analysis				speech representati on
[17]	Document- Level Neural Machine Translation With Recurrent Context States OCR using CRNN: A Deep	YUE ZHAO 1 AND HUI LIU2,2023 Aditya Yadav, Shauryan Singh	experimentati on with a method Transformer- based system. Creation of a grayscale version	comparison of computation al and spatial complexities of two widely used document- level methods Connectionis t Temporal Classificatio	81.40 % 92.2%	neural machine translation Use of convolution al layers	comparable or even better performance with strong context- aware models Capability of using a CRNN
	Learning Approach for Text Recognition	Singh, Muzzamil Siddique, Nileshkumar Mehta, Archana Kotangale,20		n, these label distributions are transformed into label sequences		and two LSTM layers	architecture, which combines CNN and RNN.
[19]	Two Decades of Bengali Handwritte n Digit Recognition : A Survey	A. B. M. Ashikur Rahman, Md. Bakhtiar Hasan, Sabbir Ahmed, Tasnim Ahmed, Md. Hamjajul Ashmafee, Mohammad Ridwan Kabir, Md. Hasanul Kabir, 2022	Various Preprocessin g Methods	Four Categories of Descriptors for Recognition	98.80 %	Multilingua 1 Digit Recognition , Handwritte n Mathematic al Expression Evaluation	Better recognition of offline Bengali handwritten digits

www.ijcrt.org © 2023 IJCF			© 2023 IJCK1	volume 11, iss	sue il Nov	rember 2023 1	33N. 232U-2002
[20]	End to End	Halil Arslan,	Invoice	Table Cell	98.19	Table Line	Tables for
	Invoice	2022	Structure	Image	%	Detection	Different
	Processing		Analysis,	Extraction			Companies
	Application		Image				and
	Based on		Resizing				Documents
	Key Fields						
	Extraction						
[21]	PHTI:	Ibrar	Skew and	Gender and	89.40	Character	More data
	Pashto	Hussain,	Line	Age	%	Error Rate	and features
	Handwritte	Riaz Ahmad,	Segmentation	Classificatio		and Word	for
	n Text	Siraj		n		Error Rate	recognition
	Imagebase	Muhammad,					
	for Deep	Khalil Ullah,					
	Learning	Habib Shah,					
	Application	Abdallah					
	S	Namoun,					
		2022					
[22]	Cursive	Asghar Ali	Segmentation	Feature	95.75	Use of	Natural
	Text	Chandio, Md.	-Free Method	Extraction	%	Deeper	scene Urdu
	Recognition	Asikuzzam <mark>an</mark>		and		CNN	text
	in Natural	, Mark R.		Sequence		Architectur	recognition
	Scene	Pickering,		Transformati		es	model
	Images	Mehwish		on			development
	Using Deep	Leghari,					
	Convolutio	2022	7				
	nal						
	Recurrent				1/2		
	Neural						j
	Network						

IJCRI

III. ALGORITHMIC SURVEY

S r N o	Paper Title	Algorith m Used	Time Complexity	Space Complexi ty	Accurac y (%)	Advantages/Disadvant ages
1	Applying Gradient Descent in Convolutional Neural Networks	CNN	Varies	Varies	90% - 99%	Advantages: Excellent for image recognition, Disadvantages: Requires large datasets and computation
2	Exploring the Use Cases of Standard Vector Machines	SVM	O(N^2) (for training), O(N) (for classification)	O(N^2) (for training), O(N) (for classificati on)	85% - 95% (with appropria te kernel)	Advantages: Effective for both linear and non-linear data, Disadvantages: Can be computationally expensive
3	Text Identification from Handwritten Data using Bi-LSTM and CNN with FastAI	LSTM	O(N * M^2) (for training), O(N * M) (for inference)	O(N * M)	80% - 99% (in sequence predictio n tasks)	Advantages: Good for sequential data, Disadvantages: Sensitive to hyperparameters
4	An optical character recognition algorithm for documents with cascading structures	LBP	O(N)	O(2^P) (for P patterns)	60% - 90%	Advantages: Simple and computationally efficient for texture analysis, Disadvantages: Limited to local patterns
5	Performance of Convolutional Recurrent Networks for handwritten Text Recognition	CRNN	O(N)	O(N)	High (for encryptio n)	Advantages: Combines both the elements of CNN and RNN, Disadvantages: Can be computationally intensive
6	Understanding Convolutional Neural Networks with A Mathematical Model	KNN	O(N * M) (for training), O(N) (for classification)	O(N * M) (for training), O(1) (for classificati on)	Varies (depends on data and k value)	Advantages: Simple, easy to understand, Disadvantages: Sensitive to data distribution and choice of k
7	Covid Analysis using Recurrent Neural Network	RNN	O(N * M^2) (for training), O(N * M) (for inference)	O(N * M)	80% - 99% (in sequence predictio n tasks)	Advantages: Suitable for sequential data, Disadvantages: Vulnerable to vanishing gradient problem
8	Image Enhancement and Detection of Courier Slips Based on Affine Transform	Canny Edge Detectio n	O(N) (for convolution)	O(N)	N/a	Advantages: Detects edges accurately, low false positives. Disadvantages: Sensitive to noise, parameter tuning required.

www.ijcrt.org	© 2023 IJCRT	Volume 11, Issue 1	1 November 2023	ISSN: 2320-2882
---------------	--------------	--------------------	-----------------	-----------------

9	Improving	Gaussian	O(N) (for O(N)	N/a	Advantages: Smooths
	Classification of	Blur	convolution	n)		images, reduces noise.
	Scanned Document					Disadvantages: Can
	Images using a Novel					blur fine details.
	Combination of Pre-					
	Processing Techniques					
1	An end to end neural	ReLU	O(N)	O(N)	N/a	Advantages: Simple and
0	network for image to	(Rectifie				computationally
	audio transformation	d Linear				efficient activation
		Unit)				function. Eliminates
						vanishing gradient
						problem.
						Disadvantages: Can
						suffer from dying ReLU
						problem, not suitable
						for all types of data.

IV. FIELD SURVEY

Date of Visit: 21 October 2023

Location: Poona School and Home for the Blind Girls, Survey No.36/3, Gandhi Bhavan Road, Kothrud, Pune, Maharashtra 411038

The objective of our field survey was to visit Poona School and Home for the Blind girls to learn more about the difficulties and problems faced by the blind to help us develop a device for their aid. Our aim is to understand the unique requirements and barriers that blind girls face when going to school and receiving education and support. When we visited the school, we observed and conducted interviews. To identify specific barriers to accessing and participating in education, we conducted interviews with educators and learners. We asked them about their experiences using public transportation and the difficulties they encountered in getting to school. We asked them whether they had access to technology and assistive devices to help them perform daily tasks. We evaluated the availability of Braille books, audio materials, and digital resources for learning and entertainment. We asked about Internet access and information collection technology.

Our fieldwork found that limited access to Braille materials, inadequate use of assistive technologies, and the need for additional support staff were major problems. Navigating unfamiliar environments proved difficult due to obstacles and lack of tactile cues, and students had difficulty using public transport independently. In terms of daily life, a significant number of students and teachers demonstrated impressive levels of independence, although there were reports of limited access to devices and assistive technology. Access to information, an important aspect of modern education and everyday life, has been hampered by the limited number of Braille books and accessible digital resources, as well as the Compatibility issue with on-screen digital reader for Internet access. Addressing these findings will be important to improve the quality of life and overall educational experience of people with visual impairments.

The recommendations we received were to develop functionalities in our device that would:

1. Read Currencies:

An essential feature, as visually impaired individuals often struggle to identify different denominations of currency notes. The ability to recognize currency values independently would enhance their financial independence.

2. Read colors:

This feature would help visually impaired individuals identify and differentiate between various objects based on color, improving their overall perception of the world.

3. Provide Location Tracking:

Location tracking is crucial for independence and safety. It can help individuals navigate through unfamiliar environments, find specific places, and ensure their security.

4.Read Bus Numbers and Shop Names Quickly:

Public transportation and shopping are integral aspects of daily life. Being able to quickly identify bus numbers and shop names can significantly enhance their autonomy and ease of travel and shopping.

5. Detect and Inform about Stairs and Potholes:

Identifying obstacles like stairs and potholes is essential for their safety while moving about. This feature can prevent accidents and injuries.

6.On/Off Voice Function for Convenience:

Providing the ability to turn the voice function on and off at their discretion offers flexibility and convenience, especially in situations where voice guidance may not be required

V. CONCLUSION

The integration of OCR into smart sunglasses marks a significant stride towards progress in the field of wearable technology but also underscores the potential to enhance global connectivity and understanding. The core functionality lies in the ability to recognize and interpret text in real-time through embedded cameras and advanced image processing algorithms. By capturing and processing textual information from the user's immediate surroundings, enabling instant language recognition.

The literature survey presented research papers, each addressing different aspects of OCR-based technologies, such as language recognition, image preprocessing, and feature extraction. These studies showcased the remarkable progress with a focus on improving accuracy and expanding its applicability to diverse languages and scripts.

The algorithm survey offered insights into the computational techniques used in OCR systems. It highlighted the advantages and disadvantages of various algorithms, from [3]Convolutional Neural Networks (CNN) for image recognition to Long Short-Term Memory (LSTM) for sequence prediction. These algorithms play a crucial role in OCR's ability to accurately recognize text and provide real-time language translations.

The field survey, conducted at Poona School and Home for the Blind Girls, brought to light the challenges faced by visually impaired individuals in their daily lives, particularly in education, transportation, and access to information. The recommendations derived from this survey underscore the need for OCR-based devices to incorporate features such as currency and colour recognition, location tracking, quick identification of bus numbers and shop names, and obstacle detection.

Beyond the technological marvel, it holds the promise of fostering greater understanding and connection among individuals from diverse linguistic backgrounds. As these devices continue to evolve, their impact on global communication and accessibility is likely to shape a future where language is no longer a barrier but a bridge to shared understanding and collaboration.

REFERENCES

- [1] C. H. Wen and L. L. Tze, "Optical Character Recognition with Word Prediction Feature using First Order Hidden Markov For The Blind," 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 2021, pp. 81-86, doi: 10.1109/ICSGRC53186.2021.9515248.
- [2] S. Agrawal and N. Agrawal, "Recognition and Speech Conversion of Devnagri Script using CNN," 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 2023, pp. 1-4, doi: 10.1109/INOCON57975.2023.10101034.
- [3] K. Rao N.S., S. Kumar S., S. Santhosh, S. Rao and K. Kaushik P., "Smart Reader for Visually Impaired," 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 846-850, doi: 10.1109/I-SMAC49090.2020.9243598.
- [4] M. Raja, J. Deny, N. P and M. V, "A Peculiar Reading System for Blind People using OCR Technology," 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2023, pp. 1601-1605, doi: 10.1109/ICEARS56392.2023.10085372.
- [5] B. Vidhale, G. Khekare, C. Dhule, P. Chandankhede, A. Titarmare and M. Tayade, "Multilingual Text & Handwritten Digit Recognition and Conversion of Regional languages into Universal Language Using Neural Networks," 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2021, pp. 1-5, doi: 10.1109/I2CT51068.2021.9418106.
- [6] P. Kapgate, S. Tidke, R. Fender, S. Rathore, S. Ghodmare and L. Ritla, "Raspberry Pi Based Book Reader For Visual Impaired People," 2023 11th International Conference on Emerging Trends in Engineering & Technology - Signal and Information Processing (ICETET - SIP), Nagpur, India, 2023, pp. 1-6, doi: 10.1109/ICETET-SIP58143.2023.10151605.
- [7] A. A, B. D. J, S. P. Mary and D. U. Nandini, "Portable Camera based Identification System for Visually Impaired People," 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2023, pp. 1444-1450, doi: 10.1109/ICOEI56765.2023.10126008.
- [8] M. A. Zaryab and C. R. Ng, "Optical Character Recognition for Medical Records Digitization with Deep Learning," 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023, pp. 3260-3263, doi: 10.1109/ICIP49359.2023.10222038.

- [9] L. Chen et al., "OCR Text Region Detection Based on Chinese Character Features in Natural Scenes," 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi'an, China, 2023, pp. 1538-1541, doi: 10.1109/ICSP58490.2023.10248635.
- [10] Z. Zhang et al., "Multi-connected Tiny Object Detection for Color-Strip Recognition," 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 2023, pp. 417-422, doi: 10.1109/ICTC57116.2023.10154638.
- [11] M. Abu Naser Mojumder, A. Islam, T. Islam, S. Das, Z. Chowdhury and A. Rahman, "Bangla and Nagri Language Detection and Classification Using Deep Learning Methods on Text Document Image," 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS), Bangalore, India, 2023, pp. 480-485, doi: 10.1109/ICAECIS58353.2023.10170588.
- [12] R. Babitha Lincy, J. Jency Rubia, C. Sherin Shibi and M. Kavitha, "An Enhanced Deep Learning Model for Handwritten Tamil Character Identification," 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2023, pp. 1518-1523, doi: 10.1109/ICSSIT55814.2023.10060920.
- [13] M. P. Kurapati, H. C. Vallabhaneni, L. R. Burramukku, H. Reddy Soda, M. M. Vutukuru and S. Thatavarthi, "A Review: Text Extraction from Stone Inscriptions and Translating to Modern Language," 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2023, pp. 1515-1519, doi: 10.1109/ICEARS56392.2023.10085645.
- [14] S. Peraka, S. I. Ali, R. Sudheer, P. P. Kumar, G. Kondala and D. Samal, "A Novel Approach for Assisting Blind People Using a Smart Wearable Device," 2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID), Hyderabad, India, 2023, pp. 383-388, doi: 10.1109/VLSID57277.2023.00082.
- [15] A. Sicherman and Y. Adi, "Analysing Discrete Self Supervised Speech Representation For Spoken Language Modeling," ICASSP 2023 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10097097.
- [16] Y. Zhao and H. Liu, "Document-Level Neural Machine Translation With Recurrent Context States," in IEEE Access, vol. 11, pp. 27519-27526, 2023, doi: 10.1109/ACCESS.2023.3247508.
- [17] A. Yadav, S. Singh, M. Siddique, N. Mehta and A. Kotangale, "OCR using CRNN: A Deep Learning Approach for Text Recognition," 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 2023, pp. 1-6, doi: 10.1109/INCET57972.2023.10170436.

- [18] A. B. M. Ashikur Rahman et al., "Two Decades of Bengali Handwritten Digit Recognition: A Survey," in IEEE Access, vol. 10, pp. 92597-92632, 2022, doi: 10.1109/ACCESS. 2022.3202893.
- [19] H. Arslan, "End to End Invoice Processing Application Based on Key Fields Extraction," in IEEE Access, vol. 10, pp. 78398-78413, 2022, doi: 10.1109/ACCESS.2022.3192828.
- [20] I. Hussain, R. Ahmad, S. Muhammad, K. Ullah, H. Shah and A. Namoun, "PHTI: Pashto Handwritten Text Imagebase for Deep Learning Applications," in IEEE Access, vol. 10, pp. 113149-113157, 2022, doi: 10.1109/ACCESS.2022.3216881.
- [21] A. A. Chandio, M. Asikuzzaman, M. R. Pickering and M. Leghari, "Cursive Text Recognition in Natural Scene Images Using Deep Convolutional Recurrent Neural Network," in IEEE Access, vol. 10, pp. 10062-10078, 2022, doi: 10.1109/ACCESS.2022.3144844.
- [22] Nan Cui¹, "Applying Gradient Descent in Convolutional Neural Networks", in IOP Conf. Series: Journal of Physics: Conf. Series 1004 (2018) 012027, doi:10.1088/1742-6596/1004/1/012027
- [23] R. S. Srichandra, P. S. Rahul, M. S. Govind and V. Battula, "Performance of Convolutional Recurrent Networks for Handwritten Text Recognition," 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2023, pp. 1207-1210.
- [24] X. Wang, F. Xu, Y. Ye and Y. Xu, "Image Enhancement and Detection of Courier Slips Based on Affine Transform," 2023 9th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 2023, pp. 350-354, doi: 10.1109/ICCAR57134.2023.10151736.
- [25] A. D. Mahajan, S. Karuppasamy and S. Lakshminarayanan, "Improving Classification of Scanned Document Images using a Novel Combination of Pre-Processing Techniques," 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2023, pp. 1109-1114, doi: 10.1109/ICAAIC56838.2023.10140911.
- [26] Manoj Kumar Padhi, Sahana D S, Bindu Madhavi K, Bechoo Lal, Karunakara Rai B, "Covid Analysis using Recurrent Neural Network", 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS), DOI: 10.1109/ICICACS57338.2023.10100129
- [27] L. Chen, M. Deisher and M. Georges, "An End-to-End Neural Network for Image-to-Audio Transformation," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10096121.